안녕, 여러분! 다들 다망하신 와중에 이렇게 지면으로 찾아뵙게 되어 굉장히 반갑습니다. 저는 spoqa의 노예 xym입니다. 어느덧 벌써 연말이네요. 온갖 골든 위크로 시작했던 4/4분기, 이제 한창 주말 외에는 법정공휴일이 없는 데스마치를 진행중이시리라 생각되는데요, 안 그래도 다들 크리스마스만 바라보고 미친듯이 달리고 계시죠?
네, 그래서 제가 이렇게 잠시 여러분 머리를 식혀드리기 위해 한 번 재밌는 이야기를 하고자 찾아뵙게 되었습니다. 개발자가 아닌 분들에게도 별로 어렵지 않게 쓰고자 노력했으니 한번쯤 “오 이런 신기한 게 있구나”하고 읽어보시고 머리 좀 식히고 가세요.
업계 분들이나, 이쪽 업계에 소식이 빠삭한 분들은 아시겠지만 몇년 전부터 이 바닥은 새롭게 몰아치는 파도를 맞고 있습니다. 2, 3년 전부터 올해 중순까지 업계 뜨거운 감자였던 키워드들에 대해서 기억하고 계신가요? 네, 그 소위 HTML5니 클라우드, 빅데이터, 소셜 게임 따위의, 기획안에 쓰면 사장님 입이 귀에 걸리게 만드는 마법의 단어들이요.
이 글도 사실 그 마법의 단어들에 관련된 이야기입니다. 정확히는 클라우드 기술에 관련된 이야기예요.
대관절 클라우드란 무엇이길래 여러분의 기획안을 통과시키게 하는가 궁금하지 않으셨나요? 알고 계신 분들도 많을 테니 간략하게 설명하고 넘어가겠습니다. 클라우드는 클라우드 컴퓨팅 기술의 약자입니다. 위키피디아에 있는 정의는 다음과 같습니다:
인터넷 따위의 네트워크를 통해 실시간으로 많은 컴퓨터들을 관리하는 여러 컴퓨팅 기술과 관련된 개념들을 총칭
얼핏 들으면 굉장히 뜬구름 잡는 소리입니다. 아니, 그럼 그 전까지는 그런 걸 안 했다는 건가? 물론 아닙니다. 클라우드 컴퓨팅이란 단어가 버즈워드로써 시장을 강타하기 전에도 소위 클라우드 컴퓨팅을 위한 기술들은 존재했습니다.
엄밀히 말하면 클라우드 컴퓨팅은 ‘기술 융합’의 일종이라고 볼 수 있습니다. 기존에 존재하던 개념들과 기술들을 융합하여 새로운 접근법을 탄생시킨 것이죠. 간단히 소개하자면 그 클라우드 컴퓨팅을 이루는 기반에는 다음과 같은 두 개의 거대한 축이 있습니다.
거기에 중요한 개념 하나만 더 얹고 넘어가겠습니다. 이것도 한 때는 버즈워드로 사람들을 흥분시켰었죠.
그러니까 어떤 작업을 하기 위해 하나의 컴퓨터를 여러 개로 분리하고(자르고), 또다시 그 분리된 컴퓨터들을 합쳐서(합치는), 어쨌든 정해진 규약대로 사용할 수 있게 만드는 것(편한 거).
아, 너무 기네요. 줄여서 “난 잘 모르겠지만 뭔가 좀 편한 거군.” 정도로 해두죠. 그게 클라우드의 궁극적인 목표이자 본질이라고 볼 수 있겠습니다. 그래서 이름도 뜬구름 잡는 소리 같다고 클라우드잖아요?
그래도 마냥 뜬구름 잡는 소리만 할 수는 없으니 한번 클라우드 서비스의 종류를 알아봅시다.
생각보다 어렵지 않죠?
사설이 길었네요. 이제부터가 본론입니다. 제가 오늘 소개할 녀석은 클라우드 컴퓨팅에 있어 “자르는” 축을 담당하는 가상화의 떠오르는 아이돌, LXC를 사용한 docker 입니다. LXC가 무엇인지는 여기서 중요하지 않습니다#2. 그냥 업계의 떠오르는 아이돌 정도로 해 둡시다. 그러니까 아이유 같은 존재죠.
docker가 등장한 배경을 설명하자면 이렇습니다. Heroku와 함께 PaaS계에서 끗발을 날렸던 dotCloud는 어느 날 갑자기 충격적인 발표를 합니다. 자기네들이 쓰는 가상화 및 애플리케이션 플랫폼을 공개해 ‘오픈 소스로’ 제공하겠다는 것이죠. 아니, 이럴 수가! 이러시면… 이러시면 정말 감사합니다#3!
docker의 가장 큰 특징은 다음과 같이 요약할 수 있습니다.
image 관리의 간편화와 container 관리 간편화
어떤 서비스를 돌리기 위해서는 필요한 서버들이 있습니다. 데이터베이스 서버, 웹 서버, 캐시 서버, 워커 서버 따위의 것들이죠. 이 모든 걸 한 군데로 퉁쳐서 모을 수도 있겠지만 그렇게 되면 데이터베이스, 웹, 캐시, 비동기 업무를 위한 설정과 프로그램들을 한 군데로 모아 관리해야 합니다. 그렇게 되면 설정이 복잡해지거나 애플리케이션이 거대해지거나 필요할 때 횡적인 확장을 하기가 어려워집니다.
예를 들어 웹서버에서는 A라는 라이브러리의 1버전을 필요로 하는데 데이터베이스 서버에서는 2버전을 필요로 한다던지, 이벤트 하느라 접속자가 너무 증가했는데 다른 웹서버가 한시간 정도만 필요한 일을 그럴 수 없어서 서버를 통째로 하나 사야 한다던지 하는 일들이죠. docker는 그런 상황에 유연하게 대응하기 위해 서버 설정과 필요한 프로그램들을 따로 관리할 수 있는 환경을 제공합니다.
docker는 이렇게 분리된 환경을 image라고 부르며, 이 image를 기반으로 여러 개의 container를 생성할 수 있습니다. 음… 이렇게 이해하시면 편할 것 같습니다. image는 유전자 설계도고, container는 그 유전자 지도에서 만들어진 생물체라고나 할까?
즉, 이 설계도를 관리하면 필요할 때 목적에 적합하게 만들어진 생물체를 얼마든지 만들어낼 수 있게 되죠. 필요할 때는 설계도의 설계를 바꿔서 새로운 생물체를 만들어낼 수도 있습니다. 단순하지만 docker의 가장 커다란 컨셉이고 강력하기까지 합니다. 이렇게 단순하고 간편한 환경은 여러 가지 시도를 가능하게 합니다.
거기다 수고를 좀 더 들이면, docker의 API를 활용해 Heroku 부럽지 않은 웹 GUI PaaS 서비스를 만들 수 있을지도 모릅니다(만들어 주시면 감사히 쓰겠습니다).
이야기는 실컷 했으니 한번 설치해보고 실행시켜봅시다. 지면 관계상 모든 플랫폼을 다룰 수는 없기에 우분투 13.10을 기준으로 살펴보도록 하겠습니다. 필요하신 분들은 공식 홈페이지 설치 메뉴얼을 참고하여 진행해주세요.
주의 : 이후 내용은 비 개발자 분들에게는 다소 지루한 내용일 수도 있습니다.
curl http://get.docker.io | sudo sh
참 쉽죠?
이제 여러분의 플랫폼에는 docker가 설치됐습니다. 한번 서버에서 기본 이미지를 다운받아 설치해 봅시다.
sudo docker pull base
인터넷 환경에 따라 좀 기다리셔야 하실지도 모릅니다. 이미지가 설치되면 아래 명령으로 확인할 수 있습니다.
sudo docker images
아래와 비슷한 화면이 나타났다면 성공한 겁니다.
REPOSITORY TAG IMAGE ID CREATED SIZE
base latest b750fe79269d 8 months ago 24.65 kB (virtual 180.1 MB)
base ubuntu-12.10 b750fe79269d 8 months ago 24.65 kB (virtual 180.1 MB)
…(생략)
이렇게 내려받은 image에는 다음과 같은 명령어로 접근할 수 있습니다.
sudo docker run -i -t base /bin/bash
자세한 명령어 사양은 docker help run을 실행해 알아볼 수 있습니다. 여러분은 이제 base라는 image에 접속했습니다. 지금부터 하는 행동은 image에 영향을 미치게 되며, 이는 전부 로그로 남아 저장됩니다. 한번 이것저것 설치해봅시다.
sudo apt-get install python ruby …
이후에 Ctrl+D를 눌러 이미지를 빠져나옵니다. 그리고 아래 명령을 입력하면 방금 전에 수정한 container 목록이 출력됩니다.
sudo docker ps -a
아래와 같은 식으로 출력됩니다.
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
eda0060b7af9 base:latest /bin/bash 6 minutes ago Exit 0 lavender_deer
66c849867834 busybox:latest echo Docker has been 8 minutes ago Exit 0 blue_cat
이제 image의 수정사항을 기반으로 새로운 이미지를 만들어 봅시다. 이미지를 만드려면 변경사항을 commit 해야 합니다. VCS나 DVCS를 쓰시는 분이라면 무슨 말인지 감이 오실 겁니다. 네, 바로 버전 관리 시스템의 그것입니다. 기존 base를 기반으로 변경사항을 만들고 commit하여 새로운 이미지를 생성할 수 있습니다. 매우 쉽군요. 한번 생성해봅시다.
docker commit [ID] [image name]
commit 명령의 구조는 단순합니다. container ID와 그리고 만들 이미지 이름입니다. 이미지 이름은 보통은 만든이/목적 같은 컨벤션으로 만들곤 합니다. 저는 아래와 같이 만들어보겠습니다.
sudo docker commit eda0060b7af9 xymz/grocery
확인은 당연히 아래와 같이 할 수 있습니다.
sudo docker images
repository 에서 여러분이 만든 이미지 이름을 확인할 수 있다면 성공한 겁니다. 여러분의 첫 docker image 생성을 축하합니다!
물론 이렇게 약간 거칠어보이는 방법과는 다르게 Dockerfile 이라고, 딱 봐도 버전관리 시스템에 넣을 수 있을 거 같고 정리가 잘 되는 방법도 존재합니다. 아마도 실제로 사용하실 땐 Dockerfile을 사용하게 되실 거고, 그 방법이 훨씬 낫습니다. 다만 본 포스트의 목적은 개발자나 비개발자 분들에게 docker를 한번 소개해보자는 취지라서 Dockerfile의 operation 을 일일히 설명하기엔 얘기가 너무 복잡해질 것 같아 직접 try-out 하기에 쉬운 commandline 쪽을 선택하게 되었습니다.
여기까지 나온 내용으로 서비스를 구성하기에는 무리가 있습니다. 우리는 이제 막 docker image를 생성하고 저장하는 방법을 알았을 뿐이지 그 외에는 아무것도 모릅니다. docker를 제대로 사용하기 위해서는 아래와 같은 방법들을 추가적으로 알아야 합니다.
하지만 이 방법들에 대해 여기서 다 열거하고 넘어가기에는 무리가 있으니 좋은 링크를 몇 개 소개토록 하겠습니다.
적어놓고 보니 대부분 docker 공식 홈페이지 자료들이네요. 사실 docker는 documentation이 훌륭한 편이라, 그 쪽만 참고해도 많은 도움이 되실 겁니다.
그리고 이 모든걸 쉽게 해주겠다는 Deis라는 녀석이 있습니다. Docker, Chef, Heroku Buildpacks를 이용해 하나의 PaaS스택을 만들고 그 위에 여러분의 서비스를 돌릴 수 있도록 해주겠다는 녀석인데요. 어쩌면 진정한 Open source PaaS 종결자일지도 모르겠습니다. 기회가 된다면 다음에 또 소개할 수 있었으면 좋겠네요.
즐거우셨나요? 중간 이후 내용은 다소 비개발자분들에게 지루한 내용이었을지도 모르겠습니다만, 전반적으로 최대한 쉽게 설명하고자 노력했습니다. 다음 번에는 더욱 재밌는 글로 찾아볼 수 있도록 하겠습니다. 그럼 뿅!
#스포카 #개발 #개발자 #개발팀 #인사이트 #Docker #클라우드 #꿀팁
관련 스택