프로세스 모델 도출은 프로세스 마이닝의 출발점이며, 매우 유용합니다. 원본 데이터로부터 프로세스 흐름 모델을 자동으로 구성하여 실제 프로세스를 알 수 있습니다. 이렇게 도출된 프로세스 모델과 이벤트 로그를 비교하는 것이 적합도 검사(Conformance checking)입니다. 적합도는 이전에 말씀드린 정확도(Precision)와는 다른 개념입니다. 정확도(Precision)는 Underfitting을 피하여 데이터를 정확하게 설명할 수 있으나 정확도가 높을수록 프로세스 모델이 대체로 복잡해지게 됩니다. 하지만 적합도가 높다고 하여 프로세스 모델이 복잡해지는 것은 아닙니다.
적합도 검사의 기본 아이디어는 프로세스 모델 위에 이벤트 로그를 재생하는 것입니다.
아래 예제 모델에 이벤트 로그 a → c → e → g를 재생하여 적합성 검사를 해보겠습니다.
[그림 1] 프로세스 모델 예제
먼저 a 이벤트를 수행하였습니다.
[그림 2] a 이벤트 수행 후
다음으로 c 이벤트를 수행했습니다.
[그림 3] a, c 이벤트 수행 후
이벤트 로그에서는 다음에 e를 수행해야 합니다. [그림 3]을 보면 e를 수행하기 위해서는 d가 먼저 수행되어야 합니다. 하지만 실제 로그에서는 d 수행 없이 e가 수행되었기 때문에 d를 무시하고 e를 수행합니다.
마지막으로 g 이벤트 수행하여 프로세스를 마칩니다.
이벤트 로그 재생이 완료되면 액티비티 d에 실행되지 못한 토큰이 남아있게 됩니다.
[그림 5] 이벤트 로그 재생 후 남아 있는 토큰
프로세스 모델 위에 이벤트 로그를 재생하는 동안 얼마나 많은 토큰을 사용하고(이벤트 수행 횟수) 어떤 이벤트를 생략하고 추가했는지 기록합니다. 이를 통해 기록된 이벤트 로그와 모델의 적합도를 비교할 수 있습니다. 적합도가 1이면 모든 로그가 프로세스 모델에 잘 맞는다는 뜻이고, 0에 가까우면 적합도가 매우 낮다는 의미입니다.
적합도 검사는 어디에 활용할 수 있을까요? 사람들이 표준 프로세스와 달리 행동하는 이유를 찾을 때 활용 가능합니다. 왜 사람들이 기존 프로세스를 벗어나는지, 벗어나는 부분에 대해서는 잘 보고되었는지 확인할 수 있습니다. 일반적인 감사(Audit and compliance) 절차에도 활용 가능합니다.
다른 사례는 도출된 프로세스 모델의 품질을 측정하기 위해 활용할 수 있습니다. 여러 알고리즘을 사용하여 프로세스 모델을 도출했을 경우 어떤 모델이 가장 적합하고 좋은 모델인지 비교해 볼 수 있습니다.
마지막으로 프로세스 설명이 제대로 되어 있는지 실제 행동을 기반으로 확인할 수 있습니다. 예를 들어 어떤 서비스를 제공하는 경우 서비스 실행 방법 매뉴얼과 실제로 제공되는 서비스를 비교하여 일치하는지 확인할 수 있습니다.
※ 본 블로그에 사용된 그림은 Van der Aalst 교수님 강의자료를 사용하였습니다.
#퍼즐데이터 #개발팀 #개발자 #개발후기 #인사이트