스토리 홈

인터뷰

피드

뉴스

조회수 1316

'구루급' 개발자란...

'구루'라는 단어는 이제 '수준급'을 넘어선 분들에게 부여되는 의미 있는 호칭이다. 특히, 개발자 사회에서는 비공식적으로 '구루급'이라고 불리는 개발자들이 있다. 이 정의에 대해서 누가 명확하게 옳다고 이야기할 수 있는 것은 아니다.다만, 30년 동안 소프트웨어 개발자로 살아오면서 만난 수많은 개발자들과 해외 유수의 개발자들과 만나고 소통하면서 느낀 개인적인 경험을 바탕으로 '구루급'에 대해서 정의를 해보겠다.매우 당연하게 이 정의는 전적으로 객관화된 것이 아닌, 매우 주관적인 기준이다.보통, '구루'급 개발자라고 불리는 분들을 보면, 오픈소스로 한 획을 그었거나, 그의 뜻을 따르는 후배들이 많거나, 특정 분야의 경험이 매우 풍부한 분들을 대상으로 이야기한다.다만, 이 기준에 '돈'을 많이 벌었거나, 특정 제품이나 게임, 서비스를 잘 만들었다는 식의 기준은 들어가는 것은 일부 논외로 하겠다. 이것은 전적으로 개인적인 기준이다. 이런 분들은 '구루급'개발자가 되기보다는, 산업적이거나 경제적으로 크게 성공한 기준이 더 높기 때문이며, 금전적으로 성공한 분들이 '후배'들에게 개발자로서의 영향력을 주는 것이 사실상 어렵기도 하거니와, 이미 비즈니스의 단계로 넘어간 분들이기 때문에 '구루급'개발자라고 이야기하기에는 모호하다고 개인적으로 이야기한다.그렇다면, 내가 생각하는 구루급 개발자의 최소한의 필요조건을 나열해 보자. 전적으로 개인적인 기준이니 너무 주관적이라고 비판하지 마시기를... 그 이유는 정말 주관적이기 때문이다.하나. 하나의 소프트웨어나 도메인을 10년 이상 장기간 개발 및 연구하고 있는가?둘. 자신만의 개발 문화에 대한 철학과 그 기준을 가지고 실행하고 있는가?셋. 자신이 소유하거나 만들어낸 개발 도구나 방법, 기술에 대해서 후배 개발자들에게 전파하고 있는가?넷. 후배 개발자들에게 존경받는 개발자로서의 기본적인 성품을 가지고 있는가?다섯. 후배 개발자들에게 자신의 롤을 양보하거나, 팀과 조직을 위해서 자신의 자리를 포기할 줄 아는가?여섯. 자신의 먹을거리를 위해서 비용을 싸게 부르지 않고, 후배들도 대우를 받을 수 있도록 너무 싸게 일하지 않아야 한다는 것을 실천하는가?제가 생각하는 '구루급'개발자의 조건입니다.분명, 이렇게 활동하는 '구루급'개발자들이 주변에 존재하고 있으며, 이를 위해서 개발자의 처우에 대해서 노력하기도 하고, 불합리한 경영자들과 논쟁을 벌이기도 합니다. 자신의 개인적인 이익만을 위해서 움직이지도 않는 그들이야말로 '구루급'개발자 아닐까요?그리고.대부분의 구루급개발자들은 충분한 대우와 보수를 받고 일하고 있습니다.그것이, 후배 개발자들의 처우와 미래를 위해서 매우 필요하다고 생각하고 있기 때문이죠.저는 '구루급'개발자를 그렇게 생각합니다.ps.최고의 개발자, 슈퍼개발자 등에 대한 호칭도 있을 수 있습니다. 제가 생각하는 '구루'급 개발자는 후배들에게 존경을 받고, 후배들의 처우나 개발자들의 미래에 대해서도 고민하고 실천하는 분들에 대해서 정의해 본것입니다.
조회수 1343

스타트업 개발팀에서 일한다는 것

 대부분의 정보통신 분야, 특히 소프트웨어를 제작하는 "개발 조직"의 구성은개발,  디자인, 기획(또는 PM), QA가 팀으로서 분리되어있고, 규모 있는 회사들의 경우, 업무에 관련된 직군 간의 갈등 상황이나 문제가 생길 시, 파트장 또는 팀장님들(이하 중간관리자)이 중재를 하고 의사를 결정하는 정해져 있는 프로세스가 되어 있습니다. 그러나, 작은 규모의 스타트업이나, 업무에 책임을 지고 있는 인원이 단 한두명일 경우, 중간관리자들의 부재 때문에 개인 간 생기는 갈등 상황을 피할 수 없습니다. 그래서 오늘은 지금까지 제가 느낀 "정확하고 빠른 업무 진행을 위해 각 직군 간 인원들이 챙겨야 할 덕목들."을 말씀드리려 합니다. 그렇다면 무엇보다도, 왜 갈등 상황이 생기게 되는 걸까요?저는 "각 직군 간 종사자의 업무를 진행하는 과정과 목표가 다름에도, 이해보단 자신의 기준에서만 업무를 바라보는 경향"이 가장 큰 원인이라고 생각합니다. 저의 글(라고 적고 깨알 홍보라 읽는다...)에서 말씀드렸듯, 개발자, 디자이너, 기획자 들은 서로 일을 하는 방식도 다르고(심지어 개인차도 있지요), 각 직군마다 지향하는 부분들이 다르기 때문에 같은 방향을 보고 가더라도 서로가 서로 간에 집중하지 못하는 부분들이 분명히 존재합니다. 그리고 그런 부분들을 줄이기 위해선 업무 중 서로가 서로를 이해할 수 있도록 한 번씩 자신을 돌아보는 것들이 중요합니다. 그래서 아직 많이 부족하지만 각 직군에 종사하는 분들 그리고 공통적으로 업무 중에 한 번씩만 더 생각해 주셨으면 하는 것들과, 이유를 적어보려 합니다.기획 (또는 프로젝트 매니지먼트)1. 스펙 산정은 다 같이큰 회사라면 잘 모르겠지만, 작은 개발팀의 장점은 "많은 인원들이 비교적 짧은 시간 안에 많은 생각을 나누고 지향점을 찾아가는 과정을 같이 할 수 있는 것."이라고 생각합니다. 분명 기획자가 생각하고 만들어 내야 하는 스펙들이 있겠지만, 독단적으로 "이건 무조건 해야 하니 들어."라는 태도는 작은 팀일수록 업무의 동기를  꺾어버리는 일이 생길 수 있으니 항상 조심해야 합니다.2. 혼자서 "뭐... 개발이든 디자인이든 되겠지." 하는 추측은 절대 금물개발자 출신, 또는 디자이너 출신 또한 마찬가지라고 생각합니다. 몇 가지 예를 들자면, 1. 지금 개발자 또는 디자이너가 부딪힌 상황에 있지 않고, 2. 해당 직군에서 새롭게 화두 되는 트렌드에 덜 민감하고, 3. 각 개발자, 또는 디자이너가 생각하고 있는  스펙이나 디자인을 알지 못하고, 4. 어떤 라이브러리, 어떤 테마를 기반으로 작업할 지에 대한 기본적인 이해가 없으면서"이건 이렇게 되니깐 당연히 금방 될 거야."라는 생각은 절대 금물이라고 생각합니다.(디자이너나 개발자 분들이 그냥 "이거 간단하게 뭐 메뉴 만들어서 대충 어디 집어넣으면 되지 뭘 그리 어렵게 생각해?"라고 하면 피꺼솟 하는 거랑 마찬가지입니다ㅎㅎ) 3. 삼초 안에 정해진 내용도 항상 문서화 작은 개발팀일수록, 내용 저장과 공유, 그리고 의사 판단의 근거들이 약할 때도 있고, "우리 왜 이거 이렇게 가게 됐지?"라고 생각할 때가 많습니다. 적어도 "몇 월 며칠날 어떤 주제에 관해서 어떤 이유 때문에 어떤 방식으로 처리하기로 한다." 정도라도 항상 적어둘 필요가 있습니다. 디자이너1. 레퍼런스 자료 준비에 시간을 아끼지 말자 원하는 인터렉션, 원하는 디자인의 방향이 있다면, "왜 원하는지, 왜 이런 방향으로 개발을 해주었으면 하는지."에 대한 판단의 근거가 필요합니다. "이쁘잖아."는 상당히 설득력이 있지만 개발자 또는 기획자를 완전히 설득시킬 순 없어요... 특히 아직 개발이나 기획에 대한 로직을 잘 모르시는 디자이너 분들의 경우, 레퍼런스 자료를 찾을 때 드리블(Dribbble)이나 핀터레스트(Pinterest)도 좋지만, 스스로 프로토 타이핑 구현이 불가능하다면, 반드시 구동되고 있는 애플리케이션을 찾아보고 어떻게 작동하는지에 대해 면밀하게 파악해 주세요.2. 작은 부분이라도 시안에 변경이 있다면 반드시 공유하기 처음 팀 단위로 일을 하다 보면, "요거 내가 생각해보고 금방 슉 바꿔놔야지."라는 생각에 조용히 디자인을 바꿀 수 있습니다... 아? 아니에요 절대 안 됩니다.....  다 같이 협업하는 일을 하다 보면, 버전 관리와 변경내역 공유가 제작보다 더 중요한 상황이 올 수 있습니다. "내가 어디 부분을 변경했고, 변경한 이유는 이것 때문이다." 라는것 없이 홀로 조용히 변경한 디자인은 엄청나게 큰 갈등 상황을 부를 수 있어요!개발자1. 장애 발견 시 어디가 어떻게 안될 거 같은지에 대해서 설명하기 가장 힘든 줄 알지만, 할 수 있다면 가장 강점인 부분일 것 같아요. "개발하는 과정에서 이러한 부분은 지금 서비스에서는 이런 식으로 동작하는데, 원하시는 이런 부분은 이런 게 다르기 때문에 동작하는데 장애가 있을 수 있어요."를 설명해 줄 수 있는 개발자와 일한다는 것은 정말 같이 일하는 다른 직군들에게는 큰 축복이라고 할 수 있죠. "내가 백번 말해도 모르실 거예요."라고 말하는 건 결국, 무엇이 문제인지도 모르고, "다른데선 되는데 왜 우린 안돼?"라고 생각하는 다른 직군의 동료들에게 질타를 받을 수밖에 없습니다. 개발자는 소통이 잘 안 되는 사람이라는 고정관념을 깨고, 오래 걸려도 좋고, 다른 직군의 사람들이 당장 무슨 이야기를 하시는지 이해 못해도 좋아요. 같은 선상에서 고민한다는 것을 알려주는 것만으로도 큰 도움이 됩니다.전반적으로모든 작업의 종료는 내 결과물 발표가 아닌 다음 작업자의 업무 최적화입니다.기획자는 "문서 완료했을 때"디자이너는 "디자인 가이드 또는 산출물 나왔을 때"개발자는 "시킨 개발 다 했을 때"가 아니라,기획자는 "다음에 문서를 읽을 디자이너, 개발자가 스펙이 이해가 안돼서 업무를 진행하지 못하는 일이 없도록"디자이너는 "개발 중에 필요한 자료가 없어 업무를 진행하지 못하는 일이 없도록 "개발자는 "QA 중 개발에서 요구한 스펙에 미달되는 부분이 있어 업무를 진행하지 못하는 일이 없도록"하는 게 업무의 궁극적인 틀입니다. 결국, 일의 최종점은 결과물이 온전하게 나왔을 때 의미있는 것이기 때문에 최종 결과물이 나오는 과정에서 내 역할을 마지막까지 충실히 하는것이 업무의 종료라고 생각합니다. 분명, 모든 것들을 한 번에 모두 다 알고, 또는 모든 것들을 다 계산하면서 할 수는 없어요. 항상 실수는 할 수 있죠. 하지만, 실수가 아니라 이런 부분들을 알면서, 또는 이러한 고려를 하지 않고 업무를 지금까지 진행하셨다면, 말씀드린 부분은 분명히 한 번씩은 생각해 보아야 될 부분이라고 생각합니다. 굉장히 오랜만에 글을 쓰는 것 같네요! 다들 건강하게 잘 지내고 계시죠? 저는 마지막 글 이후 한 번의 이직과 다른 이런저런 일들에 치여 이제야 글을 쓰게 되네요. 이번글을 시작으로, 직군별로 하나하나 더 디테일하게 설명드리도록 할게요! 그리고 앞으로는 기획 업무 관련 뿐만이 아니라, 이번 글과 같이 각 직군 간의 이해관계나 업무를 진행하며 느끼는 것들에 대해 공유드리고, 서비스 기획 관련해서도 조금 더 자주 글 쓸 예정입니다. 앞으로도 자주자주 들러주세요, 감사합니다! :)#코인원 #블록체인 #기술기업 #암호화폐 #스타트업인사이트
조회수 328

컴공생의 AI 스쿨 필기 노트 ⑤ 베이즈 결정이론

이번 5회차 수업에서는 베이즈 결정이론(Bayes Decision Theory)과 가우시안 혼합모형(Gaussian Mixture model)에 대해 배웠어요.1980년대 이후 세계 금융시장에서 위험관리를 계량화한 것은 확률이론, 그중에서도 ‘베이즈 정리’가 있었기에 가능했어요. 이전의 경험과 현재의 증거를 토대로 사건의 확률을 추론하는 알고리즘 덕분에 온갖 파생상품이 탄생했어요. 그런데 베이즈 정리는 오랫동안 금기시됐는데요. 주관적인 믿음을 측정하기 때문에 합리적이지 않다는 이유에서였다고 해요. 하지만 베이즈 정리의 활용도는 갈수록 커지고 있어요. 암호 해독부터 전쟁 중 의사결정, 실종된 사람이나 선박의 위치 추정, 암 발병률 예측, 스팸메일 걸러내기 등 무한대에 가깝다고 해요. 이번  필기노트에서는 베이즈 결정이론에 대해 알아볼게요.Bayes Decision Theory베이즈 결정이론은 패턴 인식을 위한 통계적 접근 방법이에요. 베이즈가 제시한 통계적 방법을 통해 의사 결정을 하는 방법이죠. 전통적 통계 방식은 통계적 추리를 할 때 표집으로 얻은 정보만 사용해요. 베이지안 확률이 전통적 통계 방식과 다른 점은 학습자가 기존에 가지고 있는 사전 정보를 활용한다는 것인데요. 불확실한 상황에서 통계적으로 얻은 정보를 가지고 의사 결정을 해야 하는 경제학, 경영학 등 여러 분야에서 많이 사용되고 있어요.베이즈 결정이론에 사용되는 베이즈 정리(Bayes rule)에 대해 간단한 예시를 들어볼게요.우리가 은행 지점장이라고 가정해봐요. 고객에게 돈을 빌려줄 수는 있지만 아무에게나 막 빌려줄 수는 없겠죠?그래서 은행 고객을 high-risk, 즉 돈을 빌려줘도 안 갚을 확률이 높은 고객과 low-risk, 즉 돈을 빌려주면 갚을 확률이 높은 고객으로 나눌 거예요.그런데 은행 고객이 돈을 갚을지 안 갚을지를 판단하는 기준이 있어야겠죠? 그래서 고객의 연봉(yearly income)과 현재 은행 계좌 보유금액(savings)을 가지고 판단할 거예요. 이렇듯 변수가 두 개만 있을 때 우리는 이항분포를 사용해서 의사를 결정해요. 위에서는 두 가지 고객이 존재하므로 이항분포를 사용해서 고객에게 돈을 빌려줄지 여부를 결정하죠. 결정을 내릴 때는 확률이 큰 쪽을 선택할 거예요. 확률이 큰 쪽을 선택하는 것은 이성적인 판단이기 때문이에요. 그래서 고객 x가 high risk일 확률(P(C=1|x)이 x가 low-risk일 확률(P(C=0|x)보다 크다면 1이라는 결정을 내리고, 작다면 0이라는 결정을 내려요.하지만 우리가 내리는 결정에도 error(=risk)가 존재하겠죠?확률의 합은 항상 1이고 결정은 항상 P(C=1|x)나 P(C=0|x) 중 확률이 큰 쪽이기 때문에 1에서 그 확률을 빼면 그 결정의 error가 돼요. 베이즈 결정이론은 이처럼 분류하고자 하는 물체들에 대해서 사전 정보가 주어지는 경우에 사용이 될 수 있는 이론이에요.Bayes’ rule베이즈 결정이론에는 베이즈 정리(Bayes’ rule)가 사용되는데요. 자세히 살펴볼게요.- P(C) : prior probability(선행 확률, 특정 사건이 일어날 것에 대한 추가 정보를 획득하지 못한 확률)로 여기서는 x가 어떤 값을 가지든 C가 1일 확률을 말해요.- p(x|C) : likelihood(우도, C가 주어졌을 때 조건부 확률) C가 주어졌을 때 x를 가지고 있을  확률을 말해요. 따라서 x값에 따라 확률이 달라져요. 예를 들어 p(x|C = 1) 은 C가 1인 즉 high risk인 고객이 x를 가지고 있을 확률을 나타내요.- p(x) : evidence(증거)는 C와 상관없이  x가 나타날 확률이에요.- p(C|x) : posterior probability(사후 확률)로 우리는 사후 확률을 기반으로 아래와 같이 decision을 내려요.위의 예시처럼 두 가지 고객만 있는 상황(이항분포)이 아니라 K명의 고객이 있는 경우(다항분포)는 어떻게 계산할까요? 이 경우에도 베이즈 정리가 적용되는데 식이 조금 달라져요.p(x) 구하는 식만 달라지고 나머지는 위에서 봤던 예시와 같아요. 그리고 이항분포의 error는 1에서 둘 중에 큰 확률을 뺐듯이 다항분포의 error도 아래와 같이 구해요.Loss and Risk위의 이항분포에서는 고객에게 돈을 빌려줌으로써 돈을 못 받는 손실(Loss)이 존재하고 돈을 못 받을 것 같은 고객에게 빌려주지 않음으로써 생기는 손실이 존재해요. 이 중 어떤 것이 더 손실이 적을지 생각해봐야겠죠?의사 결정을 하는 행동(action)을 αi라고 했을 때 αi에 대한 손실을 λik라고 정의할게요.위의 식은 예상되는 손실값이에요. 이 손실값은 실제로는 k인 상황이지만 행동 αi를 취해서 생기는 손실이에요.손실을 줄여야 하기 때문에 가장 작은 손실이 생기는 행동을 취해야 해요. 따라서 위의 식을 보면 argmin함수를 이용해서 k개의 행동 중 가장 작은 손실을 취해요.Reject 의사 결정이 어려운 경우에는 의사 결정을 피하는 것이 더 적절한 경우도 있어요. 이때는 어떠한 행동도 하지 않는 행동 αK+1을 추가해요.action αK+1을 추가하면 αK+1에 따른 손실 λik 또한 하나가 더 늘어요.위의 수식은 reject 행동을 포함했을 때 결정을 내리는 식인데 간단하게 참고하시면 될 것 같아요.이번에는 베이즈 결정이론에 대해 자세하게 다뤘는데요. 이번 수업은 교수님께서 많은 것을 가르쳐주셔서 저 같은 초보자가 듣기에 조금 힘든 점이 있었어요. 벌써 8주차 이론수업의 절반 이상이 지났는데요. 5주 동안 배운 많은 이론들을 코드로 능숙하게 표현하는 데에는 많은 노력이 필요하겠지만, 이만큼 왔다는 것만으로도 뿌듯한 기분이 들어요. 8주차부터 시작하게 될 팀 프로젝트에서 실력 발휘를 하기 위해서 더 열심히 수업에 임해야겠어요!* 이 글은 AI스쿨 - 인공지능 R&D 실무자 양성과정 5주차 수업에 대하여 수강생 최유진님이 작성하신 수업 후기입니다.
조회수 1817

서비스 중단 없이 Amazon EKS로 옮긴 이야기 - VCNC Engineering Blog

Amazon EKS는 AWS의 관리형 Kubernetes 서비스입니다. 2017년 11월 AWS re:Invent에서 프리뷰 버전이 출시되었고, 2018년 6월에 상용(GA) 버전이 미국 리전에만 출시되었습니다. 그래서 서울 리전을 사용해야 했던 타다 프로젝트에서는 Kubernetes 클러스터를 직접 kops로 설치하여 운영할 수 밖에 없었습니다.2019년 1월, 오랜 기다림 끝에 드디어 서울 리전에 EKS가 출시되어 기쁜 마음으로 EKS로 옮겨가게 되었습니다. 이 글에서는 직접 구축한 클러스터 대비 EKS의 특징에는 어떤 것이 있는지 살펴보고, 서비스 중단 없이 EKS로 옮기기 위한 전략을 공유하고자 합니다.EKS 서울 리전 출시를 염원하던 한국인(?)들EKS는 뭐가 다른가요?AWS에서 마스터 노드를 관리해줍니다.Kubernetes 클러스터는 마스터 노드와 워커 노드로 구성되어 있습니다. EKS는 이 중에서 마스터 노드를 직접 EC2로 띄울 필요 없이 AWS에서 관리해주는 서비스입니다. RDS를 사용할 때 직접 DB 인스턴스를 생성하지 않는 것과 비슷합니다. 별도의 설정 없이도 알아서 여러 가용 영역에 마스터 노드를 실행하여 HA(고가용성) 구성을 해주고, 비정상 마스터 노드를 자동으로 감지하고 교체합니다. 또한 자동화된 버전 업그레이드 및 패치를 지원합니다. EKS를 사용하더라도 워커 노드는 직접 EC2 인스턴스를 생성·관리해야 합니다.EKS 클러스터의 요금은 2019년 2월 현재 시간당 $0.20입니다. 타다에서는 기존에 t2.medium 3대를 마스터 노드로 사용하고 있었기 때문에 관리를 직접 하지 않는 대신 비용이 약간 증가하게 되었습니다.AWS IAM 기반 인증을 사용합니다.VCNC에서는 기존에 Kubernetes API에 접속할 때 가장 간단한 basic auth 인증 방식을 사용했습니다. 그 대신 외부 네트워크에서 접근할 수 없게 해두고 필요한 경우 Bastion 호스트를 통해 SSH 터널링하여 접속했습니다.EKS의 API 서버는 인터넷에 노출되어 있으며, 별도로 네트워크 접근 제한 설정을 할 수 없고 AWS IAM으로 사용자를 인증합니다. (물론 공개망에 노출되어 있으면 Kubernetes API 서버에 보안 취약점이 발견되는 경우 안전하지 않을 수 있는 단점이 있습니다. 앞으로 PrivateLink가 지원되면 해결될 것입니다.)IAM은 인증에만 사용되고, 특정 작업을 할 수 있는 권한은 Kubernetes 기본 RBAC로 관리됩니다. IAM 사용자나 역할을 RBAC 그룹에 매핑할 수 있습니다.EKS 인증 흐름도워커 노드 당 Pod 개수 제한이 있습니다.예를 들어 c5.large 인스턴스에는 29개의 Pod을 띄울 수 있습니다. (표 참고) 그러므로 기존 클러스터에서 노드 당 Pod이 몇 개나 되는지 미리 확인할 필요가 있습니다. 왜 이런 제약이 있을까요?Kubernetes에서는 네트워킹 플러그인으로 Pod 사이에 네트워크 통신하는 방식을 다양하게 설정할 수 있습니다. EKS는 기본적으로 amazon-vpc-cni-k8s를 사용합니다. 이 네트워킹 플러그인은 VPC 상에서 유효한 실제 IP를 Pod에 할당합니다.그러기 위해서는 하나의 EC2 인스턴스에서 여러 개의 IP를 받아와야 하고, 이를 위해 추가적인 네트워크 인터페이스(ENI)를 붙입니다. 그런데 인스턴스 타입에 따라 추가할 수 있는 ENI 수와 ENI 당 IP 수에 제한이 있습니다. 따라서 이 제한이 워커 노드 하나에 띄울 수 있는 Pod 개수 제한이 됩니다.flannel 등 오버레이 네트워크 기반의 다른 네트워크 플러그인을 사용하면 이러한 제약을 피할 수 있습니다. 하지만 EKS에서 기본 제공하는 방법을 그대로 사용하는 것이 좋고, Pod을 엄청나게 많이 띄워야 하는 상황이 아니어서 시도하지 않았습니다.EKS로 중단 없이 넘어가기개요타다의 Kubernetes 클러스터에서 돌아가는 서비스들은 모두 영속적인(persistent) 상태를 가지고 있지 않습니다. 따라서 EKS 클러스터 위에 동일한 서비스를 띄우고 외부 트래픽을 옮겨주기만 하면 특별히 데이터를 옮기지 않고도 이전이 가능했습니다. 또한 거의 대부분의 Kubernetes 리소스는 Helm 차트로 생성한 것이기 때문에 새로운 클러스터에 동일한 서비스를 띄우는 작업도 쉽게 할 수 있었습니다.이전 작업은 다음과 같은 순서로 진행했습니다.EKS 클러스터를 만들고 워커 노드를 생성모든 서비스 다시 설치트래픽을 새 클러스터로 보내기이전 클러스터 제거EKS 클러스터를 만들고 워커 노드를 생성타다의 AWS 환경은 거의 모두 Terraform으로 정의되어 관리되고 있습니다. EKS 클러스터와 워커 노드도 HashiCorp Learn의 문서를 참고해서 Terraform으로 생성했습니다. 해당 문서에 설명이 잘 되어 있어서 거의 그대로 따라할 수 있었습니다.EKS 클러스터 설정은 재사용 가능하도록 Terraform 모듈로 만들었습니다. 덕분에 테스트용 클러스터와 실서비스용 클러스터를 동일한 모듈로 변수만 바꿔서 설정할 수 있었습니다.모든 서비스 다시 설치타다의 Kubernetes 리소스는 Helm 차트로 관리되고 있어서 기존 차트를 거의 그대로 설치할 수 있었습니다. 사용자에게 직접적인 영향을 덜 주는 워커 서비스를 먼저 설치해서 제대로 동작하는 것을 확인한 뒤, 마지막으로 프론트엔드 서비스를 설치하였습니다.트래픽을 새 클러스터로 보내기타다의 모든 트래픽은 NLB로 들어온 뒤 NGINX를 거쳐 다시 적절한 Pod에 라우팅됩니다. 그러므로 타다의 모든 도메인은 NLB를 가리키고 있습니다.타다는 Route 53을 DNS 서버로 사용합니다. Route 53에는 가중치 기반 DNS 레코드를 설정할 수 있습니다. 이를 이용하여 일부 트래픽만 새 클러스터의 NLB로 보낼 수 있습니다. 처음에는 아주 적은 트래픽만 새 클러스터로 보내다가 문제 없이 작동하는 것을 확인한 다음 조금씩 트래픽을 늘려나갔습니다.DNS 가중치 설정으로 일부 트래픽만 새 클러스터의 NLB로 보낼 수 있습니다.DNS 설정에서 이전 클러스터로 가는 레코드를 완전히 제거한 뒤에도, DNS 캐시 등의 이유로 일부 클라이언트가 이전 클러스터에 접속할 수도 있습니다. 따라서, 이전 클러스터 NLB에 새 클러스터의 노드들을 붙여서 아직 DNS를 따라오지 못한 클라이언트들의 요청을 처리하였습니다.이전 클러스터 제거가장 신나면서 조심해야 하는 작업입니다. 먼저 이전 클러스터로 트래픽이 전혀 들어오지 않는 것을 확인하였습니다. 그 다음에는 Terraform에서 이전 클러스터 리소스에 대한 참조를 제거한 뒤, terraform destroy 명령으로 이전 클러스터와 관련된 리소스를 한번에 삭제할 수 있었습니다.맺음말Kubernetes는 깔끔한 추상화를 통해 컨테이너 기반 배포를 간단하게 만들어주지만, 직접 클러스터를 관리해야 하는 부담이 있었습니다. Amazon EKS는 이러한 부담을 많이 덜어주는 좋은 서비스입니다. 앞으로 EKS의 무궁한 발전을 기원합니다.VCNC에는 오랫동안 쌓아온 AWS 인프라 운영 경험이 있습니다. 타다에서는 그동안의 경험과 비교적 최근에 시작한 프로젝트의 이점을 살려 컨테이너, Infrastructure as Code 등 업계 표준의 인프라 관리 방법론을 적극 도입하려고 노력하고 있습니다. 앞으로도 이에 관해 기술 블로그에 더 자세히 공유할 계획이니 기대해주세요. 또한 저희와 함께 안정적인 서비스를 만들어나갈 좋은 분들을 기다리고 있으니 VCNC 채용에도 많은 관심 부탁드립니다.
조회수 1077

2016, 개발자의 Life.. 꿈...#1

주변 개발자들의 삶이 매우 행복을 추구하는 삶으로 변해가고 있다는 것을 느낀다. 주변의 개발자들의 모습을 몇 가지 정리해보자. 이를 '지속 개발을 위한 개발자 Life 스타일'이라고 정의하겠다.개발자#A10년 넘게 개발하던 패키지를 기반으로 필요 기능을 최소화하여 1인 개발기업에 성공하였고 제주도로 내려가서 지역에 속한 분들과 호흡하는 삶을 추구하면서도 소프트웨어 개발의 핵심을 잃지 않았다. 정말, MVP 기능에 최대한 집중하면서 필요한 시장 영역을 더 확대하지 않고, 소프트웨어를 개발하고 있는 개발자와 해당 소프트웨어를 사용하는 고객과 시장에 대해서 같이 합리적으로 지속할 수 있는 지속할 수 있는 소프트웨어 개발의 삶을 이루었다.그리고, 그러한 Life환경을 주변에 전파하면서 불과 얼마 전 또 한 명의 구 루급 개발자에게 비슷한 삶의 길을 가르쳐준다. 정말 부러운 개발자들...개발자#B복잡한 업무나 더 많은 보수를 위해서 더 좋은 회사를 찾기보다는 삶이 존재하는 근무시간을 위해서 재택근무를 찾고 있다. 비용도 최대한 낮추면서 생활을 위한 회사를 찾아다니고 있다. 아무래도, 외국계 개발회사를 선택할 것 같다.개발자#C오픈소스 진형에서 인정받는 개발자이다. 본인이 원하는 오픈소스 프로젝트를 추진하는 것을 보장받고 외국계 기업의 원격근무를 선택했다. 보수도 나쁘지 않고, 근무시간은 알아서 하는 것이지만, 원격으로 일하는 것이기 때문에 '능력'을 보여주기 위해 더 많은 시간을 소프트웨어 개발에 투자한다. 굳이, 서울 시내에 있을 필요가 없기 때문에 외각으로 집도 옮겼다.개발자#D일부러, 실리콘 벨리의 스타트업을 선택했다. 조만간 상장 예정인데 매우 큰 혜택을 받을 것 같다. 그 역시 지속 개발이 가능한 삶을 추구한다.2016년 올 초의 개발자 트렌드는 '지속 개발을 위한 Life'를 지향하는 개발자들이 늘어났다고 평가해본다.우리 모두 지속개발이 가능한 삶을 지향해 보는 것은 어떨까나...
조회수 458

iOS 개발자를 구합니다!

“세상 모든 광고영상을 누구나 쉽게 만들 수 있게 한다.”영상광고는 사업의 규모와 업종을 막론하고 모든 분야에서 필수적인 요소로 자리잡고 있습니다. 잘 만든 영상광고가 매출로 이어진다는 사실은 검증되었고, 그 중요성은 나날이 증가하고 있습니다.하지만, 영상제작 전문기술 없이 광고영상을 제작한다는 것은 시간과 비용적인 측면에서 매우 어려운 일입니다. 광고영상을 SNS에 업로드 하고 싶은 마케터나 창업가들은 영상 전문가나 디자이너가 되는 것을 꿈꾸지 않습니다. 단지 자신의 서비스와 제품이 멋지게 홍보될 영상을 원하고 있습니다.더브이플래닛은 전문기술 없이도 누구나 쉽고 빠르게 광고영상을 제작할 수 있는 브이플레이트를 통해 많은 마케터들과 창업가들이 겪는 시간과 비용에 대한 어려움을 해소할 것입니다.“더브이플래닛”에서 영상광고 생태계의 흐름을 바꿀 iOS개발자를 모집합니다.광고영상을 누구나 쉽게 만들 수 있도록 함께 고민하고 시장을 주도해나갈 분을 애타게 찾고 있어요.우리는 한사람 한사람의 소중한 능력들이 맘껏 발휘될 수 있도록 존중과 배려로 서로를 응원하고 있어요. 우리와 함께 소중한 능력을 맘껏 발휘하실 분들의 많은 지원 부탁드려요.
조회수 2847

Eclipse 디버거 사용법

꽤 많은 분들이 디버거의 존재 자체를 모르고 있거나 혹은 디버거가 있다는 사실은 알아도 그 효용성에 의문을 제기하곤 합니다. 왜냐하면, 우리에겐 Log 클래스나 혹은 printf같은 훌륭한(?) 디버깅 도구가 있다고 생각하기 때문이죠. 물론 이렇게 필요한 변수를 찍어보면서 어떤 곳에서 버그가 있는지를 알아보는 일이 잘못된 일은 아닙니다만 복잡한 여러 상황이 맞물려 재현되는 버그는 이러한 고전적인(?) 방법을 써서 알아보기가 매우 어렵습니다.원인을 정확히 그리고 빨리 파악하려면 디버거의 사용법을 숙지하고 사용하는 것이 가장 좋습니다. 대부분의 개발 환경에서 디버거를 제공하는데 다행히 이클립스에서도 쓸만한 디버거를 내장하고 있습니다.오늘 포스팅에서는 이클립스 디버거 사용법에 대해 다루어 볼까 합니다.이클립스 디버거 뷰이클립스는 디버거 뷰를 제공하여 디버거를 사용할 수 있도록 합니다. 디버거 뷰는 어디에서 확인할 수 있을까요? 바로 우측 상단에 Debug 뷰에 들어가면 그곳에서 확인할 수 있습니다.디버깅의 시작그렇다면 어떻게 디버깅을 활성화한 상태로 프로그램을 실행할 수 있을까요? 상단 메뉴의 Run에서 프로그램을 실행할 때 Debug를 이용하여 프로그램을 실행하면 디버거가 작동하게 됩니다.브레이크 포인트 설정과 뷰보통 디버깅을 할 때 가장 먼저 하는 일이 브레이크 포인트를 잡는 일입니다. 브레이크 포인트를 에러가 일어나는 라인이나 혹은 의심이 가는 변수를 추적할 수 있는 라인쯤에 잡아놓고 프로그램을 디버깅하면 해당 라인을 실행할 때 디버거가 작동하게 되고 그곳에서 프로그램을 라인 별로 진행해가며 관찰을 진행할 수 있게 됩니다.브레이크 포인트 설정은 매우 간단합니다. 편집기 왼쪽에 파란 부분(마커 바)을 더블 클릭하게 되면 파란 원이 생기는데 이 원이 브레이크 포인트입니다. 혹은 오른 클릭하여 Toggle break point를 누르면 됩니다. 설정 후 다시 더블 클릭하게 되면 브레이크 포인트가 사라지게 됩니다.또한, 디버그의 브레이크 포인트 뷰에서 지금까지 걸어놓은 모든 브레이크 포인트들의 위치를 확인할 수 있고 활성화/비활성화, 삭제도 할 수 있습니다. 여러 브레이크 포인트가 걸려있을 때에는 이 탭에서 확인하고 관리하는 것이 더 편합니다.또한, 디버깅을 진행하고 있는 도중에도 다른 의심이 가는 라인에 브레이크 포인트를 걸 수 있습니다.스텝 단위 진행지정한 브레이크 포인트에 다다르면 동시에 디버거가 작동하게 되고 그 라인부터 스텝 단위의 진행을 할 수 있게 됩니다.이제 이 뷰의 버튼들을 이용하여 현재 상황을 진행하거나 되돌릴 수 있습니다. 자주 사용하는 버튼의 사용법을 알아보면Resume : 다음 브레이크 포인트를 만날때까지 진행합니다.Suspend : 현재 작동하고 있는 쓰레드를 멈춥니다.Terminate : 프로그램을 종료합니다.Step Into : 메서드가 존재할 경우 그 안으로 들어가 메서드 진행 상황을 볼 수 있도록 합니다.Step Over : 다음 라인으로 이동합니다. 메서드가 있어도 그냥 무시하고 다음 라인으로 이동합니다.Step Return : 현 메서드에서 바로 리턴합니다.Drop to Frame : 메서드를 처음부터 다시 실행합니다.등이 있습니다.실제로 디버깅 화면에서 버튼들을 눌러보면 쉽게 그 쓰임새를 아실 수 있습니다.변수의 상태 확인을 쉽게 해주는 변수 뷰디버깅을 진행하는 도중 변수의 값이나 객체의 상태를 알고 싶은 상황이 생기게 됩니다. 현재 의심이 가는 변수 이외에도 이 변수에 영향을 끼칠 다른 변수들이나 객체들의 상황을 실시간으로 검사할 필요가 있을 때 변수 뷰를 이용하면 도움을 얻을 수 있습니다.이곳에서 변수나 객체의 상태를 확인하고 변수의 상황에 대해서 저장할 수 있습니다. 변수나 객체의 상황을 모두 저장해서 클립보드에 붙이고 싶은 일이 생기면 해당 변수를 오른클릭 후 Copy Variables를 선택합니다.편집 창으로 돌아가 변수에서 Command + shift + i를 누르게 되면(혹은 오른 클릭 후 Inspect를 선택) Inspector 창이 뜨게 됩니다. 이 창에서 다시 한번 Command + shift + i를 누르면 해당 변수를 Expression 뷰로 보내게 되고 이곳에서 지속해서 변수의 상태를 관찰할 수 있게 됩니다.Expression 뷰 이용Expression 뷰에서는 변수 이름을 입력하거나 수행해보고 싶은 명령어를 직접 입력하여 그 결과 값을 관찰할 수 있습니다. 결과 값을 관찰할 뿐만 아니라 Expression에 써놓은 변수들은 명시적으로 지우지 않는 이상 계속해서 관찰을 수행하기 때문에 변해가는 상황을 지속해서 관찰할 일이 있는 변수나 명령문을 등록해놓기에 좋습니다.Display 뷰 이용디스플레이 뷰에서는 현 문맥에서 사용할 수 있는 명령어를 실행하거나 변수의 값을 조작하는 일을 수행하기에 적합한 환경을 제공합니다. Expression에서도 비슷한 기능을 제공하지만, 디스플레이 뷰를 이용하는 것이 더 편합니다. 메모장과 같이 쉽게 쓰고 지울 수 있기 때문입니다.또한, 원본 코드의 수정 없이 편하게 현재의 맥락을 변화시킬 수 있는 것이 가장 큰 장점이라고 볼 수 있습니다.필요한 명령어들을 적어놓은 후 실행하고 싶은 부분만 드래그하여 수행하거나 혹은 값을 리턴받을 수 있습니다. 지금은 boolean변수 하나의 값을 바꿔보기도 하고 조건 값에 따라 무언가를 리턴 받도록도 해놓은 상황을 스크린 샷으로 담아보았습니다.값을 반환받고 싶을 때는 두 번째 버튼을, 단순히 실행만 할 때에는 세 번째 버튼을 누르면 됩니다.두 번째 버튼을 눌러 값을 반환받는 상황입니다.단순히 실행만 하려면 세 번째 버튼을 누릅니다.브레이크 포인트에 조건 걸기브레이크 포인트에 조건을 거는 것이 굉장히 유용할 때가 있습니다. 특히 반복문안에 들어가 있는 코드들을 디버깅할 때 유용하지요. 반복문의 경우 모든 상황을 검사한다기보다는 특정 조건에서 값이 어떻게 들어가는지를 분석하는 경우가 더 많은데 이러한 상황을 검사하기 위해서 브레이크 포인트에 조건을 걸어야 합니다.브레이크 포인트를 거는 과정까지는 똑같습니다. 브레이크 포인트를 건 후 그 포인트에서 오른 클릭을 하면 Breakpoint properties 옵션이 있는 것을 확인할 수 있습니다. 이 옵션에서 조건문을 설정하여 디버거의 활성화 조건을 설정할 수 있습니다.먼저 Conditional을 활성화하여 어떤 조건에서 디버깅 화면으로 전환할지를 쓰면 되는데 이 창에 조건식을 쓰면 됩니다.또 hit count를 이용하여 조건을 걸 수도 있습니다. hit count에 값을 적용하면 해당 라인에 브레이크 포인트가 hit count만큼 잡힌 이후 디버깅 화면으로 전환하게 됩니다. hit count옵션은 반복문에서 한 100번쯤 이후에 디버깅을 시작하고 싶거나 하는 일이 생길 때 유용하게 쓸 수 있습니다.#스포카 #개발 #개발자 #꿀팁 #조언 #인사이트 #디버거 #디버깅 #디버그 #Eclipse
조회수 1055

블록체인 진짜 하나도 모르는 디자이너의 독학일기(2)

1편에 이어 2편을 작성하기까지 참으로 많은 시간이 걸렸답니다. 물론 내용이 어려워서 이해하는 데 시간이 걸린 것도 있고... 어려운 만큼 귀차니즘이 강해져서 미루고 미룬 이유도 있지요.1편에선 블록체인이 왜 발생했는가! 에 대해서 말했어용. 혹시라도 못 보신 분들은 링크를 타고 슝 한 번 더 보고 와주시면 좋을 것 같습니다.https://brunch.co.kr/@roysday/199짧게 줄이자면, 결국 신뢰의 문제 때문이예요. 내가 널 뭘 믿고??? 라는 명제죠. 단순히 너와 나의 사이뿐만 아니라 정부나 기업 등이 해커나 서버폭발 등으로 탈탈 털리는 일을 보면서 우린 두려워진 거예요. 은행을 믿을 수 있어?? 보험사를 믿을 수 있어?? 국민연금 겁나 떼가는데 나중에 받을 수는 있는거야?? 등등...그래서 우린 누구도 깰 수 없고 변하지 않고 삭제도 되지 않는 강력한 '장부'를 만들고 싶었던 거예요. 그래서 생각해낸 가장 좋은 방법이 바로 다수에게 뿌리는 거였죠. 하지만 우린 이런 궁금증이 생겨요. 다수라구??...누가 참여하는데?? 내 컴퓨터엔 블록체인 같은 게 없는데??사실 이 부분을 이해하기가 진짜 어려웠어요. 아니 페이스북에 투표참여나 주식시장같이 '내가 이걸 산다! 투표한다! 동의한다! 클릭~!' 이런 식의 동작이 없잖아요. 그런데 어떻게 내가 동의를 했는지 안했는지 내 장부에 뭐가 언제 어떻게 기록된다는 거야??....는 궁금증이 생기는 거죠.그래서 오늘은 이 과정을 쉽게 정리해보려고 해용 :) 혹시 틀린 부분이 있다면 꼭!! 댓글로 남겨주세요!!1. 컴퓨터에게 말을 걸어보자.지금 컴퓨터를 켜고 이렇게 외쳐보세요. "윙가르디움 레비오싸."네, 아무일도 일어나지 않았어요. 혹시 무슨 일이 일어나셨다면 소름이네요. 컴퓨터는 마법주문이나 우리의 감정이나 목소리나 표정을 인식하지 못해요.(물론 요즘엔 이걸 가능하게 만들고 있어요. 놀라워요. 하지마 마법주문은 좀 시간이 걸릴 것 같아요.) 일본은 일본어를 쓰고 중국은 중국어를 쓰고 스페인은 스페인어를 써요. 컴퓨터는 2진법을 써요. 얘네들은 0 아니면 1이라는 원시적인 언어를 쓰고 있어요. 물론 인간도 아주아주 오래전엔 2진법으로 언어를 말했어요. 쿼스랜드는 원시인들은 'a(아)'와 'o(오)' 만을 사용해서 숫자를 표현했다고 해요. 아, 오, 아오아, 오아오아..등으로 말이죠. 컴퓨터는 이처럼 0와 1로 이루어진 신호들을 통해 소통해요. 그러니 우리가 컴퓨터에게 말을 걸고싶다면 2진법으로 0과 1을 마구마구 적어줘야 해요.2. 컴퓨터의 언어를 만들었졍.근데 0과 1로만 말을 걸다보니 도대체 눈이 아프고 헷갈려서 너무 어려운 거예요. 그래서 규칙을 만들었어요.A = 100 0001B = 100 0010C = 100 0011D = 100 0100...이런식으로 알파벳이나 기호, 한글 등등을 컴퓨터가 이해할 수 있는 신호와 대응시켰어요. 그래서 나온 게 컴퓨터 언어죠. 오늘 날 코딩이라고 불리는 그것들은 결국 컴퓨터의 말로 이렇게해라 저렇게 해라 명령을 내리는 거예요. 컴퓨터는 그 명령에 의해 이런저런 일들을 처리해요. 이걸 누르면 = 저 페이지로 넘어가게 해.이곳을 채우면 = 다음 칸을 적을 수 있게 해.여길 클릭하면 = 파란색으로 바뀌게 만들어줘.등등 뭔갈 하면 = 결과가 등장하는 거죠. 신기하죠? 네 저도 신기해요. 이렇게 명령어를 입력하면 결과가 짜짠.3. 규칙을 만들 수 있게 되었엉.컴퓨터는 논리에 의해서 움직여요. 뭔가를 누르면 - 계산하고 - 0이면 안하고, 1이면 해요. 사실 되게 단순하게도 '한다/안한다' 로 명확하게 움직여요. 이렇게 명확하기 때문에 사람의 목숨을 담보로 하는 수많은 것들을 만드는 거예요. 비행기도 그렇고, 인공위성, 놀이기구, 자동차 등등... 컴퓨터가 기분따라 오늘은 왠지 일하기 싫어서 땡깡이나 부려버리면 그냥 다 죽는 거잖아요. (물론 가끔 파랗게 질려서 멍청댕청해질 때가 있긴 하지만...)결정장애가 없는 특성 때문에 컴퓨터는 한 번 규칙을 정해주면 그렇게 계속 움직여요. 이런 점에서 보면 인간과 컴퓨터의 가장 큰 특징 중 하나가 '갈등' 이 아닐까 싶어요. 결정장애가 있으신 분들은 엄청 인간적인 매력을 지니신 거예요. 블록체인은 '규칙'이예요. 변하지 않고 계속 그대로 움직이는 규칙이죠.규칙을 컴퓨터에게 명령하는 거예요. 이렇게 하면 이렇게 처리해!~ 알았지? 하고 명령하는 거죠. 이 코드(=명령어)를 누가 짜요? 그렇죠 그걸 블록체인 회사에 있는 개발자님들이 만드는 거예요. 그러니 어떤 블록체인 코드가 만들어지면 처음엔 그 회사 컴퓨터에만 있을 거예요. 4. 사람들을 모아보쟈.명령어를 만들긴 만들었는데, 여튼 이제 돈을 벌어야 하잖아요. 회사니까. 많은 사람들이 우리가 만든 블록체인을 이용해줬으면 좋겠어요. 그래서 사람들을 모아야겠단 생각을 했어요. 사람들에게 막 알리기 시작했어요.블록체인은 다수의 사람들이 이용해야 의미가 있어요. 꼴랑 2명만 쓰고있으면 그 중 한명의 컴터만 털어버려도 장부를 조작할 수 있잖아요. 하지만 수백, 수천만명이 블록체인에 참여하고 있다면 얘기가 달라지죠. 그 많은 사람들의 컴터를 한꺼번에 해킹할 순 없으니까요. 그래서 사람이 많으면 많을수록 블록체인은 튼튼해져요.5. 블록을 만들면 보상을 줄께!가장 단순하고 간단한 방법은 누군가가 블록을 만들도록 하는 거예요. 블록체인은 블록이 우르르르 붙어있다는 소린데, 그 블록이란 건 사실 눈에 보이는 택배박스가 아니라 손으로 적는 기록과 같아요. 롤링페이퍼 아시죠? 딱 그런 느낌인거예요. 돌아가면서 나의 기록을 블록으로 만들어서 열차놀이를 하는거죠. 그리고 블록을 만들면 그에 대한 보상으로 무언갈 주는 거예요! 대부분 그 보상이 바로 암호화폐와 같은 것들이예요. 우린 이걸 '채굴한다.' 라고들 하죠. 열심히 노동했으니 보상을 주는 거예요.6. 블록을 어떻게 만들어? 채굴!그럼 어떻게 블록을 만들까용. 음 생각해봐요. 누구나 그냥 노트북만 있어도 블록을 만들 수 있다면 물론 순식간에 블록들이 엄청나게 만들어져서 온세상 온누리에 우리 블록체인이 아름답게 꽃피긴 하겠지만....'보상'을 줘야하는 걸 생각해보면 소름이 돋을 거에요. 더군다나 화폐의 가치가 있는 것을 만드는 데 아무나 10초만에 만들 수 있다고 하면 이건 복사기에 지폐를 위조해서 그냥 마구 쓸 수 있는 것과 비슷해요. 그래서 블록을 만드는 과정은 어려워야 해요. 개발자들은 그래서 사람들이 엄청 고민을 해야만 풀 수 있는 문제를 명령어로 만들었어요. 그리고 그걸 풀면 블록이 완성되고 보상을 받는 거예요. 물론 종이와 펜으로 푸는 건 아니예요. 인터넷에 떠돌아다니는 '이거 풀면 아이큐150 이상임' 이런 문제와 비슷하긴 하지만....이건 사람이 직접 푸는게 아니라 컴퓨터가 푸는 거에요. 예전에 막 그래픽카드가 없어서 난리가 났다..PC방에서 그래픽카드만 훔쳐갔다더라..이런 뉴스가 한참 떴었잖아요. 맞아요. 마치 영화에나 나올법한 슈퍼컴퓨터같이 엄청나게 엄청난 컴퓨터들을 잔뜩 가져다놓고 계산을 시키는 거예요. 사람은 그냥 엔터만 누르고 가만히 있으면 돼요. 고생은 컴퓨터가 하니까요. 컴퓨터는 미친듯이 계산을 해요. 모터가 탈 정도로 고생을 하죠. 그리고 마침내 문제가 풀리면 짜잔!!! 블록이 완성되었어요!! 물론 블록이 완성이 되었는 지 어쩐지는 눈으로 보지 못해요. 하지만 문제가 풀면 블록이 생기도록 명령어를 짜놓았으니 생겼을 거예요. 컴터는 명확하니까요.(항상 이걸 전제로 해요.) 그리고 약속된 보상이 생겨요. 나에게 암호화폐가 뾱! 생겼어요. 빗썸이나 코인원같은 거래소에서 현금으로 바꿀 수 있도 있어요. 7. 쉬운 방법도 있어요.이렇게 수십대의 컴퓨터와 첨단 장비들이 있어야만 블록을 만들 수 있는 건 아니예요. 일반인들도 블록을 만들 수 있어요. 다만 쉬운 만큼 보상이 굉장히 작겠죠. 단순한 예로 '스팀잇'을 들 수 있어요. 스팀잇은 겉보기엔 브런치같이 그냥 주절주절 글이나 쓰는 플랫폼처럼 보이지만...사실 그건 훼이크예요. 스팀잇에 글을 쓰는 것 자체가 사실 블록을 만드는 것과 같아요. 그래서 그 보상으로 스팀을 주는 거예요. 그래서 정확히 얘기하면 '글을 쓰니 돈을 주더라!!' 가 아니라..'블록을 만드니 보상을 준다!' 가 맞는 거예요. 블록을 만드는 방식이 '콘텐츠' 일 뿐이죠.이처럼 블록을 만드는 방식은 결국 개발사가 정하기 나름이예요. 여행사진을 500장 올릴 때마다 블록을 생성하자! 라고 규칙을 만들면 그렇게 만들어져요. 그리고 보상을 받는거구요. 기부를 하면 블록이 만들어지게 하자! 라고 할 수도 있고하루에 1km씩 뛰어다니면 블록이 만들어지게 하자! 라고 할 수도 있어요.심지어 성인사이트에서 결제를 하면 블록이 만들어지게 할 수도 있어요. 실제로도 있더라구요.규칙은 만들면 되니까요. 그래서 다양한 프로젝트들이 만들어지고 블록체인 회사들이 각자 자신만의 방법으로 사람들을 모으고 있죠. 8. 하지만 사람들은 그 사실을 잘 몰라요.스팀잇에 접속해보신 분이 계신가요?? 사실 그곳은 능력자들 천지라서 다들 블록체인을 어느정도 알고 있는 사람들이 많지만.. 또 많은 사람들은 그런거에 상관없이 그냥 돈 준다니까 가입해서 글을 쓰고 있기도 해요. 사람들은 이게 블록인지 뭔지도 몰라요. 그냥 보상준다니까 열심히 뭘 쓰고 있는거에요.내가 블록을 만드는 걸 눈으로 볼 수도 없고 손에 잡히지도 않아요. 이 모든 건 그냥 컴퓨터가 처리하고 인터넷상에 떠돌아다니는 전기신호로만 존재할 뿐이예요. 우리는 겉으로 드러난 것들만을 보죠. 그래서 수많은 블록체인 회사들이 예쁘고 쉽고 접근하기 좋은 웹페이지를 만들거나 플랫폼을 만들어서 이런저런 활동을 하게 만드는 거예요. 사실 블록체인이 정말 널리고 널려서 이제 공인인증서 등등이 필요없어지게 될 지도 몰라요. 지금도 공인인증서는 폐지수순을 밟고 있고 은행의 인증절차도 간편해지고 있잖아요. 중요한 건 우린 그냥 '우왕 편하다~~' 라는 것만 인지할 뿐 이게 왜 편해졌는지는 관심이 없어요.맞아요. 우린 알게모르게 블록을 만들고 있을 수도 있어요. 당신의 컴퓨터에서 말이죠. 이미 당신은 블록체인에 참여한 거예요. 당신도 장부에 뭔가를 기록했고, 그 블록체인에 참여한 철수란 사람이 그 후에 또 뭔가를 적으면 당신의 컴퓨터에서도 그걸 인식할 수 있어요. 그래서 당신은 철수를 모르지만 당신의 컴퓨터는 철수를 알고 있어요.  이 때문에 P2P거래도 별 인증절차없이 이루어질 수 있는 거예요. 당신의 컴퓨터는 철수를 믿고있거든요. 정리해보면 블록체인은 규칙이예요. 코드로 이루어진 일종의 어떤 규칙이죠. 이걸 블록체인회사에서 만든다음자기들이 어느정도 지분을 가져가요. 자기들이 만들었으니 좀 가지고 있어야 할 거 아니예요. 주로 암호화폐의 형태겠죠.그리고 또 어느 정도는 채굴자들을 모아서 채굴을 시켜요. 대부분은 장비가 충만하신 전문채굴자님들이겠죠. 이 분들은 적극적으로 블록을 만들어내고 많은 보상을 가져가요. 이 때의 보상도 대부분 암호화폐겠죠.나머지는 쪼끄마한 우리들이에요. 우린 그게 뭔진 잘 모르지만 그냥 재밌으니까 막 활동을 해요. 그러면서 블록들을 만들어내요. 우리도 블록체인을 튼튼하게 만드는 역할을 해주었으니 일종의 작은 보상들을 받아요. 이것도 암호화폐겠죠.이렇게 블록체인에 참여하는 컴퓨터수가 많아지면서 블록체인은 더 튼튼해지고 견고해져요. 그리고 겁나 빠르고 편해서 많은사람들이 쓰게 된다면....그게 추후엔 어떤 핵심플랫폼이 될 수도 있겠죠?...다들 그걸 꿈꾸고 열심히 블록체인 코드를 만들고 있는 거예요.여기서 궁금한 게 생겼어요. 그럼... 이런 블록체인 회사들은 돈을 어떻게 버는 걸까요???.... 생각해보면 개발비용이나...홍보나 인건비나..얘네들도 돈이 필요할 텐데 당장 가상화폐는 돈이 안되요. 이제 갓 태어난 화폐는 가치가 거의 없을 거예요. 그러니 마구 가상화폐를 만들어서 팔아도 그건 의미가 없어요. 이분들의 수익은 도대체 어디에서 나는 건지 그게 궁금해졌어요.그래서 3편에선 블록체인 회사들은 뭐 먹고 사는건지 알아보도록 하겠어요 :)어휴 힘들어..이제 저도 규칙에 의해서 자야겠어요.새벽2시가 되면 = 잠을 자라.(규칙)
조회수 4096

서버 비용을 70%나 줄인 온디맨드 리사이징 이야기

비트윈의 서버에는 사용자들이 올리는 수많은 사진이 저장되어 있습니다. 2016년 3월 기준으로 커플들이 데이트에서 찍은 사진, 각자의 프로필 사진, 채팅을 나누며 올린 재미있는 짤방까지 약 11억 장의 사진이 저장되어 있습니다. 비트윈에서는 이러한 사용자들의 소중한 추억을 잘 보관하고, 사용자들의 요청을 빠르고 비용 효율적으로 처리하기 위해서 많은 노력을 기울이고 있습니다. 이번 포스팅에서는 비트윈 개발팀이 사용자들의 사진 처리를 보다 효율적으로 하기 위해서 어떠한 노력을 하였는지 공유하고자 합니다.기존의 아키텍쳐¶비트윈 사용자가 채팅창이나 모멘츠 탭에서 사진을 업로드 할 경우, 해당 사진은 업로더 서버라고 불리는 전 세계 각지에 퍼져 있는 사진 업로드 전용 서버 중 가장 가까운 서버를 자동으로 찾아서 업로드 됩니다. 업로더 서버는 사진을 해당 AWS Region의 S3 bucket에 적재하고, 미리 지정된 크기의 썸네일을 자동으로 생성하여 역시 S3에 저장합니다. 그리고 Tokyo Region에 있는 비트윈 메인 서버에 이 결과를 토큰 형태로 전송하여 DB에 그 정보를 저장하도록 합니다. 이러한 과정을 통해서 일반 HTTP request보다 훨씬 큰 용량을 가지고 있는 사용자의 사진이 최대한 적은 지연시간을 가지고 업로드되도록 합니다.사용자가 올린 사진은 원본이 S3에 저장됨과 동시에 미리 정해진 사이즈로 썸네일을 생성해서 저장된다.하나의 사진이 대략 5장에서 6장의 서로 다른 크기의 썸네일로 리사이징이 되는데, 이는 클라이언트의 디스플레이 크기에 따라서 최적화된 이미지를 내려주기 위함이었습니다. 예를 들어서 아주 작은 썸네일이면 충분한 채팅 프로필 표시 화면을 그리기 위해서 사용자가 올린 3백만 픽셀이나 되는 원본 사진을 받아서 클라이언트가 리사이징 하는 것은 지연 시간뿐 아니라 과도한 데이터 사용이라는 측면에서 효율적이지 않기 때문에 작게 리사이징 해놓은 사진을 내려주는 것이 더 바람직합니다.비트윈 사용자들의 넘치는 사랑(?)에 비트윈은 출시 후 5년 동안 약 11억 장, 썸네일을 모두 합치면 66억 장의 사진을 저장하게 되었습니다. 이 사진은 전부 AWS S3에 저장되어 있으며, 썸네일을 합친 총 용량은 2016년 3월 기준 무려 738TB였습니다. 이에 따라 사진을 저장하기 위한 S3 비용이 전체 인프라 운영 비용에서 상당 부분을 차지하게 되었습니다.기존 아키텍쳐의 비효율성¶비트윈 팀은 어느 날 위와 같은 기존의 사진 전송 아키텍쳐에 의문을 가지게 되었습니다. 비트윈 서비스가 다른 서비스와 가장 다른 특징 중의 하나는 커플 간의 데이터는 그 둘 사이에서만 공유된다는 점입니다. 일반적인 웹사이트 같은 경우, 하나의 게시물 혹은 이미지가 수천 수 만명의 유저에게 전달되지만 비트윈에서는 그렇지 않습니다. 즉, 개별 사진의 Fan-out이 작다는 점을 특징으로 가지고 있습니다.그리고 클라이언트에서 LRU를 기반으로 한 파일 캐쉬를 사용하고 있는데, 이를 통해서 위에서 말씀드린 채팅창 프로필 사진 같은 경우 클라이언트에서 캐쉬될 가능성이 매우 커지게 됩니다. 그리고 CDN으로 사용하고 있는 AWS의 CloudFront에서도 약 30~40%의 추가적인 Cache hit을 얻을 수 있었습니다. 즉, 이미 Fan-out이 낮은 리소스가 높은 Cache hit rate를 가지는 사용패턴을 가지고 있는 셈이 됩니다.더군다나 사용자의 디바이스 사이즈에 따라서 미리 리사이징 해놓은 썸네일 중 일부는 아예 사용하지 않는 사용패턴이 나타나기도 합니다. 아이패드와 같은 큰 디스플레이를 가진 클라이언트를 쓰는 사용자와 아이폰4를 사용하는 사용자가 필요로 하는 썸네일의 크기는 다를 수밖에 없기 때문입니다.아래의 그래프는 S3 접근 로그를 분석해서 파악한 특정 기간 내에 같은 해상도를 가지는 썸네일을 클라이언트가 한 번 이상 재요청 하는 비율을 나타내는 그래프입니다. 하루 내에 같은 해상도의 사진을 요청하는 경우는 10% 가 되지 않으며, 한 달 안에도 33% 정도에 불과한 것을 알 수 있습니다.특정 기간 내에 S3에 저장된 썸네일이 다시 요청되는 비율결국 비트윈 팀은 미리 여러 해상도의 썸네일을 준비해서 저장해 놓은 아키텍쳐보다는 사용자가 요청할 때 그 요청에 알맞게 리사이징된 썸네일을 새로 생성해서 내려주는 게 훨씬 비용 효율적이라는 결론에 도달하게 됩니다.새로운 아키텍쳐¶Skia¶하지만 이러한 온디맨드-리사이징 아키텍쳐로의 변환에 가장 큰 걸림돌이 있었습니다. 바로 사진의 리사이징에 오랜 시간이 걸린다는 점이었습니다. 비록 아키텍쳐 변화를 통해서 저희가 얻을 수 있는 비용 이득이 크더라도, 비트윈 사용자 경험에 느린 사진 리사이징이 방해가 되어서는 안 되었습니다.이때 저희가 찾은 것이 바로 Skia 라이브러리였습니다. Skia 라이브러리는 Google에 의해서 만들어진 2D 그래픽 라이브러리로써, 크롬이나 안드로이드, 모질라 파이어폭스 등에 사용되고 있었습니다. 그리고 이 라이브러리는 CPU 아키텍쳐에 따라서 인스트럭션 레벨로 매우 잘 최적화가 되어 있었습니다. 저희가 기존에 쓰고 있던 ImageMagicK에 비해서 거의 4배 속도로 이미지 리사이징을 처리할 수 있었으며, 총 CPU 사용량도 더 적었습니다. 저희는 이 라이브러리를 Python으로 wrapping한 PySkia라는 라이브러리를 내부적으로 만들어서 사진 리사이징에 사용하기로 하였습니다.WebP¶저희는 여기서 한발 더 나아가 보기로 했습니다. 단순히 리사이징만 Skia로 대체하는 것이 아니라, 원본 사진의 저장도 더 효율적으로 할 방법을 찾게 되었습니다. 그 결과 자연스럽게 떠오른 것이 비트윈 스티커 시스템에서 사용되었던 WebP 방식이었습니다. WebP 역시 구글이 만든 이미지 인코딩 방식으로써, 비슷한 화질을 가지는 JPEG에 비해서 약 26% 정도의 용량이 절약된다는 점에서 장점이 있습니다.온디멘드-리사이징¶위에서 언급한 대로 Skia 리사이징과 WebP 원본 저장을 합하여 아래와 같이 필요한 해상도의 사진을 그때그때 리사이징 하는 온디멘드-리사이징 아키텍쳐로 옮겨가게 되었습니다.사용자가 올린 사진은 원본이 WebP로 변환되어 S3에 저장된다. 클라이언트의 요청이 있을 때는 그때그때 요청한 사이즈로 리사이징한 썸네일을 생성해서 내려준다.리사이저 서버가 사용자의 요청을 받아서 원하는 해상도의 사진을 리사이징해서 내려주기까지 채 100ms가 걸리지 않는데, 이 정도면 사용자의 경험에 영향을 주지 않는다고 판단하였습니다. 리사이저 서버는 업로더 서버와 함께 세계 각지의 AWS Region에 배포되어 있으며, 이는 사용자가 요청한 사진을 최대한 빨리 받아가기 위함입니다.기존 사진 마이그레이션¶위와 같은 아키텍쳐 전환을 통해서 새롭게 업로드 되는 사진들은 원본만 WebP로 변환되어 저장한 후 요청이 들어올 때만 온디멘드 리사이징이 되지만, 그동안 비트윈 사용자들이 축적해 놓은 11억 장의 사진은 여전히 여러 사이즈의 썸네일로 미리 리사이징이 되어 있는 비효율적인 상태였습니다. 저희는 이 사진들도 마이그레이션하는 작업에 착수했습니다.11억 장이나 되는 원본 사진들을 전부 WebP로 변환하고, 나머지 50억 장의 미리 생성된 썸네일 사진을 지우는 작업은 결코 간단한 작업이 아니었습니다. 저희는 이 작업을 AWS의 Spot Instance와 SQS를 통해서 비용 효율적으로 진행할 수 있었습니다.Auto Scaling with Spot instance¶마이그레이션 작업은 크게 다섯 단계로 이루어져 있습니다.커플 단위로 작업을 쪼개서 SQS에 쌓아놓습니다.Worker가 SQS로부터 단위 작업을 받아와서, 해당 커플에 존재하는 모든 사진을 WebP로 변환하고 S3에 올립니다.S3로의 업로드가 확인되면, 그 변경 사항을 DB에 적습니다.기존 썸네일 사진들을 삭제합니다.기존 썸네일이 삭제되었다는 사실을 DB에 적습니다.작업을 하는 도중에 얼마든지 Worker가 중단되거나 같은 커플에 대한 작업이 두 번 중복되어서 이루어질 위험이 있습니다. 이를 위해서 마이그레이션 작업을 멱등적으로 구성하여서 사용자의 사진이 손실되는 등의 사고가 발생하지 않도록 하였습니다. 중간마다 DB에 접근해서 변경된 내용을 기록해야 하는 작업의 특성상, 작업의 병목 구간은 비트윈 DB였습니다. 그리고 사진 인코딩을 바꾸는 작업의 특징상 많은 CPU 자원이 소모될 것으로 생각하였습니다.DB에 부담이 가지 않는 범위내에서 많은 CPU 자원을 끌어와서 작업을 진행해야 할 필요성이 생긴 것입니다. 이 조건을 만족하게 하기 위해서 SQS를 바라보는 Worker들로 Auto-scaling group을 만들었습니다. 그리고 이 Auto-scaling group은 c3.2xlarge와 c3.4xlarge spot instance로 구성되어 있으며, DB의 CPU 사용량을 메트릭으로 하여 Scaling이 되도록 하였습니다. 작업은 주로 DB의 부하가 적은 새벽 시간에 집중적으로 이루어졌으며, 이 인코딩 작업은 대략 4일 정도가 소모되었습니다. 작업 과정에서 Tokyo Region에 있던 c4.2xlarge와 c3.4xlarge spot instance를 최대 140대를 사용했고, 총 사용 시간은 6,767시간이었습니다. 사용한 instance의 계산 능력을 ECU로 환산하면 총 303,933 ECU · hour를 작업에 사용하였습니다. 마이그레이션에 사용된 EC2 비용을 바탕으로 계산해 보면, 백만 장의 WebP 인코딩을 위해서 사용한 비용이 $1.8 밖에 되지 않았다는 것을 알 수 있습니다.작업 과정에서 AWS 서비스에 의외의 병목 구간이 있다는 것을 알게 되었는데, S3 단일 버킷에 1분당 1천만 개 이상의 object에 대한 삭제 요청이 들어오면 Throttling이 걸린다는 사실과 SQS의 in-flight message의 개수가 12만 개를 넘을 수 없다는 것입니다.결과¶위의 아키텍쳐 변화와 마이그레이션 작업 후 저희의 S3 비용은 70%가 넘게 감소했으며 전체 인프라 비용의 상당 부분이 감소하였습니다. 온디멘드 리사이징으로의 아키텍쳐 변화는 Storage 비용과 Computation 비용 사이의 교환이라고 볼 수 있는데, 아래 그래프에서 볼 수 있듯이 확연한 비용 절감을 달성할 수 있었습니다.총 마이그레이션 비용¶항목사용량비용 ($)EC2 spot instance6,767 hrs1,959.11SQS188,204,10489.59S3 Put/Get Requests2,492,466,8605,608.34총비용7,657.04마이그레이션 결과¶항목Before MigrationAfter Migration감소량 (%)S3 # of objects6.65 B1.17 B82.40S3 storage738 TB184 TB75.06비용 감소¶사진 저장과 리사이징에 관련된 비용이 68% 감소하였음못다 한 이야기¶이번 포스팅에서는 최근에 있었던 비트윈 사진 아키텍쳐의 변화에 대해서 알아보았습니다. 주로 사용자의 경험을 방해하지 않는 조건에서 비용을 아끼는 부분에 중점을 두고 저희 비트윈의 아키텍쳐 변화에 대해서 설명해 드렸습니다. 하지만 이 글에서 미처 언급하지 못한 변화나 개선 사항들에 대해서는 다루지 못했습니다. Tokyo Region에서 멀리 떨어져 있는 사용자를 위해서 전 세계 여러 Region에 사진 저장/전송 서버를 배포하는 일이나, 사진을 로딩할 때 낮은 해상도로부터 차례대로 로딩되도록 하는 Progressive JPEG의 적용, 사진을 아직 받아오지 못했을 때 Placeholder 역할을 할 수 있는 사진의 대표색을 찾아내는 방법 등이 그것입니다. 이에 관해서는 후에 자세히 다뤄보도록 하겠습니다.정리¶비트윈 개발팀에서는 많은 인프라 비용을 소모하는 기존 썸네일 저장 방식을 개선하여 70%에 가까운 비용 절감 효과를 보았습니다. 기존의 썸네일을 미리 생성해놓는 방식으로부터 클라이언트가 요청할 때 해당 크기의 썸네일을 리사이징해서 내려주는 방식으로 변경하였고, WebP와 Skia등의 새로운 기술을 적용하였습니다. 이를 통해서 사용자 경험에는 거의 영향을 주지 않은 상태로 비용 절감 효과를 볼 수 있었습니다.저희는 언제나 타다 및 비트윈 서비스를 함께 만들며 기술적인 문제를 함께 풀어나갈 능력있는 개발자를 모시고 있습니다. 언제든 부담없이 [email protected]로 이메일을 주시기 바랍니다!
조회수 1850

Android Studio JCenter 이용하기

 안녕하세요. 크몽개발팀 입니다.오늘 포스트 주제는 Android Studio JCenter 이용하기입니다.JCenter????  JCenter에 대해 처음 들으시는분들도 있을거같은데요.JCenter는 라이브러리들이 모여있는 저장소라고 보시면 되겠습니다.그렇다면 JCenter를 이용하여 무엇을 할까요?바로 외부 라이브러리들을 가져와서 프로젝트안에 Import 할려고 합니다. JCenter 사이트 링크 : https://bintray.com/bintray/jcenterJCenter 페이지에 접속하시면 위와 같은 페이지를 볼 수 있는데요.여기서 사용하고 싶은 라이브러리를 검색해보겠습니다.제가 검색한 라이브러리는 ImageLoder 라이브러인 'Glide'를 검색했습니다.빨간색으로 표시되있는게 제가 찾던 라이브러리 입니다.검색한 라이브러리를 클릭하면 위와 같이 상세페이지를 볼 수 있는데요.라이브러리 Github 주소 와 버젼에 대한 정보를 확인할 수 있습니다.그럼 이제 검색한 라이브러리를  Android Studio Gradle에 Import 하겠습니다. Android Studio에서 프로젝트를 생성하게 되면 위와 같이 3개의 그래들 파일을 볼 수 있는데요.자주 사용할 그래들 파일은 app폴더에 있는 그래들 파일입니다.그래들 파일을 열어보면 낯익은 코드들이 보이는데요.ADT에서는 매니페스트에서 버젼관리를 햇었는데 Studio에서는 그래들로 빠진거같습니다.그리고 빨간표시를 해둔곳이 바로 JCenter에서 검색한 라이브러리를 Import 하시면 되겠습니다.  위에 JCenter에서 찾은 라이브러리명을 입력하고 뒤에 버젼번호도 같이 입력합니다.그리고 Sync 버튼을 눌러주면 라이브러리가 Import 됩니다. External Libraries를 확인해보시면 라이브러리가 추가된걸 확인할 수 있습니다.---------------------------------------------------------------------------------------이렇게 JCenter를 이용하여 간단하게 라이브러리들을 Import를 할 수 있습니다.그리고 그래들 과 JCenter를 이용하여 라이브러리를 적용할때 가장 좋은점은'com.github.bumptech.glide:glide:3.+' 이런식으로 버젼에대한 값을 주면라이브러리 상위버젼이 나올경우 자동으로 최상위 버젼으로 라이브러리를 Import 해준다는 점입니다.이로써 라이브러리 버젼관리도 많이 편해질거 같습니다.이것으로 Android Studio JCenter 이용하기 포스트를 마치겠습니다.#크몽 #개발팀 #인턴 #인턴생활 #인사이트
조회수 1824

프론트엔드 개발자라면!

Angular의 A마크를 알아본 프론트엔드 개발자님!이 글은 새로운 플랫폼을 개발하고 있는 타운컴퍼니 개발팀으로 당신을 모셔보려는 글이에요.이들이 당신과 함께 일하고 싶은 동료입니다..타운컴퍼니팀은 알고 있습니다.잘 만들어진 편리한 앱과 고객의 이탈률이 얼마나 밀접한 관계가 있는가를요.1%의 스타트업에는 1% 개발자가 필요하며 그들이 1%의 플랫폼을 만든다는 것을요.자율적이며 열정이 넘치는 팀으로 즐겁게 높은 수준의 개발을 할 수 있는 환경이죠!당신에게 즐거운 회사, 좋은 동료가 되어 줄 수 있습니다.급여는 협의 후 결정이니 원하는걸 말해봐요!좋은 동료를 얻을 수 있다면 그정도가 어렵겠어요 ; )우리는 현재 플랫폼(townus.co.kr)이 많이 부족하다는걸 알고 있어요.그래서 완전 멋있게 새롭게 만들고 있는 중입니다 :)일단 우리는 협업툴 JIRA와 Confluence, Slack을 사용하고 있어요.우리팀은 Agile 칸반을 바탕으로 테스트 주도 개발, 코드 리뷰, 페어프로그래밍으로 프로젝트를 진행하고 있죠.도메인이 잘 분석된 명세서가 Confluence에 정리되어 있고 사용자를 위한 깊은 고민이 녹아있는 디자인이 Zeplin에 올라가고 있어요.- Back-End는 Django(DRF) 기반으로 개발되고 있고, AWS, Vagrant, Docker같은 기술을 사용해요.- Front-End는 Angular 5를 사용해서 개발하고 있고, Less, RxJS, Webpack 등의 기술을 사용하고 있어요.Angular 상용 프로젝트 개발 경험이 있다면 격하게 환영하며 모십니다. 리엑티브 프로그래밍, Ionic 경험이 있다면 더 좋구요!엥 이거 완전 나 아니냐!? 라는 생각이 들었다구요? 그렇다면 얼른 지원해야지 뭐해요!무엇보다 개발을 즐기고 오픈소스활동을 좋아하는 사람이라면,종종 맛있는것도 먹으면서 많은 대화를 나눌수 있지 않을까요? :>우리 개발자는 맥주제조도 할 줄 알거든요 (겁나 맛이 좋더라구요)물론 당신에 대해 알 수 있는 Github 주소와 이력서를 보내준다면 우리가 연락하기 더 쉬울거에요!아! 참고로 보충역 산업기능요원 편입도 가능하니 문의가 필요하다면 언제든 환영이에요!타운컴퍼니팀에게 연락하고 싶다면 02–561–0950 잊지말아요,[email protected]로 메일 보내준다면 언제든 답변줄게요 :D#타운컴퍼니 #개발자 #채용 #팀빌딩 #조직문화
조회수 880

프로그래밍에는 왜 창의성이 필요하다고 할까요?

왜 프로그래밍에는 창의성이 필요하다고 할까요? 실제로 프로그래밍을 하다 보면 복잡한 문법을 이해하고, 암호 같은 에러를 차분히 해결해야 하니, 오히려 수학적이며 논리적인 사고가 더 필요해 보입니다. 그런데도 프로그래밍이 창의적이어야 하는 이유는 하나의 프로그램을 만드는 답이 여럿이기 때문입니다.답이 하나여도 가르치기 어려운데, 다양한 방법을 어떻게 가르쳐야 하는 걸까요? 또, 기상천외한 학생들의 코드를 보며 이해하고 교육하는 것이 얼마나 긴 시간이 필요하며 어려운 일인가요? 어디서부터 해결해나가야 할지 막막합니다.Elice 리서치 팀에서 하는 일 중 하나는 학생들의 수많은 코드 중 비슷한 타입들을 추려내는 것입니다. 코드를 몇 가지 타입으로 추려내고 나면, 선생님은 학생 하나하나의 코드를 보고 교육하는 것이 아니라, 비슷한 형태의 코드를 작성한 학생 그룹 전체에게 적절한 피드백을 줄 수 있습니다. 이렇게 그룹 전체에게 피드백을 준다면 선생님은 같은 시간에 더 많은 학생을 교육할 수 있을 것입니다.그럼 이제, 비슷한 코드를 어떻게 찾아내서 분류할지 이전 연구를 보며 알아봅시다. (현기증이 날 수 있으며, 다 이해할 수 없어도 괜찮으니 걱정하지 마세요!)지프의 법칙과 숙제 제출 패턴자연어 처리(Natural Language Processing;NLP)를 배울 때 자주 거론되는 사람이 있습니다. 바로 미국의 언어학자인 조지 킹슬리 지프George Kingsley Zipf인데, 이 사람이 만든 지프의 법칙은 자연적으로 일어나거나 생성되는 특정 정보들이 일정하게 나타내는 경향을 나타낸 것입니다. 지프는 영어로 된 텍스트를 분석하던 도중, 자주 쓰이는 단어를 순서대로 나열하면 각 단어의 빈도는 그 단어의 출현 순위에 반비례함을 찾아냈습니다. 영어에서 가장 많이 사용되는 단어 1~3위가 “the”, “of”, “and” 인데, “the”는 “of”의 약 두 배, “and”의 약 세 배의 빈도를 보입니다.이것을 수학적으로 표현하면, 일정 크기 이상의 영어 말뭉치(corpus)에 들어 있는 단어들의 개수를 전부 세서 그 단어들을 가장 많이 쓰이는 것부터 순위를 1위부터 나열했을 때, 특정 단어의 순위가 k 라면 (즉 전체에서 k번째로 많이 쓰인 단어라면) 그 단어가 말뭉치에서 쓰인 개수는 1/k에 비례한다는 것입니다. 이것을 그래프로 그려보면 다음과 같습니다. 재미있는 사실은, 여기에서 x축과 y축에 log를 씌워 보면 (이것을 log-log scale로 변환한다고 합니다.) 다음과 같은 직선 형태로 변환된다는 것입니다.이것이 도대체 숙제 제출과 무슨 관계가 있길래 이렇게 장황한 설명을 한 것일까요? 위에서 나온 지프의 법칙을 기억하시나요? 학생이 낸 숙제를 채점하다 보면 꽤 많은 학생이 비슷한 방식으로 숙제를 푸는데, 제출된 풀이 방식들을 비슷한 것끼리 묶어 분석해 보니, 이것 또한 지프의 법칙을 따른다는 것이 발견되었습니다. 예를 들어 가장 인기 있었던 풀이 방식으로 100명이 숙제를 제출했다면, 두 번째로 인기 있는 풀이 방식으로는 약 50명이 숙제를 제출했다는 뜻입니다.여기서 우리가 찾아낼 수 있는 인사이트는 무엇일까요? 첫째, 학생들의 숙제들을 비슷한 것끼리 묶을 수 있다면, 그리고 이 분류를 컴퓨터로 자동으로 할 수 있다면 조교가 채점하거나 코멘트를 할 때 써야 할 시간이 상당히 줄어들 것입니다. 둘째, 방법 서너 개에 대해서만 어떻게 채점할지 혹은 어떻게 코멘트할지에 대해 준비를 해놓으면, 그걸로 숙제 대부분을 채점/코멘트할 수 있을 것입니다. 대다수의 숙제는 몇 가지 인기 있는 풀이방식으로 만들어졌을 것이기 때문입니다.그러면 이제 다음 문제는, ‘비슷한 풀이 방식으로 푼 프로그램 코드’를 어떻게 찾아낼 것인가? 를 고민해봅니다. MIT의 Elena Glassman은 이에 대한 해법으로 Overcode를 제시했습니다.Overcode뉴스 기사나 책, 블로그 글 등 자연어로 이루어진 텍스트 데이터를 분석하고, 여기에 어떤 주제가 들어있는지 밝혀내는 연구는 많이 진행 됐습니다. 이를 위한 머신러닝 알고리즘 중 하나가 토픽 모델, Topic model 입니다(토픽 모델에 대해서는 다른 글에서 자세히 다룰 예정입니다). 그러나 토픽 모델링을 프로그래밍 문제에 실제로 적용하기는 쉽지 않습니다. 코드에 사용되는 문법이나 키워드가 자연어와 1:1로 매칭되지 않기 때문에, 기존에 자연어에서 사용되던 모델을 그대로 사용할 수 없기 때문입니다. 가령, 슬쩍 보면 무척 달라 보이는 아래 두 파이썬 코드는 사실 완전히 같게 동작합니다. 이 두 코드를 (사람들이 일상생활에서 사용하는) 자연어를 분석하는 모델로 분석한다면 제대로 된 결과를 낼 수 없는 건 당연합니다.def fibonacci(): parents, babies = (1, 1) while babies < 100 xss=removed>fibonacci()def fib(parents, babies): ‘’’ parents = 1 babies = 1 ‘’’ while True: print ‘This generation has {0} babies’.format(babies) parents = babies # set parents as babies babies = parents + babies # recursively add number of babies if babies >= 100: break fib(1, 1)Elena Glassman이 제시한 Overcode의 목적은 비슷한 로직으로 만들어진 프로그래밍 코드들을 모으는 것입니다. 이제 Overode가 어떻게 작동하는지 간단하게 소개하도록 하겠습니다. 가장 먼저 수행되어야 하는 것은 서로 다른 형식으로 쓰인 소스 코드들을 정리하는 것입니다. 소스코드 정리에는 주석 제거, 줄 및 공백/들여쓰기를 일정하게 맞추는 작업 등이 포함됩니다.Image from Overcode하지만 이 작업만으로는 충분하지 않습니다. 거의 같아 보이는 코드도 실제로 프로그램을 실행하기 전까지는 같은지 알 수 없고, 꽤 달라 보이는 코드도 실제로는 완전히 같게 동작할 수 있기 때문입니다 (여기서 같게 동작한다 함은, 결과를 같게 내는 것 이상으로 결과를 내는 중간과정이 완전히 같다는 것을 의미합니다). 다시 위로 돌아가, fibonacci() 함수와 fib(parents, babies) 함수를 살펴봅시다. 위 두 코드는 기존의 자연어 처리 기법에 따르면 완전히 다른 프로그램일 것입니다. 변수명이 달라서가 가장 큰 이유일 텐데, 사실 컴퓨터의 입장에서 변수는 어떤 값을 할당하는 공간에 불과하며, 그 공간에 어떤 이름을 붙이느냐는 중요하지 않습니다. 코드를 작성하는 것이 사람이기 때문에 공간에 편하게 이름을 붙이는 것뿐입니다. 서로 다른 프로그램에서 어떤 변수가 서로 같은 역할을 하는지, 컴퓨터가 알아내려면 어떻게 해야 할까요? (컴퓨터는 창의적이지 않습니다!)Image from OvercodeElena가 제시한 방법은 프로그램을 실행하면서 변수의 값이 어떻게 바뀌는지를 추적한 것입니다. 아래 두 코드를 보고, 한번 머릿속으로 프로그램을 실행해 봅시다. 학생 B의 코드는 for문으로 5의 3승을 계산했고, 학생 C의 코드는 while문으로 5의 3승을 계산한 것입니다. 학생 B의 코드가 실행됨에 따라 r이라는 변수가 어떻게 변하는지, 학생 C의 코드에서 result가 어떻게 변하는지 확인해보면 둘 다 1 → 5 → 25 → 125 의 값을 가지게 됩니다. 그렇다면 컴퓨터는 이렇게 판단할 수 있습니다. “B의 코드에서의 변수 r과 C의 코드에서의 result가 완전히 같은 방식으로 변하니, 같은 의미로 사용된 것이다.”Image from Overcode이제 같은 의미를 가지는 변수들을 알아냈다면, 컴퓨터는 쉽게 가장 “흔한” 이름으로 변수의 이름을 바꿔치기 합니다. 그러면 처음에 서로 다르게 보였던 코드들도 이제 같아질 것입니다.물론 이것이 다는 아닙니다. 예를 들어, 간단한 테스트 케이스들을 통해 결과를 비교함으로써 변수를 분석하기 전에 먼저 거르는 방법, 너무 흔한 변수들을 처리하는 방법 (예를 들어 완전히 다르게 동작하는 코드들에서도 반복문에서 사용되는 인덱싱 변수들은 같이 변화할 것입니다), 한 변수가 다른 의미론적으로 두 번 사용되는 경우 처리하는 방법… 등이 논문에는 더욱 자세히 적혀있습니다. 궁금한 독자들은 한번 논문을 읽어보도록 합시다.남은 문제들Elena가 제시한 방법은 위에서 보여준 예제와 같은 간단한 코드에서 꽤 잘 동작합니다. 예를 들어, 다음과 같은 문제들이 있습니다.a의 b승을 구해서 리턴하는 프로그램N번째 피보나치 숫자를 리턴하는 프로그램다항식의 미분 결과를 리턴하는 프로그램하지만 대학교에서 1학년만 넘어가더라도 이런 간단한 프로그램 과제는 내지 않습니다. 예를 들어 Elice에서 교육 중인 기초 프로그래밍/ 프로그래밍 유치원 수업을 듣는 학생들은 매우 많은 실습문제를 풉니다. 여기에서 푸는 과제들은 초반 몇 주가 지나면 이 정도의 간단한 프로그래밍 수준을 뛰어넘기 때문에, 코드가 꽤 길어지고 다양성이 생기게 되는데 이런 경우 이 방법은 잘 동작하지 않습니다.또 다른 문제는, 이 방법이 “동작하는” 코드에서만 작동한다는 것입니다. 예를 들어, 수강생들이 아직 기초 문법을 배우고 있다면? 제대로 실행도 되지 않는 코드를 만들었을 때, 비슷한 실수를 한 사람들끼리 묶어주고 싶다면? 아쉽게도 Elena가 제시한 방법은 이렇게 에러가 나는 코드에서는 동작하지 않습니다. 코드가 실행되지 않는다면 변수의 값의 변화를 추적할 수 없기 때문입니다.마치며이번 포스트에서는 학생의 제출 코드를 비슷한 것끼리 묶는(Clustering하는) 방법에 대해 간단하게 살펴 보았습니다. 학생이 낸 비슷한 답안을 모아주는 솔루션은 수학 문제 같은 단답식 문제, 혹은 영어 에세이같은 자연어에 대해서는 이미 상용화가 되어 있습니다. 영어 에세이의 경우 여러분들이 가장 친숙할 만한 상용화된 솔루션은 아마 copy detector일 것입니다.하지만 프로그래밍 코드의 클러스터링은 연구가 계속 진행되고 있습니다. 앞서 말했듯 코드에서 한 글자 한 글자가 가지는 의미가 자연어에서 가지는 알파벳과는 완전히 다르기 때문이기도 하고, 정말 실행을 해 보기 전까지는 어떻게 동작하는지 예측하는 것이 매우 어렵기 때문이기도 합니다. Elice 리서치 팀에서도 프로그래밍 코드에 대한 분석을 자동으로 수행하는 머신러닝 연구를 수행하고 있습니다. 이러한 기술을 통해 선생님이나 조교가 학생을 더욱 효율적으로 지도하고, 컴퓨터의 도움으로 지도에 아낀 시간을 한 단계 더 개인화된 도움을 주도록 하는 것이 Elice의 목표 중 하나 입니다.글쓴이김수인: KAIST 전산학부 박사과정 / Research Lead, Elice김재원: KAIST 전산학부 박사과정 / The Lead, Elice배휘동: KAIST 전산학부 박사과정 / Frontend Lead, Elice#엘리스 #코딩교육 #교육기업 #기업문화 #조직문화 #서비스소개

기업문화 엿볼 때, 더팀스

로그인

/