스토리 홈

인터뷰

피드

뉴스

조회수 1518

CTO의 인간선언

아이오에서 일 한지 어느 덧 한 달 가까이 되어간다.이젠 나도 어느 정도 팀의 비즈니스 로직, 도메인, 문화, 사용하는 기술들이 조금씩 이해되기 시작하고 있다.그러자 이번엔, CTO이자 나의 멘토이며 사수인 미정님이, "직접 기능을 하나 TDD로 개발해서 Pull Request 해보라"는 미션을 주었다.API를 보고, 구글링하고, 기존에 미정님이 짰던 코드를 참고해서 만들어갔다.그럼에도 불구하고 제대로 작동하지 않는 코드가 있었다.혼자 해볼 수 있는 것은 다 해 본것 같은데도 해결법이 떠오르지 않아, 미정님에게 이런저런 문제가 있다고 설명하고 도움을 요청했다.미정님이 코드를 좀 보더니 해결했다. 미정님이 짰던 기존 코드에 오류가 있었고, 내가 그것을 참고해서 코드를 짰기 때문에 생긴 문제였다.그녀는 쓴 웃음을 지으며, “변형덕에 오류발견 했네, 잘했어.”라고 약간 주눅들어 말했고,나는 “아, 저는 미정님 코드는 완벽하다 생각하고 그걸 레퍼런스로 하고 코드를 짰는데, 그래서 오류를 못 찾았나봐요.”라고 대답했다.그러자 그녀는 갑자기 눈빛을 바꾸며 역정을 냈다. “그건 변형이 아직 엔지니어의 마인드를 못 갖췄다는 말이야!”예상치못한 임기응변에 순간 나는 움찔했고, 내게 유리했던 분위기를 뺐기고 말았다.그녀의 설명이 이어졌다.“세상에 실수 없는 사람은 없어! 엔지니어라면, 컴퓨터는 믿어도 사람은 못 믿는 다는 생각을 갖고 있어야 되!나는 선배가 짠 코드라도 안 믿어. 심지어 구글러가 짠 코드도 난 안 믿어!100%완벽한 코드는 없어.우리가 TDD를 하는 것도 실수나 오류를 최소한으로 줄이기 위해서지, 그렇게해도 오류없는 100% 완벽한 코드를 보장하지는 않아.그러니까 누가 짠 코드든 완벽하다고 생각하면 안 돼! 내 코드도 마찮가지고!”구구절절이 맞는 말이다.친절한 미정님은 스스로를 실수할 수 밖에 없는 인간으로 낮추면서까지, 엔지니어로서 가져야할 자세를 알려주셨다.진정한 살신성인의 멘토라고 아니할 수 없다.ㅜ친절한 박미정줄여서 친박.앞으로 친박이라 부르고 싶다.#스위쳐 #Switcher #개발자 #스타트업 #스타트업CTO #CTO #개발일지 #경험공유
조회수 4898

“디자인과 기술을 이어주는 존재, 마크업 개발자를 함께 알아볼까요?” - 유저플로우셀 오혜진

'마크업 개발자', 아직은 우리들에게 다소 생소한 직군이죠. '마크업 개발자'는 디자이너와 개발자 사이에서 '오작교' 같은 역할을 하는 아주 중요한 포지션이에요. 오늘은 코인원의 마크업 개발자로 활약 중인 혜진님과 이야기를 나눠보려 해요. 자신의 위치에서 묵묵히 유저 친화적인 웹 환경을 만들어나가고 있는 혜진님을 만나러 가보시죠!사실 이미 혜진님은 지난 4월 13일(토), 테크 업계 여성들의 목소리에 집중하는 소중한 행사 ‘Women Techmakers Seoul 2019’에서 ‘스타트업에서 마크업 개발자로 살아남기’를 주제로 자신의 이야기를 널리 알리고 왔답니다. 스타트업 그리고 코인원에서 마크업 개발자로 살아남는 혜진님만의 방법은 무엇일까요? :-)Q. 혜진님 안녕하세요, 자기소개 부탁드립니다.안녕하세요, 코인원 유저플로우셀에서 마크업 개발자로 일하고 있는 오혜진입니다. 유저플로우셀은 암호화폐 거래와 프로차트와 같은 트레이딩 영역을 제외한 전반적인 서비스 영역을 담당하고 있어요. 특히 ‘셀'이라는 목적조직으로 개편된 이후 PM, 디자이너, 개발자가 한곳에 모여 누구나 코인원에서 거래를 하고 싶은 마음이 들도록 매력적인 곳으로 탄생시키고 있답니다. 저는 셀안에서 마크업 개발자로 일하며 디자이너와 프론트엔드 개발자를 이어주는 다리 역할을 하고 있습니다.Q. 지난 ‘Women Techmakers Seoul 2019’에서 마크업 개발자를 널리 알리는 발표를 했다고 들었어요. 어떤 내용인지 소개해주세요!감사하게도 ‘스타트업에서 마크업 개발자로 살아남기' 라는 주제로 300명이 넘는 관중들 앞에서 발표를 하고 왔습니다. (사실, 많은 분들이 와주셔서 땀이 좀 나기도 했고요;) 마크업 개발자는 스타트업에서 발견하기 힘든 직군이기도 해요. 보통은 웹 에이전시에 많이 속해 있거든요. 제가 마크업 개발자로 일한지 6년이라는 시간 동안 스타트업에서 어떤 방식으로 일해왔는지 알리고 싶었어요. 그래서 지금까지 이런 일들을 해왔고, 앞으로도 더 활발하게 할 것이라고 속시원하게 말하고 왔습니다.Q. 마크업 개발자는 구체적으로 어떤일들을 하나요?마크업 개발자는 한마디로 디자인(Design)과 기술(Tech)의 오작교 같은 존재입니다. 디자인의 의도가 개발과 충돌하는 부분은 없는지 파악하고, 개발에 잘 녹아들 수 있도록 프론트엔드의 앞단을 맡고 있어요. 코인원 웹 서비스에서 제공하는 신규 기능의 마크업 개발을 담당하고, 운영하면서 생긴 이슈들을 처리합니다. 또한 마크업 레거시에 대한 유지보수 작업도 병행하죠.예를 들어, 코인원의 회원가입 페이지를 제작할 때 디자인 작업을 먼저 들어갑니다. 그럼 디자인 작업을 바탕으로 개발자들이 기능을 만들어 넣게 돼요. 이 때, 기능적인 개발을 제외하고 UI(User Interface)적인 부분을 제가 담당합니다. 회원가입 페이지에는 이메일 인증, 휴대폰 인증 등 여러가지 개발요소들이 많아요. 그래서 개발하기 전에 기능이 들어가는 기본적인 레이아웃을 만들어 개발자에게 전달합니다. 마크업 작업이 바탕이 되어 그 위에 기능 개발이 이뤄진다고 보시면 돼요.디자이너가 레시피를 만드는 사람이라면, 마크업 개발자는 레시피 재료를 세팅해 주는 사람이에요. 개발자들은 세팅된 레시피를 끓이고 버무려 요리를 완성시키고요. 저는 좋은 요리가 탄생할 수 있도록 중간과정을 도와주는 역할인거죠. ▲ 'Women Tachmakers 2019'에서 발표에 열중한 혜진님!Q. 디자인과 기술의 중간 역할을 담당하고 계시군요, 사실 중간자의 역할이라고 하면 이어주는 과정에서 고충(?)이 생길 것 같아요.아무래도 디자이너와 개발자, 양쪽과 다 소통해야하는 부분입니다. 디자이너 입장에서는 ‘왜 프론트엔드에서 이 디자인이 안되는걸까?’ 라는 불만이 생길때도 있고, 프론트엔드에서는 ‘왜 디자인이 이렇게 들어가야 하는걸까?’ 라고 이해를 못할 때도 있어요. 서로의 이해관계를 잘 전달해야 한다는 점이 나름의 고충이죠. 코인원에서는 ‘디자이너 - 마크업 개발자 - 프론트 개발자’의 협업 프로세스를 정립해서 각자가 맡은 분야에 집중 할 수 있는 초석을 다졌어요. 무엇보다도 배경이 다른 세 개의 직군이 원활하게 소통할 수 있는 체계가 잡혀 고충이 해결되고 있습니다 :) Q. 그렇다면 마크업 개발자는 어떤 부분을 기여한다고 볼 수 있나요?코인원 메인 화면에 기능 개발을 추가하지 않고도 마크업단에서의 처리만으로도 쉽게 변화를 줄 수 있습니다. 메인화면의 배너 이미지는 유저들이 코인원에 접속해 제일 먼저 마주하는 부분이죠. 그래서 유저들이 코인원의 시각화된 정보를 빠르게 접할 수 있도록 이미지를 교체합니다. 웹 페이지의 운영 측면에서 비주얼 개편을 빠르게 할 수 있는 환경을 만들어 놓고 대응하는거에요.곧 코인원 마이페이지 화면이 개편될겁니다. 웹 페이지를 새로 만든다는 것은 무에서 유를 창조하는 과정과 같아요. 제가 마크업 개발을 잘 해놓으면 다른 직군에게도 도움이 됩니다. 개발 속도도 더 잘 붙고, 디자인에서도 빈공간이 없는 페이지가 탄생하는거죠. 최대한 밑바탕을 꼼꼼하게 만들어 모두가 일에 더 집중할 수 있는 환경을 만든다고 보시면 돼요.Q. 코인원 마이페이지에서 새롭게 바뀌는 부분은?기존의 마이페이지는 유저들이 보기에 정리가 잘 안되어있다는 느낌이 있었어요. 어떤 인증과정을 끝마쳐야 하는지 한눈에 들어오지 않는 부분이 있었거든요. 이번에 개편될 마이페이지는 좀 더 명확해졌습니다. 이전의 인증페이지가 도돌이표의 느낌이었다면, 이번에는 UX(User experience)를 생각해서 flow 개선도 많이 이뤄졌습니다. 편리한 암호화폐 거래 경험을 코인원에서 느낄 수 있어요. (새롭게 바뀔 마이페이지 많은 기대 부탁드립니다! 물론 편리한 암호화폐 거래도 언제나 코인원!)Q. 유저들에게 편리한 거래경험을 선사하기 위해 어떤 가치를 가장 중요시 여기나요? 저는 중간자이므로 유저들 뿐만 아니라 개발까지 두 가지 측면을 모두 고려합니다. 유저의 입장에서 사용성과 접근성이 용이한 마크업을 짜려고 하고, 개발측면에서는 유지보수가 편리한 마크업을 최대한 짜려고 해요. 개발하기 편한것과 사용하기 편한 것은 다른 맥락이거든요. 요새는 코인원 디자인시스템을 적용하고 있어요. 디자이너 분들이 정리해주신 디자인 시스템을 잘 적용시켜서 코드적으로도 재사용성이 용이하게 관리가 되도록 하고, UI도 정돈이 되어가는 과정을 진행 중입니다. 이런 과정을 계속 거치면 유저들에게 편리한 거래 경험을 선사하는 부분은 놓치지 않을 것 같아요.▲ 마크업에 열중하고 있는 혜진님 (약간의 설정샷 +_+)Q. 코인원 크루로 일하면서 장점을 뽑자면?유저플로우셀은 코인원이 셀이라는 목적조직으로 개편되고나서 만족도가 높은 셀이라고 알고 있어요. 업무도 많은 편인데, 톱니바퀴처럼 잘 맞물린다는 느낌이거든요. 특히 일에 대해서 선긋지 않고, 이슈가 발생했을 때 해결할 수 있는 부분들을 빠르게 파악해주는 부분들이 정말 좋아요. 속도랑 효율성 측면에서 이만큼 해낼 수 있는 팀은 앞으로 만나지 못할 것 같아요. 항상 원활한 업무 소통을 위해 힘써주시는 셀원들에게 감사 드립니다!Q. 앞으로 이루고 싶은 목표가 무엇인가요?회사 안 뿐만 아니라, 바깥에서의 활동도 꿈꾸고 있어요. 마크업 개발자들이 모두 모여 이야기할 수 있는 CSS 컨퍼런스를 열어 좀 더 커뮤니티를 활성화 시키고 영향력을 높이고 싶습니다. 아직 마크업 개발자들만이 모여서 이야기 할 수 있는 곳이 부족하거든요. 저의 이야기도 차곡차곡 쌓아서 여러 창구를 통해 들려드리고 싶고요.코인원에서는 지금 하는 것 이상으로 마크업 개발도 열심히 할거에요. 우선 단기적인 목표로, 프론트엔드에서 사용하고 있는 angular에 대한 이해력을 높일 겁니다. 마크업 컴포넌트 단위에 최적화 된 CSS로 개편해서 사용하지 않는 스타일 리소스가 최소화가 되도록 만들거에요.▲ 마크업 개발자에 많은 관심 부탁드려요 :)디자이너가 디자인에 집중할 수 있게, 개발자가 개발에 집중할 수 있게 ‘일잘러’로 통한다는 혜진님. 혜진님의 인터뷰를 통해 ‘마크업 개발자’에 좀 더 친해지는 시간이길 바라봅니다. 그리고 이렇게 멋진 코인원 크루와 함께 성장하고 싶지 않으세요?  현재 코인원은 멋진 크루들과 함께 크립토갤럭시를 헤쳐나갈 분들을 기다리고 있습니다 :-)
조회수 984

디지털 노마드를 꿈꾸며

들어가며웹 서비스를 운영하는 여느 회사들처럼 엘리스의 엔지니어링 팀도 ‘프론트엔드’ 팀과 ‘백엔드’ 팀으로 이루어져 있습니다.‘프론트엔드’는 앞쪽에서 유저와 직접 맞닿아 있는 부분을 말합니다. 엘리스와 같은 웹 서비스에서는 웹 브라우저에서 유저들에게 보이는 웹페이지를 HTML/CSS/Javascript를 이용해 만드는 사람들이 프론트엔드 엔지니어라고 할 수 있습니다.‘백엔드’는 유저의 눈에 보이지 않는 뒷부분을 말합니다. 백엔드는 프론트엔드에서 보내는 요청을 처리하고 데이터를 보내주는 역할을 하는데요, 엘리스는 현재 프론트엔드 엔지니어 3명과 백엔드 엔지니어 2명이 서비스 개발을 담당하고 있습니다.한 가지 놀라운 점은, 엘리스의 엔지니어링 팀을 비롯해 디자인 팀, 운영팀 등이 모두 한 곳에 모여있지 않다는 것입니다. 국내에서는 이러한 형태의 원격 근무를 도입한 회사를 찾아보기 어렵지만, 기술의 발전으로 변화한 환경에서 ‘디지털 노마드’를 하나의 생활 양식으로 도입하고자 하는 목소리는 증가하고 있습니다. 디지털 노마드는 쉽게 말하면 어디든 자신이 일하고 싶은 곳에서 원격으로 근무하는 사람을 뜻합니다. 엘리스는 회사 구성원 전체가 원격 근무가 가능한 디지털 노마드 회사를 꿈꾸고 있습니다.엘리스의 모든 개발 과정은 디지털 노마드의 꿈에 걸맞게 원격으로 이루어집니다. 물론 원격으로 함께 일하기 위해서는 효과적인 툴의 도움이 필요할텐데요, 디지털 노마드를 실현하기 위해 엘리스에서는 어떤 도구들을 사용하고 있을까요? 이 글에서는 프론트엔드 팀의 관점에서, 엘리스 웹사이트에 기능이 추가되는 과정과 사용되는 협업툴을 2017년 초에 개발된 ‘헬프센터’를 예로 들어 이야기해보겠습니다.엘리스의 프론트엔드 개발 싸이클엘리스에서 기능이 개발되는 대략적인 흐름은 다음과 같습니다.기획 - 디자인 - 구현 - 테스트 - 배포 & 모니터링여기서 각 단계는 엄밀히 나눠져있거나, 무조건 한 방향으로 흐르지는 않습니다. 구현을 하다가도 기획을 수정해야 하면 다시 처음으로 돌아가기도 합니다. 각 단계를 좀 더 자세히 살펴보도록 하죠.기획 단계어떤 기능이 왜 필요한지, 필요하다면 일의 중요도와 걸리는 시간은 어떤지 등을 엘리스의 연간 로드맵과 비전에 맞춰 논의하고 계획하는 단계입니다. 거의 모든 논의는 Slack이라는 온라인 협업 툴의 화상채팅에서 이루어집니다. 엘리스에는 ‘기획자’라는 역할이 명확하게 주어진 사람은 없습니다. 기본적으로 팀 리더가 의견을 취합하고 방향성을 제시하지만, 엔지니어링팀, 운영팀, 디자인팀 모두가 의견을 자유롭게 제안할 수 있습니다.2017년은 엘리스가 처음으로 대학교, 기업 등 기관 고객이 아닌 일반 사용자에게 수업을 제공하기 시작한 해입니다. 우리는 프로그래밍 학습을 하는 데 있어서 아주 중요한 요소 중 하나가 실습을 빠르게 많이 해보고 막혔을 때는 선생님에게 도움을 받을 수 있게 하는 것이라고 생각했습니다. 특히 프로그래밍을 한 번도 접해보지 않은 분들이 엘리스에서 처음으로 코딩학습을 시작하는 경우가 많았기 때문에, 이러한 사람들에게 효과적으로 도움을 줄 수 있는 기능이 무엇일지에 대한 많은 논의를 나눴습니다. 논의의 결과 개발하기로 결정한 것이 헬프센터입니다.Google Presentation으로 만들어진 초기 헬프센터의 컨셉 디자인 일부거시적 관점에서의 논의가 어느 정도 정리된 후에는 위 그림과 같이 구글 프리젠테이션으로 빠르게 만든 저수준(Low Fidelity) 디자인이 유용하게 쓰입니다. 이러한 저수준 디자인을 통해 개별 페이지의 상세한 디자인에 착수하기 전에 사용자 인터페이스와 경험(UI/UX)을 미리 설계해서 피드백을 주고받을 수 있습니다.기획 단계에서는 기능 요구사항이 현재 서비스 구조와 잘 어울리는지, 무엇이 가능하고 무엇이 하기 어려운지 등을 미리 잘 정해두어야 합니다. 그래야 개발 도중에 뒤엎는 일이 적기 때문입니다. 프론트엔드 엔지니어는 기획 단계의 요구사항을 잘 파악한 뒤에, 새로 기능을 개발하는 데 있어서의 제약사항이나 기존 구조에 대한 변경사항 등의 디테일을 백엔드 엔지니어와 함께 논의하면서 자세하게 정의해 나갑니다. 따라서 다른 팀의 사람들과 소통하는 능력은 프론트엔드 엔지니어에게 특히 중요한 역량이라고 할 수 있습니다.기획 단계에서 주고받은 논의 결과는 엘리스의 위키 페이지에 정리되고, 이슈 관리 도구인 Jira에 등록됩니다. 엘리스의 모든 팀원들은 위키 페이지와 Jira를 통해서 논의된 결과를 확인하고 일의 진행 상황을 파악하게 됩니다.주 사용 도구: Slack, Google Presentation, Confluence Wiki, Jira디자인 단계기능 개발에 필요한 각 페이지의 디자인이 고수준(High Fidelity)으로 만들어지는 단계입니다. 자세한 디자인에 들어가보고 나서야 파악되는 문제도 있기 때문에 디자인 단계에서도 기획에 대한 논의와 수정은 계속됩니다.디자인 단계에서의 논의 역시 Slack 채널에서 이루어집니다. 프론트엔드 팀과 디자인 팀은 온라인에서 디자인 페이지를 함께 보며 디자인에 대한 논의를 진행합니다.엘리스 디자인 팀에서는 주로 Sketch로 페이지 디자인을 합니다. Sketch로 디자인이 되고 나면 페이지 단위로 Invision에 업로드되는데, Invision에서는 다른 페이지로 넘어가는 링크뿐만 아니라 페이지 안에서의 인터랙션(스크롤 내리기, 클릭하기 등.)도 어느 정도 표현할 수 있습니다. 또한 각 요소의 색깔, 크기, 다른 요소와의 간격 등을 개발자가 볼 수 있어서 이를 토대로 페이지를 구현하게 됩니다.Invision에 업로드된 헬프센터 페이지 디자인새로운 페이지를 만들 때 중요한 것 중 하나는 기존 페이지에서 사용자가 경험했던 것을 비슷하게(Consistent) 유지하는 것입니다. 이는 사용자 경험 측면에서도 좋고, 엔지니어 입장에서도 비슷하지만 조금 다른 코드를 자꾸 만들 필요가 없어서 좋습니다. 엘리스 프론트엔드 팀에서는 일관성 있는 디자인을 돕기 위해 비슷한 상황에서 쓰이는 요소들을 모듈화하여 가져다 쓸 수 있는 elice-blocks라는 것을 만들었습니다.elice-blocks의 버튼에 대한 스타일 가이드실제 elice-blocks의 다양한 종류 button들이 구현된 예시요즘은 디자인 팀에서 elice-blocks를 최대한 활용하여 페이지 디자인을 하기 때문에 전보다 코드 품질도 올라가고 개발 속도도 더 빨라졌습니다.새로운 페이지에 대한 디자인이 나오면 프론트엔드 팀과 디자인 팀은 Slack에서 스크린 공유를 통해 Invision 페이지를 함께 보며 elice-blocks가 어떻게 사용되었고 어떻게 업데이트되어야 하는지도 논의합니다.주 사용 도구: Slack, Sketch, Invision구현 단계Jira에 기술된 기능 요구사항과 Invision 페이지를 보며 실제 코딩을 하는 단계입니다. 기획과 디자인 단계에서 충분한 논의가 되었다면 구현 단계에서 걸리는 시간이 많지 않을 수도 있습니다.현재 엘리스 아카데미에서 사용되고 있는 헬프센터의 모습현재 프론트엔드 팀은 3명뿐이라서 보통은 한 사람이 기능 하나씩을 맡아서 개발합니다. 이렇게 할 경우 개발 속도는 좀 빨라질 수 있으나 코드의 품질과 안정성이 떨어질 수 있다는 단점이 있습니다. 이를 보완하기 위해 각자가 할 일을 하면서도 짧은 시간 페어 프로그래밍을 하기도 하고, 완료된 기능에 대해서는 코드 리뷰를 진행합니다.페어 프로그래밍 역시 원격 상황에서 이루어집니다. 하지만 원격으로 안정적인 진행이 쉽지는 않았는데요, 여러 가지를 시도해본 결과 가장 안정적인 것은 Slack으로 화상채팅을 하면서 TeamViwer로 호스트의 컴퓨터를 함께 컨트롤하는 것이었습니다. 3명의 팀원 모두가 함께 진행한 적도 있었는데 무척 재미있더군요.코드 리뷰는 방대한 기능을 개발했을 경우에 팀 차원에서의 리뷰를 위한 화상 회의를 통해 진행됩니다. 또는 해당 기능을 이용하는 개발을 페어로 하기도 합니다. 기본적으로는 엘리스에서 소스코드 관리 도구로 사용하는 Gitlab 안에서 코드 리뷰가 이루어집니다.코드 리뷰 이외에 코드 품질을 높이는 비교적 쉬운 방법 중 하나는 팀의 코딩 스타일 가이드를 잘 정하고 이를 따르는 것입니다. 프론트엔드 팀은 Airbnb의 Javascript 스타일 가이드를 입맛에 맞게 수정해서 사용해왔습니다. 지금은 이를 좀 더 엄밀하게 적용할 필요성을 느껴 Javascript에 대해서는 eslint를, CSS에 대해서는 scss-lint를 이용하여 스타일을 맞추고 있습니다. 이 중 eslint는 후술할 테스트 단계에서도 사용됩니다.참고로 엘리스 프론트엔드는 React 로 구현되어 있는데 페이스북에서 React를 내놓은 아주 초반부터 React를 사용해왔습니다. 그래서 React의 최신 기술이 아닌 오래된 레거시 코드라고 할 만한 부분이 꽤 많습니다. 신규 기능 개발과 더불어 이전 코드를 리팩토링하고 자잘한 버그를 수정하는 것 또한 프론트엔드 엔지니어가 할 일입니다.주 사용 도구: Jira, Invision, Slack, TeamViwer, Gitlab, eslint, scss-lint테스트 단계구현된 기능이 실제로 사용자에게 전달되기 전에 다양한 테스트를 거치는 단계입니다. 가장 기본적인 테스트는 엔지니어가 직접 개발하면서 여러가지 경우의 수에서 의도한 대로 작동하는지 확인하는 것입니다. 여기에 자동화 테스트와 사람이 직접 하는 테스트가 추가됩니다. 엘리스에서 수행하는 자동화 테스트의 종류는 다음과 같습니다.빌드 테스트: 코드가 에러 없이 잘 빌드되는지 확인스타일 테스트: 코드가 엘리스 프론트엔드 팀의 스타일 가이드와 잘 맞는지 확인 (eslint)유닛 테스트: 개별 기능이 잘 동작하는지 확인통합 테스트: 기능의 추가가 전체 시스템에 영향을 미치지는 않았는지 전체 시스템의 동작을 확인자동화 테스트는 Gitlab의 지속적 통합(CI, Continuous Integration) 도구에 연결해두었기 때문에 Gitlab에서 새로운 커밋이 올라오면 자동으로 해당 테스트들이 통과하는지 확인합니다. 즉 코드 리뷰를 시작하기 전에 이미 자동화 테스트는 수행된 것이라고 볼 수 있습니다. 다만 아직까지 엘리스의 코드 규모에 비해 자동화 테스트가 커버하지 못하는 부분이 많기 때문에 이것을 차차 추가해나가고 있습니다.Gitlab의 CI 파이프라인이와 같이 구현과 자동화 테스트는 단계를 나누기 모호할 정도로 긴밀하게 연결되어있지만 굳이 단계를 나눈 이유는 사람이 직접 하는 테스트 때문입니다.자동화 테스트와 리뷰가 끝난 기능은 엘리스의 베타 서버에 올리고, 이를 Slack 채널을 통해 엘리스 팀원들에게 알립니다. 그러면 기획 단계에 참여한 사람들은 베타 서버에서 구현된 기능의 실제 동작을 확인하고 최초의 요구사항을 만족하는지 확인합니다. 확인한 사항에 대한 피드백은 Slack 채널에서 이루어지고 이때 미비한 점이나 버그가 발견되었다고 하면 다시 구현 단계로 돌아가게 됩니다. 요구사항이 잘 만족되었다면 이를 해당 기능에 대한 Jira 이슈에 표시하고 그 기능은 배포가 가능한 상태가 됩니다.주 사용 도구: Slack, Gitlab, Jira배포 및 모니터링 단계구현된 기능이 포함된 버전을 실제 프로덕션 서버에 올리고 확인하지 못한 버그가 발생하지 않는지 모니터링하는 단계입니다. 엘리스는 일주일에 한 번 배포를 기본 원칙으로 하는데, 개발된 것을 목요일까지 베타 서버에 올리고 테스트를 거쳐 목요일 밤이나 금요일에 배포합니다.2017년 11월 3주차의 두 번째 배포. 모든 이슈가 Resolved 상태다.모니터링을 위해 엘리스에서 사용하고 있는 Sentry는 Google Analytics(GA)와 같은 사용자 로그 수집 도구인데, GA와 다른 점은 에러 로그에 특화되어있다는 것입니다. 사용자가 경험한 자바스크립트 에러는 사용자가 어떤 과정을 거쳐 그 에러를 경험하게 되었는지와 함께 기록되고 리포트됩니다. Sentry로 기록되는 에러를 포함하여 다른 모든 종류의 로그는 자체 개발한 elice-logger를 통해 기록되고 있습니다.또한 엘리스에서는 Intercom이라는 사용자 소통 도구를 통해 피드백을 수집합니다. 로그인한 사용자라면 누구든지 ‘문의하기’로 엘리스 운영팀에게 메시지를 보낼 수 있습니다. Intercom에서 들어온 메시지는 Slack을 통해 엘리스 팀 전체에게 공유되고, Sentry에서 들어온 메시지 또한 그렇습니다.Slack으로 사용자 문의가 들어오면 이를 확인한 후에 고쳐야 할 버그라면 수정 작업에 들어갑니다. 버그 수정은 기획-디자인 단계가 문제 제기 단계로 바뀌는 것을 제외하면 기존의 기능 개발 싸이클과 동일합니다.소프트웨어 환경 A에서 권한 B를 가진 계정으로 행동 C를 할 때 원래 예상되는 결과는 D1이지만 현재는 D2가 일어난다라는 포맷으로 문제가 제기되면 이를 개발자가 확인한 후에 문제의 심각성을 파악하여 마찬가지로 구현, 테스트, 배포 및 모니터링을 단계를 진행합니다.주 사용 도구: Jira, Sentry, Intercom, Slack마치며이번 글에서는 디지털 노마드를 꿈꾸는 회사로서 엘리스가 어떤 도구들을 이용하여 기능을 추가하고 버그를 수정하는지를 이야기했습니다. 저는 엘리스가 언젠가 겨울에는 호주에서, 여름에는 캐나다에서 개발할 수 있는 회사가 되기를 소망하고 있습니다. 원격근무가 활성화된 것으로 유명한 회사들이 외국에는 많은데(Gitlab, Basecamp 등) 한국에서는 어떤 회사들이 어떤 도구를 이용하여 디지털 노마드를 실현하고 있는지 궁금하군요.photograph by Marco Verch위와 같은 개발 과정을 잘 해나가기 위해 엘리스의 프론트엔드 엔지니어들에게 필요한 역량은 이런 것들입니다.거시적 관점에서 회사의 비전/로드맵과 현재 하는 일이 잘 맞는지 판단하기기획자 역할을 하는 사람의 의도를 파악하고 이를 토대로 백엔드 엔지니어와 소통하여 개발 스펙 산출하기엘리스 프론트엔드의 스타일 가이드와 React의 좋은 패턴을 이용하여 고품질의 코드로 기능 구현하기각자의 일하는 방식을 존중하고, 함께 하는 세션에 적극적으로 참여하기자신이 구현한 기능을 책임지고 테스트와 유지보수하기여러가지 도구를 익숙하게 사용하며, 새로운 도구를 두려워하지 않고 빠르게 학습하기elice-blocks와 같이 작지만 유용한 내부 프로젝트들을 구현하기사용자의 메시지에 귀를 기울이지만, 그것을 있는 그대로 받아들이기보다 진짜 문제를 찾아서 해결하기물론 현재 저를 포함한 엘리스 팀원들 역시 이 모든 것을 유지하고 더 잘하기 위해 열심히 노력하는 중입니다. 본인에게 이러한 역량이 있거나, 그런 주변 사람을 알거나, 함께 디지털 노마드 회사를 만들고 싶거나, 또는 이 글을 읽고 엘리스의 프론트엔드 팀에 관심이 생기셨다면 주저없이, 연락주시기 바랍니다. 읽어주셔서 감사합니다.#엘리스 #코딩교육 #교육기업 #기업문화 #조직문화 #서비스소개 #채용 #프론트엔드 #개발자 #리모트 #재택근무
조회수 3626

워크로그 개발기

저는 야놀자 CX 서비스실의 API 파트에서 백엔드(90%)와 웹 프론트엔드(10%) 프로그래머로 일하는 송요창입니다.개정된 근로기준법에 따라 2018년 7월 1일부터 300인 이상 규모 기업인 경우주 40시간(최대 52시간) 근로합니다. 이에 따라 야놀자에서도 업무 집중도 향상과 함께 업무 시간을 명시하는 방안이 논의되었습니다. 이런 배경 속에서 만들어진워크로그개발 경험을 이야기하겠습니다.개인의 업무 시간 작성근로 시간이 기존 대비 단축되면서 각 개인의 업무 시간을 기록하고 기준 근로 시간을 초과하였을 때 이를 소진하도록 하는 방향이 결정되었지만 어떤 도구를 사용할지가 문제였습니다. Timing, TMetric, 출퇴근 기록기 알밤 등 다양한 도구를 사용해서 각자 기록을 시작했습니다.1차 시도 - Workflow + Alfred 활용그러던 중에 캘린더를 이용해서 출/퇴근 기록을 남기고 슬랙(Slack)으로 메시지를 발송하는 방법을 CX 서비스실 강미경 님이 공유합니다.캘린더와 - 유료인 경우 - 슬랙 모두에 기록이 남는 장점이 있습니다. 사용하기 쉽습니다.iOS 앱인 Workflow를 이용해서 캘린더에 이벤트를 등록하고 슬랙으로 메시지를 전송.데스크톱이나 노트북은 Alfred의 Workflows 기능으로 해결할 수 있었습니다.Workflow + Alfred로 워크로그를 기록하는 단점개인적으로 편리했지만 CX 서비스실 내부로 전파하여 사용하기에는 문제가 있었습니다.안드로이드 휴대전화를 사용하는 경우 Workflow를 사용할 수 없습니다.아이폰을 쓰더라도 유료로 판매되는 Workflow를 사지 않으면 쓸 수 없습니다.Alfred를 쓰더라도 Power Pack을 구매한 사용자만 Workflows를 적용할 수 있습니다.2차 시도 - 슬랙봇 활용위에서 언급된 문제를 해결하고 구성원 누구나 추가 앱 설치 없이 손쉽게 접근할 수 있는 슬랙봇에 주목합니다. 캘린더가 아니라 데이터베이스를 활용해서 개발하면 어떨지 논의했습니다.늦은 저녁(대략 23시부터 03시)에 Firebase 실시간 데이터베이스(Realtime Database)와 Firebase 클라우드 함수(Functions)를 활용해서 단순한 슬랙봇을 만들었습니다.슬랙을 실행한 뒤 슬래시 커맨드(slash command)로 /wl 출근을 입력하면 출근 로그가 추가되고 완료 메시지를 수신합니다.슬랙의 3초 이내 응답 요구단순한 기능이었지만 슬랙봇을 활용해서 워크로그를 작성하는 동료가 조금 늘었을 때 치명적인 문제가 발생했습니다.슬랙의 슬래시 커맨드는 3초 이내로 응답할 때 완료 메시지를 노출합니다. 3초를 초과하면 아래 메시지를 노출합니다.Firebase 클라우드 함수로 작성한 코드에 문제가 있었습니다. 단순한 로그 데이터와 사용자 요청에 대한 기록을 모두 완수한 후에 응답을 보내도록 했습니다. 이 부분에서 응답 지연이 발생합니다.기록은 된다고 변명해봤지만, 사용자가 기록 여부를 알 수 없으니 재시도하는 횟수가 늘어났습니다. 중복된 데이터를 삭제 요청하는 사용자가 늘었습니다. 이런 불편을 겪고 초기 사용자가 이탈했습니다.위 문제를 제외하고도 다수 사용자의 특정 기간 내 로그를 모두 살펴보기에 슬랙봇은 그다지 좋은 도구가 아니었습니다.제가 잘 못 쓴 것이지 슬랙봇에게는 죄가 없습니다.3차 시도 - 웹페이지 도입앞서 말한 문제가 대두하기 전 다수의 로그를 살펴보기 위해 웹페이지를 제작 중에 있었습니다. 프로그래밍에는 야놀자 앱 하이브리드에서 다뤄본 React.js 외에 최근 소개받은 razzle, After.js를 사용했습니다(이에 관한 회고는 아래서 짧게 다룹니다).Firebase 실시간데이터 베이스에 쌓인 로그를 Firebase 클라우드 함수로 제작된 API로 사용자별, 일자별로 불러서 표시하는 정도로 개발 착수.웹페이지로 조회 기능을 만든 시점과 맞물려 슬랙봇이 무용지물이 되었습니다. 로그인 기능을 제작하고 웹페이지에서 워크로그를 추가할 수 있도록 했습니다. 기록과 조회가 웹페이지로 대체 된 것입니다????????.Firebase 인증은 정말 편리합니다.대형 이벤트이렇게 만들었지만 떠나버린 사용자를 돌아오게 만드는 일은 불가능했습니다. 저를 제외하고 몇몇 분들만 사용하는 소소한 서비스로 사라질 예정이었습니다. 그런데 CX 서비스실 실장이신 하희진 님이 전격적으로 CX 서비스실 전 구성원이 워크로그를 통해 기록을 남겨달라고 요청하셨습니다. DAU가 10배는 급상승했습니다(1~2명에서 20명 이상으로). 많은 트래픽????이 들어오니 부족한 기능과 어설픈 기록 시스템 등이 문제가 되기 시작합니다.엎친 데 덮친 격으로 초과 근무 차감이란 주 기능 오픈에 대한 관리자(희진 님)와 사용자의 요구가 커졌습니다.할 일이 넘쳐난다.DAU 20의 공포요구사항을 분석하고 구현하면서 미비한 규칙을 관리자와 자주 논의했습니다. 논의 결과에 따라 메뉴가 생겼다가 사라졌다가를 반복해서 사용자의 혼란이 가중되었습니다. 아직 제작되지 않은 관리자 기능 때문에 데이터베이스를 직접 수정하는 일도 빈번했습니다.무엇보다 갑자기 새로운 도구를 사용하는 사용자의 질문이 쏟아졌습니다. 주 40시간을 어떻게 측정할지, 초과근무시간의 근거나 법정 휴식시간 발생 요건 등 대부분은 규칙에 관한 질문이었습니다. 30분 안에 같은 질문을 5번 듣고 동일하게 답변하는 헤프닝도 있었습니다.???? 어디서 많이 본 모습인데? 바로 IT산업 전체에서 자주 일어나는 일입니다.점진적 개선우선 비슷한 질문을 모아 FAQ 페이지를 개설했습니다(우리 PO가 자주 하는 업무라서 배운 풍월이 도움이 되었습니다). 지나치게 사용자 기능을 제한하여 CS가 늘어난 측면이 있어서 규칙이 확정된 부분만 사용자 기능 제한을 풀었습니다.금주 내의 로그는 언제든 추가 및 수정할 수 있도록 변경했습니다.누적된 초과시간은 금주 중 언제라도 사용할 수 있도록 변경했습니다.한 주가 끝나면 잘못된 로그가 있는지 검사한 뒤 로그 수정 후 초과시간 확정하는 일은 하고 있습니다.배포되는 버전마다 변경사항을 문서에 남기고 전체 사용자에게 공지했습니다.차감 기능은 자투리 시간과 CX 서비스실 구성원의 배려로 개발하였습니다.다행히 6월에 태어난 둘째가 새벽 4~5시면 한 번씩 울어서 알람 없이 기상할 수 있었습니다????.개인 회고워크로그를 제작하면서 크게 2가지를 느꼈습니다.미비한 요구사항 분석은 개발 비용을 상승시킨다하나의 요구사항은 여러 기능을 필요로 합니다. 자세한 분석 없이 뇌내 망상으로만 개발에 착수했더니 구조를 변경하느라 시간을 많이 소모했습니다.초과 시간을 예로 들면 우선 차감 메뉴를 만들고 있었습니다. 그런데 차감에 근거가 되는 누적 시간이 없습니다. 그럼 누적을 기록할 수 있는 모델을 제작합니다. 1일 8시간 기준으로 기록하도록 개발합니다. 주 40시간이 넘을 때 초과 시간이 발생하는 규칙이라서 1주일 단위로 마감하는 방식으로 변경합니다.이렇게 우왕좌왕하며 개발하니 밀고 나가는 힘이 약했습니다. 프로덕트 개발 시 PO가 이 부분을 많이 돌봐줘서 기본 없는 프로그래머가 되었습니다(????).개발은 50%. 운영이 나머지 50%다마이너 버전이라도 개발을 완료하고 배포할 때마다 한고비 넘었다고 생각했습니다. 그렇지만 진짜 서비스가 단단해지는 것은 사용자를 만날 때부터였습니다.사용자는 관리자보다 인내심이 없습니다. 개선 사항을 슬랙을 통해서 말해주고, 잘못된 기록이 있으면 수정을 요구했습니다. 이상한 규칙이 발견될 때마다 피드백이 왔습니다. 정당한 요구와 피드백이지만 1인 개발자가 감당하기는 벅찬 부분이 있었습니다.피드백을 정리해서 수정할 부분을 JIRA에 정리하고 작업하기를 반복했습니다. 이 과정을 통해 초기보다 더 다듬을 수 있었습니다.저는 근무시간 중에만 CS 대응을 했음에도 피곤했습니다. 이런 일을 매일 매시간 겪고 있는 야놀자 PO와 IT 업계 동료들은 정말 대단한 사람입니다. 이 자리를 빌려 다시 한번 존경합니다.개발 관련 회고(신약???? 임상 결과)토이 프로젝트이기 때문에 회사에서 사용하는 기술 외에 새로운 기술을 다뤄봤습니다. React.js와 함께 엄청나게 사랑받고 있는 vue.js가 아닌 이유는 개발 시간이 촉박해서 공부할 시간이 없었다고 핑계 대봅니다.razzle + After.js = ????React.js를 사용할 때 주로 Next.js를 사용해왔지만 이번에는 razzle과 After.js를 사용했습니다.razzle은 create-react-app처럼 React.js 애플리케이션을 제작할 수 있도록 초기 구성을 도와줍니다. React.js 외에도 Vue, Angular, Preact, Elm 등을 지원합니다.After.js는 Next.js처럼 서버사이드 렌더링을 지원합니다. Next.js와 다르게 React Route 4를 이용해서 라우팅을 지원합니다.사용해본 소감은 razzle이 아무런 설정도 하지 않도록 도와주고 있어서 편리했습니다. TypeScript 도입도 예시가 있어서 쉽게 적용할 수 있었습니다. 코드 수정 후 웹페이지를 다시 로딩하는 핫 리로드(hot reload)도 잘 작동합니다. After.js는 서버사이드 렌더링 시 getInitialProps 를 사용할 수 있어서 Next.js에 익숙한 저에게 편리했습니다. 무엇보다 Next.js처럼 route를 변경하기 위해서 next-route에 의존하지 않아서 편리했습니다(대신 React Route를 의존합니다).저처럼 프로젝트 셋업을 어려워하는 초심자에게 유용합니다(검색할 때 사례를 더 많이 찾으려면 Next.js가 더 유리합니다).배포는 초기에 Aws의 beanstalk을 활용하다가 Zeit가 운영하는 now로 변경했습니다. Node.js나 docker에 익숙하고 커맨드 라인 인터페이스(cli)를 사용하는 데 어려움이 없다면 사용할만 합니다. 리전이 모두 해외라서 응답속도가 빠르진 않습니다.Zeit는 Next.js 프레임워크를 제작한 회사입니다.도움 주신 분???? 아이디어와 기획에 도움을 주고 사용자가 돼주신 R&D CX 서비스실 강미경 님???? 제보에 적극적인 R&D CX 서비스실 노현석 님DAU를 비약적으로 높여주신 R&D CX 서비스실 하희진 님미약한 사용성과 구린 UI임에도 잘 사용해주고 계신 R&D CX 서비스실 모든 구성원!!공감의 ????????! 눈물 흘리는 역할로 열연해주신 R&D UX/UI팀 김하연 님이 글을 리뷰해주신 유관종 님, 노현석 님, 구본한 님무엇보다 이런 프로젝트가 가능하도록 도와준 R&D CX 서비스실 내 API파트 전원에게 ????‍ 감사합니다.참고한 자료https://medium.com/evenbit/building-a-slack-app-with-firebase-as-a-backend-151c1c98641dhttps://api.slack.com/slash-commandshttps://firebase.google.com/docs/database/web/start#야놀자 #개발자 #개발팀 #문제해결 #버그수정 #백엔드 #인사이트 #경험공유
조회수 1088

오토 레이아웃(Auto Layout), 넌 누구냐!

OverviewiOS 프로그래밍을 하면서 많이 접했던 단어 중 하나는 오토 레이아웃(Auto Layout) 입니다. 스토리보드에서 화면을 만들 때 오토 레이아웃을 이용해서 뷰와 컨트롤의 크기와 위치를 지정합니다. 이미 잘 사용하고 있지만 문득 정확하게 오토 레이아웃은 무엇인지 궁금해져 이번 기회에 써 보기로 했습니다. 오토 레이아웃(Auto Layout)은?오토 레이아웃(Auto Layout)은 제약 조건(Constraints)을 이용해서 뷰의 위치를 지정하는 것입니다. 다시 말하면, 두 뷰 사이의 관계를 제약 조건이라는 것을 이용해서 뷰의 크기와 위치를 지정하는 것입니다. 너와 나의 연결 고리!오토 레이아웃은 여러 해상도를 지원하려고 이 세상에 나왔습니다. 아이폰의 크기가 다양해지면서 해상도도 달라졌는데, 다른 크기에서도 같은 화면을 똑같이 보여주기 위해 오토 레이아웃을 사용합니다. 세로 보기 화면뿐만 아니라 가로 보기 화면까지도 지원합니다. 아이폰SE 혹은 아이폰8 Plus에서도 같은 비율의 화면을 볼 수 있도록 오토 레이아웃을 사용하는 것입니다. 만약 오토 레이아웃을 사용하지 않는다면, 아이폰 기종마다 스토리보드를 만들어야 하죠. 이렇게 되면 스토리보드 파일이 많아집니다. 앱을 실행할 때 아이폰 기종을 확인하고, 그에 맞는 스토리보드를 찾아 화면을 보여주는 번거로움도 생깁니다. 위의 이미지를 보면 아이폰SE와 아이폰8, 아이폰8 Plus 브랜디 앱 화면. 기종이 달라도 보여지는 화면이 똑같다는 것을 볼 수 있습니다. 오토 레이아웃을 이용해서 하나의 스토리보드에서 모두 대응할 수 있는 것이죠.Frame Layout vs Auto Layout전통적으로 앱은 유저 인터페이스를 각 뷰의 프레임(frame)을 프로그래밍 방식으로 계산해 배치합니다. 유저 인터페이스를 배치하려면 뷰 계층의 모든 뷰에 대한 크기와 위치를 계산해야 합니다. 그리고 변경이 발생하면 영향을 받는 모든 뷰에 대해 프레임을 다시 계산합니다.Frame Layout뷰의 프레임을 프로그래밍 방식으로 정의하면 유연해집니다. 어떤 변화가 생겨도 대응할 수 있기 때문입니다. 그러나 모든 변경 사항을 직접 관리해야 하기 때문에 많은 노력이 필요합니다. 설계부터 시작하여 디버그 및 유지 관리까지 많은 것을 관리해야 합니다. 가장 효과적인 방법이지만 난이도도 많이 어려워집니다.이와 달리 오토 레이아웃은 일련의 제약 조건을 사용하여 유저 인터페이스를 정의합니다. 제약 조건은 앞서 말한 것 처럼, 일반적으로 두 뷰 간의 관계를 나타냅니다. 그런 다음 오토 레이아웃은 이러한 제약 조건을 기반으로 각 뷰의 크기와 위치를 계산합니다.Auto Layout화면에 배치하는 모습이 같기 때문에 프레임 방식을 사용해도 되고, 오토 레이아웃을 사용해도 됩니다. 둘 다 스위프트와 오브젝티브 C를 지원하기도 합니다. 각각 장단점이 있지만 가장 많이 사용하는 방법이 오토 레이아웃입니다. 빠르게 적용할 수 있고 많은 시간을 줄일 수 있기 때문입니다.스토리보드에서의 오토 레이아웃iOS 앱 개발은 스토리보드를 이용해서 화면을 만듭니다. 그래서 스토리보드가 익숙한 개발자들이 많은데, 사실은 뷰를 배치하면서 썼던 툴이 오토 레이아웃과 관련된 것이었습니다.스토리보드 오른쪽 하단에 있는 메뉴핀(Pin) 메뉴는 버튼 또는 레이블과 같은 UI 요소에 새로운 제약 조건들을 추가할 수 있습니다. 시계 방향으로 Top, Trailing, Bottom, Leading 제약 조건의 값을 입력할 수 있고, 화살표를 누르면 어떤 뷰와 관계를 가질 것인지 선택할 수 있습니다. 두 뷰와 핀 메뉴를 선택하면 같은 너비와 높이를 설정할 수 있습니다.Pin 메뉴정렬(Align) 메뉴는 다른 뷰와의 가로, 세로 정렬과 같은 정렬 제약 조건들을 추가할 수 있습니다. 정렬하고 싶은 두 뷰를 선택하여 수직 정렬, 수평 정렬을 추가할 수 있습니다.Align 메뉴맨 오른쪽 메뉴인 오토 레이아웃 이슈 툴은 오토 레이아웃 관련된 이슈들을 해결하는 옵션들을 제공합니다. 오토 레이아웃을 현재 설정된 상태로 재설정하는 옵션들입니다. 상단은 선택된 뷰와 관련된 것이고, 하단은 모든 뷰와 관련된 것입니다.Resolve Auto Layout IssuesAlign 옆에 있는 Stack 메뉴는 복잡한 제약 조건 없이 오토 레이아웃의 기능을 쉽게 뷰를 배치할 수 있도록 스택에 쌓아서 묶어주는 스택뷰를 생성합니다. 하나의 묶음으로 만들 뷰들을 선택하여 Stack 메뉴를 선택하면 스택처럼 그룹으로 됩니다. 여기서 뷰 사이의 공간과 정렬들을 설정할 수 있습니다.Stack View로 만든 간단한 뷰, 오른쪽 메뉴에 정렬과 뷰 사이의 공간을 선택할 수 있는 곳이 있습니다.스토리보드에서 뷰를 배치하고 오토 레이아웃 메뉴들을 이용하면 아래 스크린샷과 같이 제약 조건들을 볼 수 있습니다. 어떤 값을 지정하는 것이 아닌 같다는 뜻의 “=“를 이용하여 제약 조건들을 표현합니다.스토리보드에서 많이 볼 수 있는 제약 조건들(Constraints)프로그램 상의 제약 조건들스토리보드에서만 제약 조건들을 설정할 수 있는 건 아닙니다. 프로그램 상에서도 제약 조건들을 설정할 수 있습니다. 스토리보드에서 뷰를 배치한 다음, 제약 조건들을 소스 파일과 연결해서 값을 지정할 수 있습니다. 주로 어떤 변화가 일어나면 제약 조건들을 다시 설정할 때, 프로그램 상에서 값을 다시 설정합니다. 예를 들어, 데이터가 있을 땐 해당 뷰를 보여줍니다. 만약 데이터가 없으면 그 뷰가 사라지면서 그 뷰와 관련되어 있는 다른 뷰의 제약 조건들을 다시 설정하여 화면에 재배치하는 것입니다.func hideTag(_ hide: Bool) {         if hide {             self.labelTag1.isHidden = true             self.labelTag2.isHidden = true             self.constLabelTag1Top.constant = 0.0             self.constLabelTag1Height.constant = 0.0         } else {             self.labelTag1.isHidden = false             self.labelTag2.isHidden = false             self.constLabelTag1Top.constant = 15.0             self.constLabelTag1Trailing.constant = 5.0             self.constLabelTag1Height.constant = 20.0         }     } 위 소스에서 hide 값에 따라 레이블의 숨김을 설정하고 레이블의 제약 조건의 값을 재설정하는 메소드가 있습니다. 데이터가 있으면 숨김을 해제하고 제약 조건들의 값을 설정하지만, 데이터가 없으면 레이블을 숨기고 제약 조건들의 값을 0으로 설정합니다.스토리보드에서 연결한 제약 조건들을 가지고 설정할 수 있는데, 프로그램 상에서 직접 제약 조건들을 생성하여 사용할 수 있습니다. 아래의 예시는 뷰의 높이를 60으로 설정하는 코드입니다.NSLayoutConstraint(item: self.testView, attribute: .height, relatedBy: .equal, toItem: nil, attribute: .notAnAttribute, multiplier: 1.0, constant: 60) Conclusion애플에서는 개발자가 다양한 해상도에 대응할 수 있게 오토 레이아웃이라는 시스템을 개발했습니다. 스토리보드에서 쉽게 화면에 뷰를 배치할 수 있고, 별다른 기능을 추가하지 않아도 다양한 아이폰 크기에 맞춰서 대응해줍니다. 오토 레이아웃을 이용하여 멋지게 모든 아이폰과 아이패드에 대응하는 앱을 개발해보세요! 곧 산호세로 떠나 설레는 마음으로 글을 마치겠습니다. 감사합니다. :)글김주희 사원 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발팀 #개발자 #개발환경 #업무환경 #인사이트 #경험공유
조회수 1791

제니퍼에서 새로운 가능성을 실험하라

제니퍼는 기업 내부망에 설치되는 On-Premise 방식의 소프트웨어 제품이다. 12년 넘게 국내 점유율 1위를 지키고 있는 제품이다보니 그만큼 고객의 요구사항도 다양하다. 대부분의 솔루션 회사는 제품 개발 초기에 단일 소스코드를 유지하며 개발하는 것을 추구했을 것이다. 하지만 비즈니스를 하다보면 특정 고객을 위한 기능을 추가할 수 밖에 없는 상황이 오게 된다. 보통 이런 경우에는 숨겨진 기능으로 개발하거나 고객사 별로 소스코드를 다르게 가져가기도 한다.기존의 제니퍼를 사용하는 고객들은 애플리케이션 모니터링만이 아닌 브라우저나 스마트폰 같은 클라이언트 영역과 데이터베이스 관리 시스템까지 연계된 통합 모니터링을 하고자하는 요구사항을 오랫동안 요청했었다. 모니터링 제품 간의 연계를 생각하면 약간 생소하게 생각할 수 있는데, 특정 데이터를 수집하고, 이를 가공하여 사용자에게 보여주는 단순한 매커니즘의 하나라고 생각하면 이해가 쉬울 것 같다.즉, 다른 종류의 데이터를 하나의 화면에서 볼 수 있는 통합 환경을 제공해야 한다. 그래서 최근에는 오픈소스로 배포되고 있는 엘라스틱서치나 상용 제품인 스플렁크 같은 로그분석 솔루션이 주목받고 있다. 하지만 위와 같은 제품들을 사용하여 제니퍼 성능 데이터와 연계하여 통합 환경을 구축한다는 것은 말처럼 간단하지 않다. 제품을 구매하고 학습하는 비용이 생각보다 크고, 통합을 위한 별도의 시스템이 갖춰져야 한다는 것은 고객의 입장에서 큰 부담이 된다. 이러한 부담을 덜어주기 위해서 제니퍼는 실험실이라 불리우는 확장 기능을 제공한다. 실험실은 워드프레스의 플러그인과 비슷한 성격을 가지며 코드 레벨 영역에서 확장될 수 있다. 실험실은 처음부터 다른 모니터링 제품과의 연계를 위해 개발된 것은 아니었다. 기획 초기에는 방대한 제니퍼 데이터를 좀 더 다양한 형태의 화면으로 제공하기 위함이었는데, 아무래도 실험적인 요소가 강하다보니 기존의 대시보드나 분석 같은 범주로 들어가기에는 완성도 측면이나 제니퍼의 방향성에 영향을 미칠 수 있다는 판단에 별도의 범주로 만들게 되었다.  실험실이란 이름은 구글 메일의 실험실에서 따온 것인데, 아직 개발 중인 실험적 기능을 위한 테스트 공간이고, 언제든지 변경 또는 중단되거나 사라질 수 있다. 그리고 모든 실험실 소스코드는 깃허브를 통해 공개하는 것이 기본 정책이다. 제니퍼소프트 깃허브에 가보면 실제로 다수의 실험실 프로젝트가 존재한다는 것을 알 수 있다. 그 중 한가지만 간략하게 소개하자면 사용자 관점의 웹 서비스 모니터링 제품인 아르고스와 연계하여 브라우저나 스마트폰 같은 사용자 관점의 성능 데이터를 제니퍼 트랜잭션 데이터와 연계하여 분석할 수 있는 기능을 제공한다. 실은 그동안 고객들에게 사용자 관점의 성능 모니터링에 대한 요구사항이 많았지만 제니퍼 본연의 영역과 확연하게 다른 측면이 있어서 요구사항을 수용하는데 많은 고민이 필요했다. 그래서 우리는 관련된 솔루션 업체를 찾았고, 상호 간의 비즈니스 협력을 통해 서로의 부족한 부분을 보완하기로 결정했다. 실험실은 제니퍼가 시도하고 있는 새로운 기능을 미리 체험해 볼 수 있을 뿐만이 아니라 오픈소스나 관련된 솔루션과의 연계를 하기 위한 화면을 제공할 수 있다. 뿐만 아니라 코드 레벨 영역에서 확장을 하는 것이다보니 제품의 커스터마이징 범위가 넓어진다. 즉, 화면에 대한 고객의 요구사항이 제니퍼의 방향성과 크게 다르더라도 많은 고민을 하지 않고 충분히 원하는 것을 구현해줄 수 있다. 과거와 달리 동일한 데이터라도 좀 더 시각적인 화면을 요구하는 요즘같은 시기에 실험실은 이러한 시도를 하기에 좋은 방법이 된다.제니퍼는 화면 단위의 확장 기능인 실험실 뿐만이 아니라 트랜잭션 데이터가 수집되는 시점이나 특정 이슈가 발생할 때, 생성되는 이벤트 데이터를 어댑터를 통해 전달받을 수 있다. 어댑터도 실험실과 마찬가지로 코드 레벨 영역에서 확장할 수 있다. 실시간으로 전달받은 트랜잭션 데이터는 별도의 스토리지에 저장하여 목적에 맞게 조회해서 사용할 수 있다. 특히 이벤트 관련 어댑터는 가장 많이 사용되는 제니퍼 확장 기능이며, 고객사의 관제시스템 연동에 주로 사용된다.  실험실은 어댑터와 달리 제니퍼 서버에서 전달받은 데이터를 처리만 하는 단순한 구조가 아니었다. 제니퍼와 독립적인 화면 구성에 필요한 모든 요소들을 갖춰야했기 때문에 고려해야할 것들이 너무 많았다.  그럼에도 불구하고 만들게 된 이유는 단순히 필자의 편리함을 위해서였다. 평소에 데이터 시각화에 관심이 많았기 때문에 이미 존재하는 방대한 제니퍼 데이터를 다양한 방식으로 표현하기 위한 시도를 했었다.하지만 상용 솔루션인 제니퍼에 테스트 코드를 필자 임의로 추가해서 배포하거나 숨긴 기능으로 만들기에는 꽤 부담스러운 일이었다. 그렇다고 별도의 소스코드로 다르게 가지고 가기에는 관리 측면에서 어려움이 있다. 그렇기 때문에 기존의 제니퍼 소스코드를 참조만 하되 서로 독립적으로 개발하는 형태를 생각하게 되었다. 이렇게 필자의 편리함을 위해 시작한 실험실이지만 오픈소스나 다른 솔루션과의 연동을 위한 화면을 제공하고, 새로운 제니퍼 기능에 대한 비전을 시사하거나 고객의 피드백을 수용하는 용도로 확장되었다.소프트웨어 개발을 하다보면 제품이 추구하는 방향과 달라서, 또는 구현은 가능하지만 소모되는 리소스 비용이 부담이 될 경우, 그리고 특정 사용자를 위한 특화된 기능을 구현할 때, 모두가 만족할만한 기능이라는 확신이 없다면 제대로 진행하기가 어려운게 현실이다. 사실 새로 시도하는 기능은 시기와 때에 따라 앞에서 고려했던 것들과 다르게 평가되는 경우도 있다.그래서 아무리 작은 아이디어라도 시도를 해보는 것 자체만으로도 큰 의미가 있으며, 새로운 가능성을 발견하는 계기가 될 수 있다. 다만 현재는 제니퍼 기능 확장에 대한 기반 정도만 갖춰진 시작 단계라서 관련된 API 문서나 개발 도구에 대한 지원이 미흡한 것이 아쉬움으로 남는다. 다음 편에서는 자바 개발자 대상으로 실험실을 직접 구현하는 방법에 대해 알아볼 것이다.
조회수 1048

컴공생의 AI 스쿨 필기 노트 ⑥인공신경망

인공지능, 머신러닝, 딥러닝이번 6주차 AI 스쿨에서는 딥러닝의 가장 기초적인 부분을 배웠어요. 인공지능과 머신러닝, 그리고 딥러닝을 많이 들어보긴 했는데 이 셋의 차이는 무엇일까요?인공지능이라는 개념은 1956년 미국 다트머스 대학에 있던 존 매카시 교수가 개최한 다트머스 회의에서 처음 등장했고 최근 몇 년 사이 폭발적으로 성장하고 있는 중이에요. 1956년 당시 인공지능의 선구자들이 꿈꾼 것은 최종적으로 '인간의 지능과 유사한 특성을 가진 복잡한 컴퓨터'를 제작하는 것이었죠. 이렇듯 인간의 감각, 사고력을 지닌 채 인간처럼 생각하는 것을 인공지능이라고 해요.인공지능은 위 세 개념 중 가장 큰 개념이에요. 머신러닝은 일반적으로 사람들이 이야기하는 인공지능, 즉 머신러닝에 기반한 인공지능을 말하는데요. 인공지능을 구현하는 구체적인 접근 방식이라고 할 수 있어요.머신러닝에는 linear regression, logistic regression 등의 여러 알고리즘이 있는데요.  그중 학습에 사용되는 모델을 딥러닝이라고 해요. 즉 딥러닝은 완전한 머신러닝을 실현하는 기능이라고 볼 수 있어요. 이러한 딥러닝의 등장으로 인해 머신러닝의 실용성은 강화됐고 인공지능의 영역은 확장됐다고 해요.인공 신경망(Neural Network)오늘 수업의 핵심인 인공 신경망(Neural Network)은 어떻게 만들어졌을까요?뉴런의 구조이것은 우리 몸에 존재하는 신경세포인 뉴런이에요. 뉴런은 전기적인 신호를 전달하는 특이한 세포인데 뇌는 뉴런의 집합체라고 할 수 있어요. 뉴런은 수상 돌기(dendrites, input)에서 신호를 받아들이고 축색 돌기(axon terminals, output)에서 신호를 전송해요. 신호가 전달되기 위해서는 일정 기준(임곗값 : threshold) 이상의 전기 신호가 존재해야 해요. 이 신호들의 전달을 통해서 정보를 전송하고 저장해요.이런 신경세포로 이뤄진 신경망 시스템을 위의 그림처럼 표현할 수 있어요. 이처럼 인공신경망은 사람 몸속의 신경들을 모방해서 만든 시스템이에요.위의 식처럼 뉴런을 수학적으로 표현할 수 있는데요. 입력 값들(X)에 가중치를 두어(W) 값 (f(x))을 구하고 그 값과 임계치와의 관계를 활성함수(active function)*로 판단하여 결괏값을 출력하게 돼요.( * 활성함수는 인공신경망의 개별 뉴런에 들어오는 입력신호의 총합을 출력 신호로 변환하는 함수로 비선형 함수(non-linear function)를 씁니다.**)이때 활성함수는 뉴런에서 임곗값을 넘었을 때만 출력하는 부분을 표현한 것으로 sigmoid 함수, Relu 함수 등 여러 방식이 있어요.인공 신경망의 구조인공 신경망 구조는 위의 그림처럼 나타낼 수 있어요. 인공 신경망 구조는 입력층(input layer), 은닉층(hidden layer), 출력층(output layer)으로 이루어져 있어요. 위의 그림은 그 구조에 의해 3-layer Neural Network 또는 2-hidden-layer Neural Network라 부를 수 있는데요. 3-layer Neural Network는 3개의 층을 가지는 인공신경망이라는 뜻이고, 위 그림에서는 은닉층1, 은닉층2, 출력층이 해당되겠죠. 인공 신경망에 입력층과 출력층은 항상 존재하기 때문에 은닉층의 개수만을 고려하여 부르기도 해요. 위 그림에서는 은닉층이 2개 있기 때문에 2-hidden-layer Neural Network라고 부를 수 있어요. 전파(Propagation)이번에는 실제로 학습하는 과정인 인공신경망의 알고리즘에 대해 알아볼게요. 순전파(Forward Propagation)와 역전파(Backward Propagation)가 있어요.순전파는 입력값에서 출력값으로 가중치를 업데이트를 하고 활성화 함수를 통해서 결괏값을 가져오는 것을 말해요. 인공신경망이 설계된 정방향(input → hidden → output)으로 데이터가 흘러가기 때문에 순전파라고 해요. 말 그대로 입력값을 앞쪽으로 보낸다고 생각하면 돼요.역전파는 출력값을 통해서 역으로 입력값 방향으로 오차를 다시 보내며 가중치를 재 업데이트하는 것이에요. 출력값에서 계산된 오차에 가중치를 사용해 바로 이전 층의 뉴런들이 얼마나 오차에 영향을 미쳤는지 계산해요. 결과에 영향을 많이 미친 뉴런일수록 더 많은 오차를 돌려줘요.개념을 코드에 적용하기NumPy로 구현된 Neural Network(이하 NN)의 작동 방법을 살펴볼게요. NN은 총 2개의 레이어로 이루어져 있어요. 이번 과제에서는 입력 x가 들어왔을 때, 레이블에 따라 예측치가 1로 수렴하는지 알 수 있는 인공신경망을 구현하는 것이 목적이에요.Neural Network다음 코드는 simpleNueralNet() 클래스를 나타내는 코드예요. simpleNueralNet()은 두 개의 레이어로 구성된 NN이에요.N, D_in, H, D_out = 64, 1000, 100, 10- N은 batch size, 즉 한 번에 처리할 수 있는 데이터 사이즈를 말해요. - D_in은 입력값 차원에 쓰이는 값으로 1000을 할당해요.- H는 은닉층 차원에 쓰이는 값으로 100을 할당해요.- D_out은 출력값 차원에 쓰이는 값으로 10을 할당해요.아래 코드를 통해서 랜덤 입력과 출력 데이터를 만들어요.x = np.zeros((N, D_in))     #1  x.fill(0.025)                         #2y = np.ones((N, D_out))   #31. np.zeros() 함수를 사용하여 (64, 1000)의 차원을 갖는 0인 행렬을 만들어요.2. fill() 함수를 통해 x 안의 모든 0을 0.025로 바꿔요.3. np.zeros() 함수를 사용해 (64, 10)의 차원을 갖는 0인 행렬을 만들어요.아래는 랜덤 값을 갖는 가중치(weight)들을 초기화하는 코드예요. w1은 1000, 100 차원의 랜덤 값을 갖는 행렬로, w2는 100, 10차원의 랜덤 값을 갖는 행렬로 만들어요.w1 = np.random.randn(D_in, H)   w2 = np.random.randn(H, D_out)learning_rate는 학습 속도를 의미해요. 아래는 단계별로 움직이는 학습 속도를 1e-6으로 정의하는 코드예요.learning_rate = 1e-6이제 5000번의 순전파를 할 거예요.h = x.dot(w1)     h_relu = relu(h)  y_pred = h_relu.dot(w2)h는 은닉층에 전달할 값이에요. x와 w1을 행렬곱한 값을 가져요.활성 함수 relu에 h를 넣어서 계산해요.y_pred는 예상되는 출력값이에요. relu로 계산된 h_relu와 가중치 w2를 행렬곱한 값이에요.아래는 순전파로 얻은 y_pred에서 진짜 y를 뺀 값을 제곱한 것의 합을 구해 손실 값(loss)을 구하는 코드예요. print(loss) 코드로 손실을 확인할 수 있어요.loss = np.square(y_pred - y).sum()순전파 후 역전파를 이용해 손실에 대한 가중치 w1과 w2의 gradients를 계산하여 update 할 거예요.grad_y_pred = 2.0 * (y_pred - y)              #1grad_w2 = h_relu.T.dot(grad_y_pred)    #2grad_h_relu = grad_y_pred.dot(w2.T)    #3grad_h = grad_h_relu.copy()                    #4grad_h[h < 0>grad_w1 = x.T.dot(grad_h)                         #61. 순전파로 얻은 y_pred에서 진짜 y값을 뺀 값에 2.0을 곱하여 grad_y_pred를 구해요.2. grad_w2는 순전파에서 y_pred = h_relu.dot(w2) 식을 사용했으므로  h_relu.T.dot(grad_y_pred) 로 구해요. h_relu가 반대로 곱해지기 때문에 T를 이용하여 shape을 바꿔줘야 해요.3. grad_h_relu는 방금 위에서 사용한 y_pred = h_relu.dot(w2)을 이용하여 grad_y_pred.dot(w2.T) 로 구해요. 이번에는 w2 shape의 반대를 grad_y_pred에 곱해줘야 해요.4. 순전파에서 h_relu = relu(h)였는데요. 역전파에선 grad_h와 grad_h_relu가 같기 때문에 copy() 함수로 그대로 복사해요!5. 0보다 작은 h는 0으로 만들어요.6. 가중치 w1의 값인 grad_w1은 순전파의 h = x.dot(w1)와 반대로 x.T.doT(grad_h) 곱해요. 역전파는 순전파의 식에서 이항한다고 생각하면 조금 더 쉽게 이해할 수 있을 것 같아요. 이항한 값은 .T를 붙여서 표현한다고 생각하면 될 것 같아요.아래는 가중치를 재업데이트하는 코드예요.w1 -= learning_rate * grad_w1 w2 -= learning_rate * grad_w2 과제1을 통하여 NN을 알아보았는데요. 복잡하지만 순전파와 역전파를 알고 있다면 많이 어렵지는 않은 것 같아요. 과제 2는 정확도를 95% 이상으로 만들어보는 과제인데 여러 가지 방법을 동원해서 풀어보는데 생각보다 쉽지가 않아요. ^^;이번 수업시간에 배운 딥러닝의 기초인 신경망은 굉장히 중요한 개념이라고 해요. 신경망을 기반으로 한 딥러닝을 강화하여 안면인식을 가능하게 하거나 저장된 데이터를 정확하게 인식하고 분류할 수 있는 기기들도 만들어지고 있어요. 이처럼 AI는 점진적으로 활용 범위가 넓어지고 있기 때문에 이 수업을 통해 쌓은 AI 지식을 마음껏 뽐낼 수 있는 날이 왔으면 좋겠어요!** 왜 활성함수로 비선형 함수를 쓸까요?선형함수인 h(x)=cx를 활성함수로 사용한 3-layer 네트워크를 생각해봐요. 이를 식으로 나타내면 y(x) = h(h(h(x)))가 되는데요.  이는 y(x) = c3x와 같습니다.  이렇게 활성함수로 선형함수를 사용하면 은닉층을 사용하는 이점이 없어요.* 이 글은 AI스쿨 - 인공지능 R&D 실무자 양성과정 6주차 수업에 대해 수강생 최유진님이 작성하신 수업 후기입니다.
조회수 3469

Good Developer 1 | 좋은 개발자의 5가지 기준

좋은 개발자 소개해주세요.많은 기업 관계자분들을 만나면서 항상 듣는 말이다. 스타트업에 있어서 인재 채용이 항상 문제기는 하지만, 이것은 비단 스타트업에만 국한되지는 않은 것 같다. 지난 코드스테이츠 데모데이 때는 카카오와 SK텔레콤 같은 대기업과 더불어 스마트스터디, 데일리호텔 기업 관계자분도 참여해 주셨다. 이것을 보면 대기업이든, 규모가 꽤 있는 기업이든 좋은 개발자를 찾는 것은 어려운 것 같다.기업들이 이런 말을 하는 것을 보면 개발자를 찾는 수요는 빠르게 증가하고 있는데, 기업들의 입맛을 맞추면서 개발을 할 수 있는 '좋은 개발자'는 많이 없는 듯하다. 이런 상황에서 코딩 교육 스타트업 코드스테이츠가 많은 기업 관계자분과 개발자분들을 만나고 코딩 교육을 하면서 느낀 점을 통해 어떤 개발자가 좋은 개발자인지에 대하 포스팅을 하려 한다.이것을 통해 좋은 개발자라는 개념을 구체화할 것이다. 좋다는 개념을 명확히 해서 어떤 것들이 좋아야 좋은 개발자인지, 또 소위 말하는 좋은 개발자가 되기 위해서 어떤 노력들을 해야 하는지 글로 풀어갈 것이다. Good Developer 시리즈 첫 번째 포스팅, 좋은 개발자의 5가지 기준좋은 개발자의 5가지 기준좋은 개발자에 대한 생각은 개인마다 또 기업마다 다를 것이다. 아래의 기준들은 많은 기업 관계자분들과 개발자분들을 만나고, 코드스테이츠가 교육을 하면서 느낀 좋은 개발자의 기준들이다. 아래의 조건들이 좋은 개발자의 충분조건이라고 할 수는 없지만, 필요조건이라고는 할 수 있을 것 같다. 코드, 생산성, 커뮤니케이션, 학습, 관리 능력 이 5가지 관점을 통해 어떤 개발자가 좋은 개발자인지 알아보자.1. 코드의 리딩과 라이팅좋은 코드를 짤 수 있는 역량은 좋은 개발자가 되기 위한 필수적인 기준이다. 하지만, 대부분의 개발자들에게 어떻게 하면 좋은 코드를 짤 수 있는지 물어보면 쉽게 답하는 사람은 많지 않다. 그래서 구체적으로 어떤 능력이 있어야 좋은 코드를 짤 수 있는지, 코드의 리딩과 라이팅의 관점에서 살펴보고자 한다.많은 주니어 개발자들이 처음 회사에 입사해서 해야 하는 것 중 하나는 코드의 리딩(reading)이다. 자신이 처음으로 개발을 시작하지 않는 이상 이미 개발된 소스들을 보고 어떻게 동작하는지 또 변수, 함수, 메서드들의 네이밍(Naming)은 어떤 식으로 하고 있는지 파악해야 한다.코드의 리딩 능력은 업무 환경에 적응하는 능력과는 별개로 자신의 업무를 파악하고 또 다른 사람과 커뮤니케이션할 때 매우 중요하다.  그리고 코드를 잘 읽으면 어디가 잘못되어 있는지, 어떻게 고쳐야 하는지 쉽게 파악할 수 있다. 그리고 이것이 코드를 잘 짤 수 있는 역량으로도 직결된다.리딩 능력과 더불어서 중요한 것이 바로 코드 라이팅(writing) 능력이다. 라이팅은 코드를 잘 짜는 것과 별개로 네이밍(Naming)을 잘하고 이해하기 쉽게 코드를 쓰는 것을 의미한다. 코드 리딩 능력이 뛰어나지 않은 개발자라도 잘 정돈되고 직관적으로 네이밍 되어 있는 코드들을 보면 쉽게 읽을 수 있다.코드 라이팅 능력은 협업하고 코드를 구조화하는 과정에서 매우 중요하다. 코드 라이팅 능력이 떨어진다면 다른 사람이 자신의 코드를 이해하는데 오랜 시간을 소모하게 만들 뿐만 아니라 나중에 가서는 자신조차 자신의 코드를 이해하는데 오랜 시간이 걸릴 수 있다. 이렇기 때문에 안정된 코드, 돌아가는 코드를 짜는 것과 별개로 다른 사람과 자신이 이해하기 쉬운 코드를 짜는 능력은 매우 중요하다.좋은 코드를 짜기 위해서는 다른 사람이 어떤 코드를 짰는지 알아야 하고 내 코드를 다른 사람들이 쉽게 읽을 수 있도록 해야 한다. 개발자는 결국 코드로 말한다. 코드 라이팅 능력이 떨어진다는 것은 코드로 '잘' 말하지 못한다는 것을 의미한다. 또 코드 리딩 능력이 떨어진다는 것은 다른 개발자가 코드로 말하는 것을 '잘' 듣지 못한다는 것을 뜻한다. 좋은 개발자의 조건으로 항상 따라붙는 좋은 코드를 짜는 방법은 코드 리딩과 라이팅 능력이 선행되었을 때 가능할 것이다.2. 빠른 생산성좋은 코드를 짜는 것이 좋은 개발자가 되는데 중요한 조건이기는 하지만 유일한 조건은 아니다. 개발은 필연적으로 시간과의 싸움이다. 그래서 좋은 개발자의 조건 중 하나가 바로 생산성이다. 우리나라의 많은 개발자들이 야근에 시달리는 것도 결국은 생산성과 연결되어 있다.(물론 조직문화도 크게 작용한다. 그리고 CEO의 마인드도...)안정적이고 완벽한 코드를 짜는 것도 중요하지만 때로는 시간과 타협해서 돌아가는 코드를 짜는 것만으로 만족해야 할 때가 있다. 특히, 리소스가 부족한 스타트업에서는 시간이 생명이다. 환상적인 코드를 짤 수 있는 개발자라 할지라도 그 시간이 천년만년 걸린다면 당장 돌아갈 수 있는 코드를 돌릴 수 있는 개발자 보다 좋은 개발자라고 하기 힘들 것이다.투입한 시간 대비 얼마만큼의 코드 생산성이 나오는가? 시간이 생명인 많은 스타트업에서는 안정적이고 완성도 높은 코드를 짜는 개발자보다 생산성 높은 개발자를 선호할 가능성이 크다. 첫 번째 기준인 코드 리딩과 라이팅 능력에서 자신이 없다고 걱정할 것 없다. 자신의 코드 생산성이 좋다면 좋은 개발자로서의 중요한 기준을 하나를 충족한 셈이니까.3. 원활한 커뮤니케이션위의 두 가지 기준이 개발 자체에 대한 능력이었다면, 커뮤니케이션 능력은 다른 사람과 협업하는 능력에 대한 기준이다. 혼자서 개발하는 개발자는 극히 드물다. 코딩 = 개발이 아니다. 코딩은 개발의 한 과정이며 개발을 할 때에는 다른 구성원들과 수많은 상호작용을 해야 한다. 왜냐하면 개발자는 결국 사람들과 일하기 때문이다.그래서 많은 기업들이 개발자를 채용하는 기준에서 '원활한' 커뮤니케이션을 내세운다. 개발과 관련 없을 것 같은 커뮤니케이션은 사실 엄청나게 중요하다! 커뮤니케이션 문제로 발생하는 비용 문제(단순히 돈이 아니다.)는 상당하다.어느 정도 개발 경험이 있는 사람은 누구나 공감할 수 있을 것이다. 같이 일하고 싶은 개발자와 아닌 개발자가 있다는 사실을 말이다. 단지 사람이 좋고 나쁨을 떠나서, 대화를 하는데 숨이 턱 막히는 사람이 있고 대화를 하면 할수록 막혔던 부분이 풀리거나 새로운 아이디어를 떠오르게 만다는 사람이 있다.원활한 커뮤니케이션은 사실 어느 직군에나 해당되는 말이지만, 개발처럼 한 가지 테스크에 여러 사람이 집중적으로 달려드는 업무에 있어서 그 중요성이 더 부각된다. 당신은 원활한 커뮤니케이션 능력을 가지고 있는가?4. 업무 관리, 사람 관리 능력업무 관리와 사람 관리는 사실 개발자 직군에 국한된 역량이 아니라 모든 직군에서 필요로 하는 역량이다. 개발에 치중해야 할 개발자가 좋은 개발자가 되기 위해 이런 것들까지 신경 써야 할 이유는 무엇일까? 위에서도 언급했지만, 개발 = 코딩이 아니다. 개발을 한다는 것은 테스크를 나눠 할당하고 기간에 맞춰 완성시키는 일이다. 이 과정에서 필요한 상호작용, 업무 관리, 생산성이 모두 개발의 과정이다.업무 관리와 사람 관리를 잘 하는 사람은 막말로 그냥 일 잘 하는 사람이다. 좋은 코더가 아니라 좋은 개발자가 된다는 것은 일을 잘하는 사람이 되어야 한다는 뜻이다. 업무 관리는 테스크를 나누고 할당하고 데드라인을 설정하는 일이 아니더라도 나에게 주어진 테스크에 대해 스스로 관리하는 능력까지 포함한다. 결국 자신의 업무 관리를 잘하는 사람은 생산성에서 두각을 나타내리라.주니어 때 좋은 개발자로 인정받고 연차가 쌓이면 시니어가 되고 관리자 직급으로 올라갈 가능성이 크다. 이때 주니어 때 좋은 개발자였다고 시니어 개발자일 때도 좋은 개발자일 거란 보장은 없다. 시니어가 돼서도 좋은 개발자가 되고 싶다면 업무 관리와 사람 관리하는 능력이 필수적이다. 특히, 한국에서는 개발자의 종착지는 관리자일 정도로 연차가 많은 사람이 개발을 하고 있는 경우는 극히 드물다. 이런 상황에서 좋은 개발자로 인정받아 마지막까지 살아남기(?) 위해서는 이 두 가지 능력이 필수적이다.5. 지속적인 학습위에서 제시한 네 가지 능력이 모두 없다고 실망할 것 없다. 좋은 개발자가 되기 위하 마지막 조건, 지속적인 학습이 있기 때문이다. 지속적인 학습은 좋은 개발자가 계속해서 좋은 개발자로 남을 수 있게 만들어주고 일반 개발자가 좋은 개발자가 될 수 있게 만들어주는 중요한 조건이다.개발은 빠르게 변한다. 모든 직군 중에서 가장 학습을 많이 해야 하는 직군을 뽑으라면 자신 있게 개발자라 말할 수 있다. 빠르게 변화하는 환경 속에서 지금 좋은 개발자라 해서 몇 년 후에도 좋은 개발자라고 단정 지을 수 없다. 개발자는 숙명적으로 끊임없이 배워야만 한다. 좋은 개발자가 되기 위해서는 더더욱.지속적으로 배운다는 것이 단순히 새로운 것을 익히고 지식의 지평을 확대해 나간다는 것만을 의미하지 않는다. 지금 현재 소위 나쁜 개발자(코드 퀄리티, 생산성, 커뮤니케이션, 관리능력 모두 떨어지는 개발자)가 블록체인 신기술을 배운다고 해서 좋은 개발자가 되겠는가? 즉, 코딩 지식에 대한 고민뿐만 아니라 위에서 언급한 네 가지 기준에 대한 학습도 필요하다.학습에 측면에서 많은 분들이 간과하고 있는 것이 지식의 질이다. 단순히 지식의 양적인 측면에만 매몰되면 깊이 있는 지식을 얻기 힘들기 때문이다. 물론, 현재의 시대적 흐름을 읽고 최신 트렌드 기술을 습득하는 것은 중요하다. 하지만 그보다 더 중요한 것은 자신이 알고 있는 지식들을 깊이 있게 아는 것이다. 끊임없는 학습, 그리고 깊이 있는 학습만이 좋은 개발자를 계속해서 좋은 개발자로 만들어 준다.좋은 개발자를 위해지금까지 좋은 개발자를 위한 5가지 조건에 대해 알아 보았다. 코드 리딩과 라이팅, 생산성, 커뮤니케이션, 사람과 업무 관리 그리고 지속적인 학습. 이외에도 중요한 조건들이 많지만 많은 개발자를 만나고 교육해오면서 가장 필요하다고 생각하는 5가지 조건을 적어보았다.개발자가 되는 것은 쉽지 않다. 좋은 개발자가 되는 것은 더더욱 쉽지 않다. 좋은 개발자를 양성하기 위해 노력하는 교육 스타트업으로써 어떤 개발자가 좋은 개발자인지 파악하기 위해 항상 노력 중이다. 이 노력을 코드스테이츠만 알고 있는 것이 아니라 다른 분들에게도 공유드리고 싶다. Good Developer 포스팅을 통해 어떤 개발자가 좋은 개발자인지 또 좋은 개발자가 되기 위해서는 어떻게 해야 하는지 이야기할 예정이다. 좋은 개발자의 길은 멀지만 Good Developer를 통해 한층 쉽게 걸어갈 수 있었으면 좋겠다.
조회수 1803

핀다(Finda)의 '따끈따끈한' 신입개발자 남은우:

핀다(Finda) 개발자 남은우님의 스타트업 생생LIFE 입니다원문은 링크를 통해 확인하실 수 있습니다!안녕하세요! 금융상품 추천서비스 '핀다'에서 프론트 엔드 웹 개발자로 근무하고 있는 남은우라고 합니다~ ^^저는 입사한지 6개월차가 되는 따끈따끈한 신입 개발자입니다. 올해 처음 웹 개발을 배우기 시작해서 인턴으로 들어오기까지 많은 것을 경험했는데요~ 제 이야기를 통해서 스타트업에서 일하기를 희망하시는 분들에게 조금이나마 도움이 되었으면 좋겠습니다. :)<핀다 개발자 남은우, 출처 : 핀다>스타트업에 지원하게 된 이유대학교 4학년 마지막 학기, 저는 아직 졸업하고 싶지 않은 철 없던 마음에... 휴학 할 명분(?)을 만들기 위해서 여기 저기 대외 활동을 찾고 있었어요. 그러던 중 우연히 지원한 소프트웨어 개발자 양성 과정에 운 좋게도 덜컥!! 합격해 버렸습니다. 6개월간 진행된 팀 프로젝트를 위해 배운 웹 개발에 흥미가 생겨서 본격적으로 개발 공부를 시작했는데요. 시간이 지날수록 개발 능력은 조금씩 늘어갔지만, 불안감도 나날이 커져갔습니다. 그 이유는 바로 '실무 경험'이 없었기 때문이었죠.제가 배운 개발 능력을 발휘할 수 있는 곳을 찾던 중에 스타트업 인턴즈를 만나게 되었습니다. 스턴에서 진행한 4주간의 코칭은 사회 초년생인 저에게 어찌보면 '치트키' 같은 시간이었어요. 자신에게 맞는 스타트업을 찾기 위해 3가지 핵심가치를 설정하거나, 면접 필수 요소, 기업분석 방법까지!!! 코치님의 여러가지 조언과 꿀팁들 덕분에 저에게 꼭 맞는 회사를 선택할 수 있었던 것 같아요.스타트업에서의 경험입사 첫째 날, 인턴임에도 불구하고 서비스 개발에 바로 투입(?) 되었습니다. 처음 제가 맡은 업무는 코드 리팩토링이었는데요. 이미 작성되었던 코드를 새로운 아키텍쳐로 변경하면서 구조에 대한 이해도를 높일 수 있었어요. 이 경험을 바탕으로 이후에 새롭게 추가되는 카테고리 개발이나 다른 채널들의 신규 소개 페이지 등을 빠르게 만들 수 있게 되었습니다.가장 좋았던 것은 커뮤니케이션이었는데요. 기획, 디자인, 개발의 유기적인 소통이 중요했기 때문에 개발자임에도 기획 미팅에 들어가거나, 디자인에 대한 의견을 낼 때가 많았습니다!! 팀원들 또한 열린 마음으로 저의 의견을 적극적으로 받아들여 주셨기 때문에, 새로운 아이디어를 낼 때가 많았던 것 같아요. 그리고 개발뿐만 아니라 여러 경험을 통해 서비스가 완성되는 과정을 지켜보는 것 또한 큰 자산이라고 생각했어요.<핀다 개발자 남은우, 출처 : 핀다>스타트업에 입사를 희망하는 분들에게스타트업은 대부분 바로 업무에 투입가능한 사람을 원하는 경우가 많아요. 따라서 지원하기 위해 어느 정도 준비가 필요하겠죠? 입사 후에 모든 일을 척척 수행할 수 있는 사람이면 좋겠지만, 전문적이지는 않더라도 자신이 지원하게 된 회사가 어떤 서비스를 제공하는지 파악하거나, 해당 서비스를 사용해보는 것이 좋아요.요새 드라마나 영화에 종종 스타트업 이야기들이 많이 나오는 것 같아요. 하지만 매스컴에 비춰지는 것이 자유분방하고 즐거운 모습뿐인 것 같아 조금 아쉬운 마음이 들기도 합니다. 회사에 따라 다르겠지만, 스타트업 특성상 조금 더 빠르게 달려야 할 때가 많거든요. 대신 남들보다 조금 더 빠르게 성장할 수 있다는 것!!! 입사를 희망하시는 여러분도 자신과 맞는 회사를 찾고, 꼭 특급 성장의 기회를 잡으셨으면 좋겠습니다.#핀다 #입사후기 #팀원소개 #팀원인터뷰 #팀원자랑 #기업문화 #조직문화
조회수 1430

[인공지능 in IT] 서로 다른 우리, 대화할 수 있을까?

설연휴 동안 그간 못 봤던 밀린 TV 프로그램들을 맘껏 즐기며 여유로운 시간을 보냈다. 그 중에서도 여러 분야의 전문가를 초빙해 특강을 해주는 tvN의 '어쩌다 어른'을 보기 시작했다. 몇 년 전 언어인문학을 주제로 한 조승연 작가님편을 보니 새삼 현재 대한민국이 처한 현실을 피부로 느끼게 되더라.< tvN>강연에서 가장 심도있게 다룬 부분은 대한민국 영어교육의 현실이다. 초등학교부터 영어 수업을 듣고, 심지어 말도 제대로 떼기 전인 유아기부터 영어를 주입시키는 것이 어느새 자연스러운 일이 되어버렸다. 하지만, 10년, 20년 이상 영어 교육을 받았는데도 막상 영어로 문서 작업을 하거나, 외국인이 길을 물어보면 식은땀을 흘리는 이유는 무엇일까? 어째서 한국에서는 영어를 제대로 하려는 노력보다, 영어를 아는 노력을 하고 있는 것일까?재미있는 사실은 우리만 영어를 배우려고 애먹는 것이 아니다. 미국인이 한국어를 배울 때에도 비슷한 현상을 겪는다. 강연 중 'FSI(The Foreign Service Institute)'에서 미국인들이 다른 나라 언어를 얼마나 공부해야 소통할 수 있는지에 대한 연구 자료를 공개했다. 언어별 Level 1부터 Level 5까지 다섯 가지 난이도로 구분 되어있고, 이에 따른 총 필요시간으로 구성되어 있는 연구에서, 한국어는 일본어, 중국어와 함께 소통하기 까지 총 2,200시간을 공부해야 하는 Level 5군에 속해 있었다.즉, 전세계 7,000여 개가 넘는 언어 중 한국어는 영어와 문장구조가 완전히 다르기 때문에, 24시간 내내 공부해도 90일 넘게 공부해야 한다는 것. 이렇듯 모국어가 아닌 다른 언어를 배우기 위해서는 어마어마한 시간과 노력이 필요하다. 만약, 단순히 언어를 알기 위해 배우는 것보다, 소통하기 위해 배운다면 흔히들 말하는 'ROI(Return on Investment)'를 더 높일 수 있자 않을까.출처: 동아일보소통을 위한 언어 학습은 비단 사람에게만 해당되는 것이 아니다. 기계와 사람의 소통 역시 요즘과 같은 인공지능 시대에서는 빼놓을 수 없는 부분이다. 몇 년 전부터 업계에서는 '챗봇(Chatbot)' 열풍이 불고있다. 챗봇은 대화(Chat)와 로봇(Robot) 두 단어를 합친 신조어로서, 각종 앱이나 웹을 기반으로 문자를 통해 사용자의 의도를 파악해 대화할 수 있는 인공지능 기계다. 여기에는 '자연어 처리(Natural Language Processing, NLP)', '자연어 이해(Natural Language Understanding, NLU)', '머신러닝(Machine Learning)' 등 수많은 기술이 접목되어 발전 중이다. 현재 챗봇은 나날이 진화하며, 텍스트를 텍스트로만 처리하는 것을 넘어, '음성으로 변환(Text-To-Speech, TTS)'시키거나, '음성을 텍스트로 변환(Speech-To-Text)'시키는 등 다양성에 있어 점점 넓은 범위에 적용되고 있는 추세다.< 출처: Understanding Natural Language Understanding, Bill MacCartney >글로벌 챗봇 시장은 매년 큰 폭으로 성장하고 있는 추세이며, 여러 사업 분야에 걸쳐 사용되고 있다. 북미의 시장조사기관 'Credence Research' 조사에 따르면, 글로벌 챗봇 시장은 2015년부터 2023년까지 연평균 35% 성장할 것으로 예상된다. IT솔루션 기업 'MindBowser'가 조사한 결과, 95%의 기업이 챗봇 활용성에 대해 긍정적인 반응을 보였으며, 고객응대(93%)부터, 마케팅(61%), 상품 주문(47%), 소셜 미디어(32%) 등 사업 분야에서 활용되는 용도 역시 다양한 것으로 밝혀졌다.챗봇은 어떠한 프로세스를 통해 실제로 작동하는지 살펴보기 위해서 사내 엔지니어의 도움을 받았다. 스켈터랩스에서 대화형 인공지능 프로젝트팀에 있는 정태형 엔지니어가 메신저를 통한 간단한 시범 사례를 스크린샷으로 찍어 보여주었다.< 인공지능 메신저 사례, 출처: 스켈터랩스 >여행지를 자동으로 추천해주는 엡에 적용할 수 있는 챗봇과의 대화다. 사용자가 "여행을 가고 싶다"고 말하자 자동으로 '카이트봇'이 반응하고, 여행 기간과 테마를 물어본다. 여기서 사용자가 "여행 기간"을 말하자 챗봇은 자동으로 '3월'과 '7일'을 인식, 이전 질문에서 대답하지 않은 테마에 대해 질문한다. 이렇게 사용자와 챗봇 사이에서 대화를 자연스럽게 주고 받을 수 있는 것은 대화의 구성 요소 중 '의도(Intent)', '개체(Entity)', '맥락(Context)'이 중요한 역할을 한다. 이를 간단히 살펴보도록 하자.의도(Intent)는 사용자가 어떠한 의도로 대화를 하는지를 의미한다. 위 스크린샷의 경우, 여행을 가는 것'이 의도라 할 수 있다. 예를 들어, "여행 가고 싶어"가 아닌 "여행 가볼까?"로 입력하더라도 - 미리 여행을 가는 것에 대한 자연어 기반 패턴이 'Intent Classifier'에 입력되어 있는 상태라면 - 이를 '사용자가 여행을 가고 싶구나'라는 의도로 이해할 수 있는 것이다.개체(Entity)는 사용자의 의도 중에서 실체가 될 수 있는 변수를 말한다. 개체는 사용자가 입력한 문장에서 특정한 변수가 달라질 때 사용된다. 위 스크린샷의 경우, '3월 3일', '해변', '일주일' 등과 같이 주로 명사 형태로 구성된 문장에 들어가는 구성 요소를 말한다.문맥(Context)은 이전 대화를 자연스럽게 이어갈 수 있도록 처리할 수 있는 기능이다. 예를 들어, 사용자가 챗봇에게 "가수 빅뱅의 프로필을 검색해달라"고 요청했다. 그리고 빅뱅의 노래를 듣기 위해 "거짓말 틀어 줘"라고 명령하면, 기존에 빅뱅이라는 가수에 대해 대화하고 있던 문맥을 인식해 God의 거짓말이 아닌 빅뱅의 거짓말을 재생하는 것이다.이 외에도 챗봇에는 '말뭉치(Utterance)', '시나리오(Scenario)', '슬롯채우기(Slot Filling)' 등 다양한 구성요소를 통해 대화를 이어나갈 수 있다. 물론, 아직 100% 인간과 대화하는 기술까지 이르지는 못했다. 하지만, 우문현답하지 않고 사용자 의도를 정확하게 파악하는 수준에 이르러 생활에 편의성을 제공하고 있다.한국어의 경우 언어의 난이도 때문에 국내 기업은 물론 많은 글로벌 IT 기업도 아직 완벽한 수준에 도달하지 못했다. '잘 한다'라는 말만 하더라도 '훌륭하게 하다', '만족할 만하다', '자주 하다' 등의 긍정적인 표현이 있는가 하면, '잘 하는 짓이다' 등의 부정적인 표현인 경우도 흔하기 때문이다. 결국 챗봇도 기계이기 때문에, 여러가지 문장과 상황을 학습시켜 한국어 성능을 향상시켜야만 한다.다시 '어쩌다 어른'으로 돌아가보자. 강연을 마무리할 즈음 조승연 작가는 이렇게 말한다."영어도 결국 언어의 한 종류, 영어를 쓰는 사람들도 우리와 같은 사람, 우리처럼 희로애락을 느끼는 인간입니다. 기계와 얘기하기 위해 법칙에 맞춰 말해야 하는 것이 아니라 그 사람과 감정을 통하게 해주는 어떤 도구입니다."여전히 우리는 챗봇이라는 기계와 소통한다기 보다, 일방적으로 질문을 던지고, 챗봇은 미리 입력되어 있는 규칙 안에서만 답한다. 학습을 통해 수많은 데이터가 축적된다 하더라도, 아직까지 언어를 통해 전달되는 인간의 감정을 완벽히 이해하기에는 부족한 것이 사실이다. 과연 기계가 '법칙'에 맞춰서 말해야 하는 것 이상을 넘어서는 순간이 올까? 우리는 그 순간을 찾아 지금도 노력하고 있는지 모른다.이호진, 스켈터랩스 마케팅 매니저조원규 전 구글코리아 R&D총괄 사장을 주축으로 구글, 삼성, 카이스트 AI 랩 출신들로 구성된 인공지능 기술 기업 스켈터랩스에서 마케팅을 담당하고 있다#스켈터랩스 #기업문화 #인사이트 #경험공유 #조직문화 #인공지능기업 #기술기업
조회수 3245

100일 간의 챗봇 디자인 실패기-2편

본문은 100일간의 챗봇 디자인 실패기 - 1편 에서 이어집니다.각고 끝에 탄생한 린더봇의 실적은 화려했다. Microsoft에서 주최하는 기술경진대회인 ImagineCup에서 수상을 하기도 하고, 4차 산업혁명이라는 정치적(?), 시대적 흐름에 맞추어 여러 정부지원사업에서도 긍정적인 반응을 이끌어냈다. 이제 막 대학을 졸업하는 대학생들이 몇 달간 잠도 못 자고 밥도 못 먹고 로봇 인척 하며 개발 및 사용자 연구를 진행해왔다는 스토리텔링은 우리가 봐도 가히 감동적이기까지 했다. 하지만 베타 테스트를 시작한 지 한 달 만에 린더봇은 종료되었고 우리는 서비스 개발을 중단했다. 대체 무슨 일이 일어난 걸까.결론이 정해진 사용성 조사'현실왜곡장'이라는 말이 있다. 스티브잡스가 자주 사용한 기법으로 유명한데, 아무리 비현실적이거나 거짓된 내용도 그 왜곡장 안에만 있으면 가능할 것으로 생각되는 것을 말한다. 경우에 따라서는 불가능해 보인 일을 기어코 성공시키는 멋진 리더십으로 그려질 때도 있지만 대다수의 경우에는 현실을 직시하지 못하고 그들만의 망상에 빠져버리는 위험한 상태를 뜻한다.앞서 1편에서 린더봇을 통한 한 달간의 일정 입력률이 전체 캘린더 데이터 입력률에 대비하여 51%까지 나왔다는, 매우 희망적인 수치를 제시했다. 하지만 한 가지 빠뜨리고 언급하지 않은 것이 있다. 그 린더봇을 통한 입력의 80%가 서비스 사용 첫 3일 간 발생했다는 것이다. 나머지 3주 간 린더봇을 통한 일정 입력 횟수는 현저히 줄어들었다.우리가 회피하고 있었던 현실새로운 전자기기를 살때면 대부분 한번쯤은 경험해보았으리라 생각한다. 우리는 새로 만나게 된 제품에 호기심을 가지고 이리저리 만져보지만 이는 어디까지나 새로운 경험에 대한 일시적인 현상일 뿐, 대부분의 서비스는 특정 기능에 국한된 제품으로 전락하고 만다. 이러한 냉혹한 수치를 분명 인지하고 있었음에도 제품에 대한 간절한 희망 때문에 우리에게 유리한 방향으로만 수치를 읽어내는 실수를 저질렀다.준비되지 않았던 플랫폼우리는 린더봇을 제공하는 플랫폼으로 카카오톡 자동응답 API를 택했다. 비록 라인, 페이스북 메신저 등 타 메신저 플랫폼들이 챗봇을 위한 다양한 기능들을 선제적으로 제공하고 있었음에도 불구하고 카카오톡이 국내 메신저 점유율의 95%를 차지하는 시점에서 다른 메신저를 고려할 수가 없었다.카카오톡 자동응답 API결국 카톡을 선택하기는 했지만 카톡이 챗봇 써드파티 업체들을 위해 준비해놓았던 기능들을 매우 제한적이었다. 여러 아쉬운 점이 많았지만 그중에서도 ‘선톡’을 날릴 수 없다는 점과 ‘PC카톡’에서 대화를 할 수 없다는 점은 서비스 운영에 있어 매우 치명적인 문제들이었다.카카오에게 있어 '단체 선톡'은 매우 중요한 수익모델이다. 물론 지금도 수 만개의 기업고객에게 돈을 받고 ‘선톡을 날릴 수 있는 권리’를 팔고 있는 카카오 입장에서 굳이 소수의 개발사들을 위해 해당 기능을 무료로 제공할 이유는 없다고 생각한다. 또한 사용자들에게 무분별한 선톡이 발생할 경우 사용성이 저하될 여지도 충분히 있다. 하지만 다수의 해외 챗봇이 '무료 선톡'을 기반으로 한 섭스크립션, 큐레이션 서비스를 확장해나가고 있다는 점을 고려했을 때 매우 아쉬운 것은 사실이었다(특히 위챗은 매주, 또는 매일 특정 정보를 제공하는 섭스크립션/큐레이션 유형의 챗봇을 이미 하나의 카테고리로 규정하고 있다).'자동응답 API에서 선톡을 막는 것'이 사용자 편의성과 수익성을 고려한 어쩔 수 없는 선택이었다면, PC 카톡에서 자동응답 API를 통해 대화를 할 수 없었다는 점은 명백히 카톡 플랫폼 내 기술적 완성도의 부족이었다. 비록 카톡 트래픽의 대다수가 모바일에서 이루어진다고 할지언정 단순히 기술적인 이슈로 데스크탑 환경에서 자동응답 옐로아이디(현 플러스친구 통합)를 사용할 수 없었던 점은 카카오의 챗봇 환경에 대한 대응이 매우 늦었다고 밖에 볼 수 없었다.(지금도 PC에서는 자동응답 플러스친구 활용이 안되는듯하다)비록 국내 메신저 업체가 우리와 같은 작은 써드파티를 위해 조금 더 진보되고 오픈된 API를 제공해주지 않았다는 점은 아쉽지만 이 또한 업체 간의 이해관계와 시장의 속도를 현실적으로 고려하지 못한 우리의 잘못이었다.접근성, 인터페이스, 그리고 습관우리는 막연했다. 앞서 1편의 서두에서 언급했던 바와 같이 많은 사용자가 접근성 하나 때문에 메모장 대신 카톡을 선택한 것처럼, 린더봇 또한 접근성 하나로 많은 이들의 사랑을 받을 수 있을 것으로 기대했다. 우리의 챗봇을 통해 사람들이 놓치고 지나치던 많은 일정들을 캘린더로 입력시킬 수 있을 것이라 생각했다.우리가 그렸던 막연한 이상향새로운 기술을 좋아하는 IT업계 사람들이 더러 그러하듯 우리 팀 또한 ‘대화형 인터페이스(CI)’라고 하는 새로운 형태의 사용자 경험에 열광했다. 2016년 한 해 미국을 강타했던 다수의 챗봇 비즈니스를 검토하며 CI가 제시하는 미래에 매료되었다. 하지만, 우리의 기대와는 달리 베타 출시된 린더 봇의 실질적인 일정 입력률은 기존 캘린더 앱의 그것과 크게 다르지 않았다. 린더봇을 준비하며 설문을 실시한 결과 캘린더 앱을 활발히 사용하는 유저 중 주간 캘린더 입력률이 5회가 넘는 사용자가 20%가 채 되지 않았다. 우리는 린더봇을 통해 이 수치를 크게 바꿀 수 있을 것이라 생각했지만 그것은 단순히 새로운 인터페이스를 제공한다고 해서 해결될 수 있는 문제가 아니었다. 사용자들에게 필요했던 것은 ‘보다 편리한 캘린더’가 아니라 아예 ‘새로운 형태의 일정 도우미’였다. 그렇게, 지금의 일정 구독 서비스 - 린더가 탄생했다.자동응답 API를 통해 챗봇을 제공하기 전, 한 달 동안 수동으로 모든 일정 요청을 응답할 당시 한 사용자로부터 독특한 요청을 하나 받았다. 바로 재학 중인 대학원의 1년 일정을 자신의 캘린더로 넣어달라는 것이었다. 솔직히 요청을 받은 당시에는 이걸 정말 해줘야 하나 고민이 많았다. 단 한 사람을 위해 20개가 넘는 연간 대학원 일정을 캘린더로 담아줘야 한다니. 하지만 실험 당시 우리는 사용자들에게 분명 일정에 관련한 모든 입력을 도와주겠다고 약속했기에 대학원 웹사이트를 찾아 일일이 일정을 옮겨 담아주었다.실험이 끝난 후 해당 사용자는 설문에서 린더를 사용하며 가장 편리했던 기능으로 ‘연간 일정 한 번에 추가 기능’을 꼽았다. 30명의 사용자 중 단 한 명이 요청하고, 좋아했던 이 기능으로부터 지금의 ‘일정 구독 서비스 - 린더 ( https://linder.kr/ )’가 탄생했다. 챗봇의 성공 가능성이 희미해지고 있던 시점에서도 우리 팀은 ‘일정’이라는 요소를 손에서 놓지 않았다. ‘일정 데이터’가 앞으로 지니게 될 가치에 대해 고민한 결과 누군가는 80%의 비어있는 캘린더에 일정을 채워줄 수 있는 서비스를 만들어 낼 것이라는 결론을 도출하게 되었고, 그 ‘누군가’가 우리가 되지 못할 이유는 없다는 생각으로 린더를 만들기 시작했다.제품 개발 연혁- 17.01 ~ 17.02 휴먼(?) 린더봇 실험- 17.02 ~ 17.03 린더봇 베타 출시- 17.04 린더봇 중단- 17.03 ~ 17.05 일정 구독 서비스 - 린더 기획, 개발- 17.06 일정 구독 서비스 - 린더 출시2017년 11월 현재- 엔드유저(구독자): 10만 명- 파트너(기업): 삼성, SK, 현대 등 8개 사 스포츠, 교육 일정 등 협약- 누적 캘린더 181개 / 누적 등록 일정 12,000개- 평균 CTR(클릭률): 4~5%, 최대 7~8% ( 캘린더 내 일정 링크 클릭 수 / 구독자 )- 이탈률: 1% 내외 ( 구독 취소자 / 구독자 )- 제공 일정: 아이돌 스케줄, 화장품 세일, 대학교 학사일정, 스포츠 경기, 공연/축제 일정, 공채 일정 제공언론'국내 최초' 삼성, 캘린더 구독 서비스 실시…린더와 제휴 – 마이데일리(17.10.13)손 안에서 확인하는 경기일정, 현대캐피탈 배구단 캘린더 구독 서비스 실시 – 스포츠서울(17.10.18)스마트폰 달력 여니… 아이돌 스케줄이 주르륵 – 동아일보(17.11.01)#히든트랙 #챗봇 #기술기업 #개발자 #개발팀 #인사이트 #경험공유

기업문화 엿볼 때, 더팀스

로그인

/