스토리 홈

인터뷰

피드

뉴스

조회수 2731

레코딩 플러그인 이야기

마음챙김명상앱 '마보'의 콘텐츠들은 모두 Waves 플러그인으로 프로세싱된다.(처음과 마지막을 제외하면) Waves에 대해 간단한 생각을 정리하자면 다음과 같다.머큐리 구입시 UAD와도 고민을 많이 했지만 소프트웨어로만 비교를 한다면 waves가 훨씬 편하게 사용이 가능하다. 그 중에서도 CPU로 돌릴 수 있다는 점이 제온 CPU 에서 강력하게 작용한다.(Waves 하드웨어가 필요하다면 영국콘솔회사 DiGiCo와의 합작품인 DiGiGrid라는것도 있다.)근데 문제는... 맥에서는 더이상 CPU파워가 따라주지 않는다는 것이다.이런 상황에서 밖에서 작업하기에 딱 좋은 솔루션이 있었다. Soundgrid라는 waves의 DSP솔루션이다.이 사운드그리드에 대해 요약하면 waves의 플러그인만 따로 모아서 랜케이블로 Soundgrid 연결을 하면 CPU의 부담을 주지 않고 Daw에서 똑같은 프로세싱이 가능하다.이번에 BLS에서 데모로 받은 Waves Soundgrid IMPACT SERVER를 까페에 들고 나왔다.문제는 예상했던 사이즈가 아닌 맥북보다 훨씬 커서 카페에 가지고 다니기 부담스러운 크기... 휴대성이라는 측면에서는 역시 좀 무리가 있지 않나 싶다.(사진참조)어쨌든 카페에서 작업이 가능하게 되었다는 점. 다만, 카페에 가는데 차가 필요하다는 점이 있겠다.앞서 말했듯 마보 콘텐츠는 waves외에 플러그인의 시작과 끝을 Izotope 플러그인을 쓴다.마지막에는 라우드니스를 위해 오존을 사용한다. 오존은 너무 유명한 플러그인이니 설명도 생략.녹음이 끝나면 바로 첫단에 오디오스위트로 걸어주는 RX5라는 플러그인이 있다.이 플러그인은 보이스를 녹음한다면, 혹은 볼륨이 크지 않은 클래식 악기를 녹음한다면 정말 요긴하다.첫째로 입에서 발생하는 립노이즈들을 효과적으로 빠르게 제거해 준다. 콘덴서 마이크에서 타는 쩝쩝거리는 소리들을 손으로 하나씩 잡을 필요가 없다. 그저 한번 클릭으로 모든 파형의 클릭소리들을 제거해준다.Waves Mercury에도 X-Click이있지만 Izotope의 RX5가 훨씬 퀄리티가 좋다.두번째로 De-noise의 강력한 기능이다. 녹음시에 발생되는 팬소음들은 사실 EQ를 통해 어느정도 제거가 가능한 험의 형태로 발생한다면, 전기적 접지의 부재로 인한 핑크노이즈는 쉽게 제거가 불가능하다.하지만. 이 De-noise의 노이즈 LEARN기능으로 노이즈를 분석한 후 노이즈를 획기적으로 제거할 수 있다.칭찬일색으로 보이지만 RX5는 유튜브 믹싱채널을 운영하는 Alan JS Han님도 추천을 하실 만큼 유명하다.(근데 Izotope는 품질은 정말 유명하나 CPU를 정말 힘들게 한다.)자세한 이야기는 각 사진 속에보다시피 크기가 생각보다 크고 3kg에 육박하는 mini-itx PC이다.. 공연장비가 베이스이기 때문에 랜케이블로 연결한다.프로툴 유저라면 한번쯤 겪어본 창프로툴 유저라면 한번쯤 겪어본 창보이스가 없는 부분을 선택해 기본으로 깔리는 노이즈를 분석한다.전 구간에 분석한 노이즈 커브를 적용한 모습.깔끔하게 정리되었다.(SSL프리에서 오는 하모닉스들도 제거)#마보 #콘텐츠 #프레임워크 #스택 #인사이트 #일지
조회수 1892

SaaS 와 On-Premises 장단점

와탭랩스는 SaaS 기반의 IT 모니터링 서비스로도 사용할 수 있지만 On-Premises 솔루션으로도 제공되기 때문에 고객과 대화할 때 SaaS와 On-Premises의 장단점에 대한 답을 드려야 할 때가 많습니다.어떻게 비교해야 할까. SaaS와 On-Premises를 비교하기 위해서는 도입 프로세스에서 운영까지의 지속되는 과정에서의 장단점들을 알아봐야 합니다. 많은 고객들이 SaaS를 설명드릴 때, TCO를 기반으로 하는 가격 비교를 하지만 이는 일부일 뿐입니다. Total cost of ownership (TCO) is a financial estimate intended to help buyers and owners determine the direct and indirect costs of a product or system. It is a management accounting concept that can be used in full cost accounting or even ecological economics where it includes social costs.----TCO시스템 또는 제품 구매시에 들어가는 모든 직간접 비용을 의미. 구매비용에서 운영비용은 물론 사회적 비용까지  모두 포함.왜 SaaS로 넘어가야 하나요?현대 조직은 효율적인 비용 구조에 대한 지속적인 압박을 받고 있습니다. 그렇기 때문에 많은 기업들이 IT 기반의 효율적인 기업 관리 시스템을 갖추어 나갔지만 역설적으로 IT 시스템들은 여전히 비싼 가격에 대규모 도입 방식을 사용해 왔습니다. 하지만 클라우드 시장이 만들어지면서 SaaS 시장이 빠르게 발전하고 있습니다. SaaS(Software-as-a- Service)는 공급자가 원격에서 솔루션을 제공하여 관리하는 인터넷 기반의 서비스를 의미합니다. 초기 SMB시장을 위주로 확장을 하던 SaaS 기반의 서비스는 이제 소규만을 위한 서비스가 아닙니다. 소규모 스타트업 뿐만이 아니라 많은 엔터프라이즈 기업들이 SaaS 서비스를 사용하고 있습니다. 낮은 도입 비용SaaS는 On-Premises 방식에 비해 도입 비용이 현저히 낮습니다. 기존 On-Premises의 비용의 많은 부분들이 채널, 컨설팅, 영업 관리 비용이 포함된 금액이였지만 SaaS 방식의 서비스들은 해당 솔루션 기능에 대한 비용만을 청구합니다. 더 이상 부가적인 비용 지출을 하지 않아도 됩니다. 또한 SaaS 기반의 서비스는 실무자가 직접 도입하고 사용해 볼 수 있기 때문에  POC없이 기업에 도입하고 구매 여부를 진행 할 수 있습니다.  POC (Proof Of Concept)기존에 시장에서 사용돼지 않던, 신기술을 프로젝트에 도입하기에 앞서, 검증하기 위한 목적으로 사용. 사업과 관계가 약간은 동떨어진 기술 검토를 위한 프로젝트고객사에서 하고, 업무는 아주 간단한 것을 수반. 신기술 여부는 중요치 않음낮은 TCOSaaS 솔루션은 유지보수 비용 부담이 없습니다. 업데이트에 요금을 부과하지 않으며 대규모 시스템 업데이트로 인한 부담도 존재하지 않습니다. 소프트웨어 구매시 발생하는 하드웨어 구매 비용으로부터 자유로우며 하드웨어를 유지 보수하거나 업데이트 해야 할 일도 없습니다. SaaS 솔루션은 구매비용(CAPEX) 운영비용(OPEX) 모두 절감할 수 있습니다. CAPEX미래의 이윤 창출을 위해 지출한 비용. 기업이 고정자산을 구매하거나, 유효수명이 당회계연도를 초과하는 기존의 고정자산 투자에 돈을사용할 때 발생.회사가 장비, 토지, 건물 등의 물질자산을 구입하거나 유지, 보수할 때 사용되는 비용.OPEX업무지출 또는 운영비용이라고도 하며 갖춰진 설비를 운영하는 데 드는 제반 비용을 의미. OPEX는 인건비, 재료비, 수선유지비와 같은 직접 비용과 제세공과금 등의 간접 비용으로 구성되어 있으며 통상 CAPEX와 함께 대조적으로 많이 쓰이는 용어.빠른 출시SaaS 솔루션은 이미 시장에 배포되는 과정에서 테스트가 완료되어 있습니다. 처음부터 적용하기가 쉬우며 업데이트도 번거롭지 않습니다. 기업은 최신 서비스를 바로 적용하여 더 높은 ROI를 만들어 낼 수 있습니다. 사용량 기반의 과금SaaS는 사용량 단위의 유동적인 과금이 가능합니다. 이는 반대로 대규모 도입후에 시스템이 줄어들게 되더라도 과금이 같이 줄어드는 장점을 가지고 있습니다. 낮은 위험도SaaS는 사용랑 기반의 과금과 쉬운 도입을 제공하기 때문에 On-Promises에 비해 솔루션 변경에 대한 위험도가 낮습니다. 솔루션 사용하기 위해 인프라스트럭처를 도입하지 않기  때문에 해지시에 사용하지 않는 인프라스트럭처가 존재할 위험에서도 빠져나갈 수 있습니다. SaaS 솔루션 도입시 고민해야 할 점SaaS 솔루션이 장점이 많은 구조이긴 하지만 아래와 같이 도입시 고민해야 하는 것들이 있습니다. 인터넷 의존성외부망을 열수 없는 환경에서는 사용할 수가 없습니다. 기업의 정책에 따라 기업의 인터넷 환경을 열수 없다면 SaaS 솔루션을 도입할 수 없습니다. 기업 내재화고객이 SI를 통해 자사를 위한 서비스를 요구하는 경우에 맞지 않습니다. 또는 데이터의 거주 위치에 대해 민감한 경우에도 문제가 될 수 있습니다. 클라우드가 대중화 되면서 데이터의 거주 위치는 실제로 의미가 없어지고 있습니다.On-Premises 솔루션을 도입하는 이유사내에 솔루션을 설치하는 On-Premises 방식은 IT 서비스와 함께 만들어진 방식이며 현재까지도 엔터프라이즈 규모의 기업들이 가장 좋아하는 방식입니다. 기업 내재화On-Premises 방식은 SI를 통한 기업 맞춤형 솔루션 제공이 가능합니다. 기업이 자사에 최적화된 방식으로 솔루션을 변경하여 사용함으로써 만족도를 높일 수 있습니다. 데이터 소유On-Premises 방식은 솔루션과 데이터가 모두 사내에 존재함니다. 외부망이 열려있지 않더라도 사내에서 데이터가 가공되고 처리되기 때문에 문제없이 사용할 수 있습니다.  On-Premises를 떠나는 이유클라우드의 도입과 함께 많은 엔터프라이즈 기업들이 아래의 이유로 On-Premises에서 SaaS로의 전환을 고민하고 있습니다. 비용On-premises의 높은 도입 비용에 대한 고민이 높아지고 있습니다. 특히 클라우드 생태계에서 노드락 라이센스는 의미가 없어지고 있습니다.노드락 라이선스별도의 라이선스 서버없이 해당 장비에서만 사용 가능한 라이선스입니다.플로팅 라이선스별도의 라이선스 서버를 구축하여 클라이언트 요청이 있을때 라이선스 서버에서 클라이언트로 라이선스를 할당하는 방식입니다.유지보수엔터프라이즈 기업은 자사의 수많은 솔루션들을 유지보수 하는 데 지쳐가고 있습니다. 솔루션 유지 보수 비용은 On-Premises 솔루션 가격에 포함되어 있는 경우도 있기 때문에 개개별로 관리하기도 어려운 부분이 있습니다. 점점 복잡해지는 IT 환경 속에서 기업은 유지보수에 대해 민감해지고 있습니다.On-Premises의 대안 Private SaaS SaaS와 On-Premises의 장점을 합친 방식으로 SaaS 솔루션 전체를 패키지로 제공하는 방식입니다. 와탭랩스의 경우 IT 모니터링 서비스 전체를 패키징하여 기업에 제공하고 있습니다. 엔터프라이즈 기업의 서비스 운영팀에 설치하고 기업 내부에서 서비스 방식으로 사용할 수 있습니다. 빌링까지 포함되어 있는 제품이기 때문에 사용량을 체크할 수 있으며 일반적으로는 년단위의 라이센스를 사용하게 됩니다.마무리SaaS와 On-Premises 솔루션을 비교한다면 SaaS가 미래의 솔루션이라고 할 수 있습니다. 하지만 Private 클라우드를 도입하고 외부에 망을 열지 않는 다면 On-Premises를 사용해야 합니다. 뿐만 아니라 와탭랩스의 경우처럼 SaaS 솔루션 전체를 On-Premises로 제공하는 기업들도 있기 때문에 On-Premises 시장도 줄어들지는 않을 것으로 예상되고 있습니다. #와탭랩스 #개발자 #개발팀 #인사이트 #경험공유 #일지
조회수 1048

컴공생의 AI 스쿨 필기 노트 ⑥인공신경망

인공지능, 머신러닝, 딥러닝이번 6주차 AI 스쿨에서는 딥러닝의 가장 기초적인 부분을 배웠어요. 인공지능과 머신러닝, 그리고 딥러닝을 많이 들어보긴 했는데 이 셋의 차이는 무엇일까요?인공지능이라는 개념은 1956년 미국 다트머스 대학에 있던 존 매카시 교수가 개최한 다트머스 회의에서 처음 등장했고 최근 몇 년 사이 폭발적으로 성장하고 있는 중이에요. 1956년 당시 인공지능의 선구자들이 꿈꾼 것은 최종적으로 '인간의 지능과 유사한 특성을 가진 복잡한 컴퓨터'를 제작하는 것이었죠. 이렇듯 인간의 감각, 사고력을 지닌 채 인간처럼 생각하는 것을 인공지능이라고 해요.인공지능은 위 세 개념 중 가장 큰 개념이에요. 머신러닝은 일반적으로 사람들이 이야기하는 인공지능, 즉 머신러닝에 기반한 인공지능을 말하는데요. 인공지능을 구현하는 구체적인 접근 방식이라고 할 수 있어요.머신러닝에는 linear regression, logistic regression 등의 여러 알고리즘이 있는데요.  그중 학습에 사용되는 모델을 딥러닝이라고 해요. 즉 딥러닝은 완전한 머신러닝을 실현하는 기능이라고 볼 수 있어요. 이러한 딥러닝의 등장으로 인해 머신러닝의 실용성은 강화됐고 인공지능의 영역은 확장됐다고 해요.인공 신경망(Neural Network)오늘 수업의 핵심인 인공 신경망(Neural Network)은 어떻게 만들어졌을까요?뉴런의 구조이것은 우리 몸에 존재하는 신경세포인 뉴런이에요. 뉴런은 전기적인 신호를 전달하는 특이한 세포인데 뇌는 뉴런의 집합체라고 할 수 있어요. 뉴런은 수상 돌기(dendrites, input)에서 신호를 받아들이고 축색 돌기(axon terminals, output)에서 신호를 전송해요. 신호가 전달되기 위해서는 일정 기준(임곗값 : threshold) 이상의 전기 신호가 존재해야 해요. 이 신호들의 전달을 통해서 정보를 전송하고 저장해요.이런 신경세포로 이뤄진 신경망 시스템을 위의 그림처럼 표현할 수 있어요. 이처럼 인공신경망은 사람 몸속의 신경들을 모방해서 만든 시스템이에요.위의 식처럼 뉴런을 수학적으로 표현할 수 있는데요. 입력 값들(X)에 가중치를 두어(W) 값 (f(x))을 구하고 그 값과 임계치와의 관계를 활성함수(active function)*로 판단하여 결괏값을 출력하게 돼요.( * 활성함수는 인공신경망의 개별 뉴런에 들어오는 입력신호의 총합을 출력 신호로 변환하는 함수로 비선형 함수(non-linear function)를 씁니다.**)이때 활성함수는 뉴런에서 임곗값을 넘었을 때만 출력하는 부분을 표현한 것으로 sigmoid 함수, Relu 함수 등 여러 방식이 있어요.인공 신경망의 구조인공 신경망 구조는 위의 그림처럼 나타낼 수 있어요. 인공 신경망 구조는 입력층(input layer), 은닉층(hidden layer), 출력층(output layer)으로 이루어져 있어요. 위의 그림은 그 구조에 의해 3-layer Neural Network 또는 2-hidden-layer Neural Network라 부를 수 있는데요. 3-layer Neural Network는 3개의 층을 가지는 인공신경망이라는 뜻이고, 위 그림에서는 은닉층1, 은닉층2, 출력층이 해당되겠죠. 인공 신경망에 입력층과 출력층은 항상 존재하기 때문에 은닉층의 개수만을 고려하여 부르기도 해요. 위 그림에서는 은닉층이 2개 있기 때문에 2-hidden-layer Neural Network라고 부를 수 있어요. 전파(Propagation)이번에는 실제로 학습하는 과정인 인공신경망의 알고리즘에 대해 알아볼게요. 순전파(Forward Propagation)와 역전파(Backward Propagation)가 있어요.순전파는 입력값에서 출력값으로 가중치를 업데이트를 하고 활성화 함수를 통해서 결괏값을 가져오는 것을 말해요. 인공신경망이 설계된 정방향(input → hidden → output)으로 데이터가 흘러가기 때문에 순전파라고 해요. 말 그대로 입력값을 앞쪽으로 보낸다고 생각하면 돼요.역전파는 출력값을 통해서 역으로 입력값 방향으로 오차를 다시 보내며 가중치를 재 업데이트하는 것이에요. 출력값에서 계산된 오차에 가중치를 사용해 바로 이전 층의 뉴런들이 얼마나 오차에 영향을 미쳤는지 계산해요. 결과에 영향을 많이 미친 뉴런일수록 더 많은 오차를 돌려줘요.개념을 코드에 적용하기NumPy로 구현된 Neural Network(이하 NN)의 작동 방법을 살펴볼게요. NN은 총 2개의 레이어로 이루어져 있어요. 이번 과제에서는 입력 x가 들어왔을 때, 레이블에 따라 예측치가 1로 수렴하는지 알 수 있는 인공신경망을 구현하는 것이 목적이에요.Neural Network다음 코드는 simpleNueralNet() 클래스를 나타내는 코드예요. simpleNueralNet()은 두 개의 레이어로 구성된 NN이에요.N, D_in, H, D_out = 64, 1000, 100, 10- N은 batch size, 즉 한 번에 처리할 수 있는 데이터 사이즈를 말해요. - D_in은 입력값 차원에 쓰이는 값으로 1000을 할당해요.- H는 은닉층 차원에 쓰이는 값으로 100을 할당해요.- D_out은 출력값 차원에 쓰이는 값으로 10을 할당해요.아래 코드를 통해서 랜덤 입력과 출력 데이터를 만들어요.x = np.zeros((N, D_in))     #1  x.fill(0.025)                         #2y = np.ones((N, D_out))   #31. np.zeros() 함수를 사용하여 (64, 1000)의 차원을 갖는 0인 행렬을 만들어요.2. fill() 함수를 통해 x 안의 모든 0을 0.025로 바꿔요.3. np.zeros() 함수를 사용해 (64, 10)의 차원을 갖는 0인 행렬을 만들어요.아래는 랜덤 값을 갖는 가중치(weight)들을 초기화하는 코드예요. w1은 1000, 100 차원의 랜덤 값을 갖는 행렬로, w2는 100, 10차원의 랜덤 값을 갖는 행렬로 만들어요.w1 = np.random.randn(D_in, H)   w2 = np.random.randn(H, D_out)learning_rate는 학습 속도를 의미해요. 아래는 단계별로 움직이는 학습 속도를 1e-6으로 정의하는 코드예요.learning_rate = 1e-6이제 5000번의 순전파를 할 거예요.h = x.dot(w1)     h_relu = relu(h)  y_pred = h_relu.dot(w2)h는 은닉층에 전달할 값이에요. x와 w1을 행렬곱한 값을 가져요.활성 함수 relu에 h를 넣어서 계산해요.y_pred는 예상되는 출력값이에요. relu로 계산된 h_relu와 가중치 w2를 행렬곱한 값이에요.아래는 순전파로 얻은 y_pred에서 진짜 y를 뺀 값을 제곱한 것의 합을 구해 손실 값(loss)을 구하는 코드예요. print(loss) 코드로 손실을 확인할 수 있어요.loss = np.square(y_pred - y).sum()순전파 후 역전파를 이용해 손실에 대한 가중치 w1과 w2의 gradients를 계산하여 update 할 거예요.grad_y_pred = 2.0 * (y_pred - y)              #1grad_w2 = h_relu.T.dot(grad_y_pred)    #2grad_h_relu = grad_y_pred.dot(w2.T)    #3grad_h = grad_h_relu.copy()                    #4grad_h[h < 0>grad_w1 = x.T.dot(grad_h)                         #61. 순전파로 얻은 y_pred에서 진짜 y값을 뺀 값에 2.0을 곱하여 grad_y_pred를 구해요.2. grad_w2는 순전파에서 y_pred = h_relu.dot(w2) 식을 사용했으므로  h_relu.T.dot(grad_y_pred) 로 구해요. h_relu가 반대로 곱해지기 때문에 T를 이용하여 shape을 바꿔줘야 해요.3. grad_h_relu는 방금 위에서 사용한 y_pred = h_relu.dot(w2)을 이용하여 grad_y_pred.dot(w2.T) 로 구해요. 이번에는 w2 shape의 반대를 grad_y_pred에 곱해줘야 해요.4. 순전파에서 h_relu = relu(h)였는데요. 역전파에선 grad_h와 grad_h_relu가 같기 때문에 copy() 함수로 그대로 복사해요!5. 0보다 작은 h는 0으로 만들어요.6. 가중치 w1의 값인 grad_w1은 순전파의 h = x.dot(w1)와 반대로 x.T.doT(grad_h) 곱해요. 역전파는 순전파의 식에서 이항한다고 생각하면 조금 더 쉽게 이해할 수 있을 것 같아요. 이항한 값은 .T를 붙여서 표현한다고 생각하면 될 것 같아요.아래는 가중치를 재업데이트하는 코드예요.w1 -= learning_rate * grad_w1 w2 -= learning_rate * grad_w2 과제1을 통하여 NN을 알아보았는데요. 복잡하지만 순전파와 역전파를 알고 있다면 많이 어렵지는 않은 것 같아요. 과제 2는 정확도를 95% 이상으로 만들어보는 과제인데 여러 가지 방법을 동원해서 풀어보는데 생각보다 쉽지가 않아요. ^^;이번 수업시간에 배운 딥러닝의 기초인 신경망은 굉장히 중요한 개념이라고 해요. 신경망을 기반으로 한 딥러닝을 강화하여 안면인식을 가능하게 하거나 저장된 데이터를 정확하게 인식하고 분류할 수 있는 기기들도 만들어지고 있어요. 이처럼 AI는 점진적으로 활용 범위가 넓어지고 있기 때문에 이 수업을 통해 쌓은 AI 지식을 마음껏 뽐낼 수 있는 날이 왔으면 좋겠어요!** 왜 활성함수로 비선형 함수를 쓸까요?선형함수인 h(x)=cx를 활성함수로 사용한 3-layer 네트워크를 생각해봐요. 이를 식으로 나타내면 y(x) = h(h(h(x)))가 되는데요.  이는 y(x) = c3x와 같습니다.  이렇게 활성함수로 선형함수를 사용하면 은닉층을 사용하는 이점이 없어요.* 이 글은 AI스쿨 - 인공지능 R&D 실무자 양성과정 6주차 수업에 대해 수강생 최유진님이 작성하신 수업 후기입니다.
조회수 3731

[Tech Blog] Go 서버 개발하기

Go 서버 개발을 시작하며   특정 API만 다른 언어로 구현해서 최대의 성능을 내보자! 저희 서버는 대부분 Django framework 위에서 구현된 광고 할당 / 컨텐츠 할당 / 허니스크린 앱 서비스 이렇게 나눌 수 있는데 Python 이라는 언어 특성상 높은 성능을 기대하기가 어려웠습니다. 하지만 세가지 서비스에서 락스크린에서 어떤 컨텐츠나 광고를 보여줄지 결정하는 Allocation(할당) API 가 가장 많이 호출되고 있었는데 빈도로 보면 80% 정도로 높은 비중을 차지하고 있어서 이 Allocation API 들을 성능이 좋은 다른 언어로 구현하면 어떨까 하는 팀내 의견이 있었습니다. Why Go? 저는 예전부터 Java,  C# 등의 컴파일 언어에 익숙해서 기존 Java 와 C, 그리고 Go 라는 최근에 새로 나온 언어 중에서 아래 블로그글과 같이 여러 reference 들을 통해 성능이 좋다는 Go 로 이 API 들을 포팅하는 작업을 시작하게 되었습니다. Go 에 대한 첫 인상은 Java, C계열 언어보다 덜 verbose 보였고 python 보다는 strongly-typed, encapsulated 하다보니 자유도를 제한해서 코드를 보기 쉽게 하는 것을 선호하는 저의 성격과도 잘 맞는 언어였습니다.     출처: Carles Mateo, Performance of several languages서버 개발 환경   Server design How to import libraries  GVT (https://github.com/FiloSottile/gvt) – Go 는 vendering tool 을 통해 dependency 를 관리할 수 있습니다. GVT 의 경우 처음 도입했을 때 별로 유명하지 않았는데 사용법이 간단해서 도입하게 되었습니다. 아래와 같이 참조하고 있는 revision 을 관리해주며 update 통해서 최신 소스를 받아 올수 있습니다.   { "version": 0, "dependencies": [ { "importpath": "github.com/Buzzvil/go-env", "repository": "https://github.com/Buzzvil/go-env", "vcs": "git", "revision": "2d8489d40184a12c4d09d09ce1ff717e5dbb0745", "branch": "master", "notests": true }, ....  Design pattern  Go 언어에서는 package level cycling dependency 를 허용하지 않아서 좀더 명확한 구조를 만들기 좋았습니다. 예를들어 Service 에서는 Controller 를 참조할수 없고 Model 에서는 Controller / Service / DTO 등을 참조할수 없도록 강제했습니다. 모든 API 요청은 Route 를 통해 Controller 에게 전달되고 이 때 생성된 DTO (Data transfer object) 들을 Controller 가 직접 혹은 Service layer 에서 처리하도록 하였고 DB 에 접근할 때는 모델을 통해 혹은 직접 접근하도록 했지만 추후 구조가 복잡해지면 DB 쿼리 등을 담당하는 DAO (Data access object) 를 도입할 계획입니다   Libraries                  요소이름선택 이유NetworkGinWeb 서버이다 보니 네트워크 성능을 최우선으로 고려, 벤치마크 표를 보고 이 라이브러리를 선택Redis & cachego-redis역시 성능을 가장 중요한 지표로 보고 이 라이브러리 선택MysqlGormORM 없이는 개발하기 힘든 시대이죠. 여러 Database를 지원하고 ORM 중에서도 method chaining 을 사용하는 Gorm 을 선택Dynamoguregu dynamoAWS에서 제공하는 Dynamo 패키지를 그대로 사용하면 코드 양이 너무 많아지고 역시 method chaining 을 지원해서 선택Environment variablescaarlos0 envGo 에서는 tag 를 이용하면 좀더 코드를 간결하고 읽기 쉽게 사용할수 있는데 이 라이브러리가 환경변수를 읽어오기 쉽도록 해줌   Redis cache  func SetCache(key string, obj interface{}, expiration time.Duration) error { err := getCodec().Set(&cache.Item{ Key: key, Object: obj, Expiration: expiration, }) return err } func GetCache(key string, obj interface{}) error { return getCodec().Get(key, obj) }  Mysql  var config model.DeviceContentConfig env.GetDatabase().Where(&model.DeviceContentConfig{DeviceId: deviceId}).FirstOrInit(&config)  Dynamo if err := env.GetDynamoDb().Table(env.Config.DynamoTableProfile).Get(keyId, deviceId).All(&profiles); err == nil && len(profiles) > 0 { ... }  Environment variables  var ( Config = ServerConfigStruct{} onceConfig sync.Once ) type ( ServerConfigStruct struct { ServerEnv string `env:"SERVER_ENV"` LogLevel string .... } ) func LoadServerConfig(configDir string) { onceConfig.Do(func() {//최초 한번반 호출되도록 env.Parse(&Config) } }    Unit test   환경 구성 Test 환경에는 Redis / Mysql / Elastic search 등에 대한 independent / isolated 된 환경이 필요해서 이를 위해 docker 환경을 따로 구성하였습니다. Test case 작성은 아래와 같이 package 를 분리해서 작성했습니다.  package buzzscreen_test var ts *httptest.Server func TestMain(m *testing.M) { ts = tests.GetTestServer(m) // 환경 시작 tearDownElasticSearch := tests.SetupElasticSearch() tearDownDatabase := tests.SetupDatabase() code := m.Run() // 여기서 작성한 TestCase 들 실행 // 환경 종료 tearDownDatabase() tearDownElasticSearch() ts.Close() os.Exit(code) }  Mock server는 은 http.RoundTripper interface 를 구현해서 http.Client 의 Transport 멤버로 설정해서 구현했습니다. 아래는 Test case 작성 예제입니다.  httpClient := network.DefaultHttpClient mockServer := mock.NewTargetServer(network.GetHost(MockServerUrl)) .AddResponseHandler(&mock.ResponseHandler{ WriteToBody: func() []byte { return []byte(mockRes) }, Path: "/path", Method: http.MethodGet, }) clientPatcher := mock.PatchClient(httpClient, mockServer) defer clientPatcher.RemovePatch()  Unit test 관련해서는 내용이 방대해서 추후 다른 포스트를 통해 자세히 소개하도록 하겠습니다.  Infra API 요청 분할 AWS Application load balancer 여러 API 중에서 할당 API 를 제외한 요청은 기존의 Django 서버로 요청을 보내고 할당요청에 대해서만 Go서버로 요청을 보내도록 구현하기 위해 먼저 시도 했던 것은 AWS Application load balancer (이후 ALB) 였습니다. ALB 의 특징이 path 로 요청을 구별해서 처리할수 있었기 때문에 Allocation API 만 Go 서버 로 요청이 가도록 구현했습니다.  출처: Amazon Devops Blog, Introducing Application Load Balancer   하지만 이렇게 오랫동안 서비스 하지 못했는데 그 이유는 서버 구성이 하나 더 늘어나고 앞단에 ALB 까지 추가되다 보니 이를 관리하는데 추가 리소스가 들어가게 되어서 어떻게 하면 이러한 비용을 줄일수 있을까 고민하게 되었습니다.   Using docker & nginx  Go로 작성된 서버가 독립적인 Micro service 냐 아니면 Django 서버에서 특정 API 를 독립시켜 성능을 강화한 모듈이냐 의 정체성을 두고 생각해봤을때 후자가 조금더 적합하다보니 Go / Django 서버는 한 묶음으로 관리하는 것이 명확했습니다. Docker 를 도입하면서 nginx container 가 proxy 역할을 하고 path를 보고 Go container / Django container 로 요청을 보내는 구성을 가지게 되었습니다.  글을 마치며   시작은 미약하였으나 끝은 창대하리라 하나의 API를 이전했음에도 불구하고 Allocation API 에 대해서는 약 1/3, 서버 Instance 비용은 1/2.5 수준으로 감소했습니다.   설명: 기존 4개의 Django 인스턴스의 CPU 사용률이 모두 13% 정도 감소, Go 인스턴스의 CPU 사용율은 17% 정도   17 / (13 * 4)  ≒ 1 / 3  충분히 만족할만한 성과가 나와서 그 뒤로 몇가지 API도 Go 로 옮겼고 새로 작성하는 API 는 Go 환경 안에서 직접 구현하는 중입니다. 처음에는 호출이 많은 하나의 API 를 다른 언어로 포팅하기 위해 시작한 작업이었는데 Container 기술을 도입하는 등 서버 Infra 까지 변경하면서 상당히 큰 작업이 뒤따르게 되었습니다. 하지만 이 작업을 하면서 많은 동료들의 도움과 조언이 있었고 결국 완성할수 있었습니다. 이렇게 실험적인 도전을 성공 할수 있는 환경에 여러분을 초대하고 싶습니다! Go언어에 대한 문의나 좋은 의견도 환영합니다.
조회수 932

코인원 크루의 채굴 현장을 포착했다! - ‘코인원 작업증명(PoW)’을 소개합니다

블록체인에서 PoW는 Proof of Work, 즉 작업증명을 말합니다. 블록체인의 암호화된 작업에 대해 참여자가 암호를 풀면, 보상을 제공받는 것이죠.오늘은 코인원의 PoW에 대해서 이야기 해보려고 합니다. '코인원 PoW'의 PoW는 블록체인을 기반으로 금융을 혁신하는 기업답게 블록체인 용어에서 차용했어요. :-)  코인원 크루들이 스스로와 동료들의 회고를 진행하고 피드백을 주고 받는 과정을 통해, 업무 개선과 성과에 대한 보상을 제공받도록 만들어진 일종의 성과관리 시스템이죠. 코인원 피플팀은 코인원 PoW 과정을 다음과 같이 설명하고 있습니다.크루들이 자신들의 업무 성과에 대해 투명하게 풀어놓는 회고를 우선적으로 진행해요. 그 후 함께 업무를 진행한 페어 그룹(pair group)끼리 서로 잘된 업무와 지원이 필요한 부분에 대해 대화를 진행하며, 이를 통해 개선점과 방법을 찾아 업무에 적용합니다.코인원 PoW의 특별한 점은, 대부분의 과정이 정성적으로 진행된다는 것에 있습니다. 물론 숫자로 보이는 결과도 중요하지만, 모든 일은 결과 못지 않게 과정도 중요하다고 판단했기 때문이에요. 그 과정에 충실함을 보인 크루들을 선별해 ‘슈퍼크루'로 지정하고 보상을 제공하는 과정도 여기에 포함됩니다. 이 변화무쌍한, 그리고 결코 쉽지 않은 크립토(crypto) 세계에서 ‘정도'를 걸어가고 있는 ‘코인원스러운' 성과관리 시스템이 아닐까 생각합니다. :-) 우선 코인원 PoW가 어떤 과정으로 진행되는지 한 번 살펴볼까요? 코인원 PoW는 아래와 같은 5가지 단계로 진행됩니다.Self mining셀프마이닝은 지난 6개월 동안 자신이 진행한 업무와 그 과정에 대해 에세이를 작성하는 단계입니다. 에세이를 작성할 때는 자신이 진행한 업무와, 업무를 진행하는 과정에서 본인이 생각하는 잘한 부분 및 아쉬웠던 점들 등에 대해서 작성합니다. ‘잘한 부분'의 경우, 성과가 좋았던 점 외에 성과는 좋지 않았어도 최선을 다한 것에 대해 상세히 작성합니다. Peer mining피어마이닝은 업무적으로 연관된 동료 크루의 셀프마이닝을 토대로 그 동료에 대한 의견을 작성하는 단계입니다. 함께 일했을 때 동료 크루의 좋았던 점, 훌륭한 점, 배워야 할 점 등을 서술하고, 앞으로 더 효율적인 협업을 위해 동료가 개선하면 좋을 것 같은 점도 함께 작성해요. Segwit세그윗 단계에서는 위 두 단계에서 도출된 자기 평가와 동료 평가를 토대로 각 셀의 리더들과 1:1 면담을 진행합니다. 이때 셀 리더들이 꼭 염두해야 하는 것은, 코인원 PoW를 통해 우리가 이끌어내고자 하는 것은 '평소의 관심과 피드백, 그리고 동반 성장'이라는 것이죠. Blue paper세그윗을 통해 최종 작성되는 것이 바로 블루페이퍼에요. 크루들의 면담을 진행한 각 셀의 리더들이 작성하죠. 이 내용은 크루들이 지난 6개월 동안 한 일에 대한 자기 자신과 동료, 그리고 셀 리더의 피드백이 담긴 한 장의 문서죠. Consensus마지막으로 컨센서스 단계에서는 최종 완성된 블루페이퍼를 바탕으로 본부별 슈퍼크루를 선정합니다. 그리고 이렇게 선정된 슈퍼크루에 대해 전체 크루가 동의 가능한지에 대한 적절성 심사가 한 번 더 진행됩니다. 현재 코인원에는 약 120명의 크루들이 일하고 있어요. 사실 모든 크루들의 정성적인 분석 과정을 진행하는 것이 쉬운 일은 아니에요. 코인원 PoW는 셀프마이닝부터 블루페이퍼 작성 및 슈퍼크루 선정까지 약 5주에 걸쳐 진행되는, 길지만 자연스러운 평가와 이를 통한 성장의 과정이라고 생각합니다.이 과정에서 코인원 피플팀 여러분들이 정말 많은 노력과 정성을 기울여주고 계시죠!그렇게 10월의 어느 날, 2018년 상반기의 코인원 PoW가 성공적으로 마무리가 됐습니다. :-)코인원의 모든 크루들이 지난 상반기의 업무에 대해 작업증명을 진행했죠! 그리고 또 다른 6개월 동안 앞으로 다시 힘차게 나아가기 위해 자신의 어떤 좋은 점을 강화하고, 어떤 점은 보완하면 될지를 나 자신, 그리고 동료 크루들과 공유하는 시간이었습니다.또, 이렇게 진행된 2018년 코인원 PoW를 통해 여섯 명의 슈퍼크루가 탄생했어요!2018 코인원 슈퍼크루를 소개합니다 :-)올 한해도 모든 크루가 각자의 분야에서 최선을 다했어요.슈퍼크루는 그 중에서도 특히 다른 크루들에게 좋은 영향을 준 크루들을 선정한 것인데요, 이 분들에게는 코인원의 특별한 추가 보상이 제공될 예정이랍니다. :-)코인원은 앞으로도 크루들이 즐겁게 일하면서 성장할 수 있는 여러가지 재밌고 유익한 도전들을 해보려고 합니다. 코인원이 크립토 세상에서 어떤 즐거운 도전들을 하고 있는지, 앞으로도 코인원 공식 블로그를 통해 지켜봐주세요! :-)#코인원 #블록체인 #기술기업 #암호화폐 #스타트업인사이트 #기업문화 #조직문화 #사내복지 #업무환경 #팀원소개
조회수 1441

Java의 json 라이브러리 google-gson

문제 상황안드로이드 어플리케이션을 개발하다 보면 주소록을 다루는 일이 종종 있습니다. 어플리케이션에서 주소록에 관련된 정보를 접근할 일이 있는 어플이라면 ContentResolver를 통해 단말의 주소록에 접근해서 필요한 정보를 가져오게 됩니다.그런데, 최근 개발하고 있는 스포카 어플을 통해 아주 많은 사람의 연락처가 저장된 주소록을 가지고 이런 저런 로직을 실행하는 상황을 테스트 하다보니, OutOfMemory(OOM)에러가 발생하는 현상을 볼 수 있었습니다. 모바일 디바이스들은 PC와 다르게 자원이 제한적이기 때문에 어떻게 하면 OOM을 일으키지 않을 수 있을까 라는 고민을 해야 하는 상황이었습니다.대강 문제가 되었던 클라이언트 사이드의 로직을 살펴보면 이렇습니다.단말의 주소록에 접근하여 필요한 정보를 추출 후 서버에 전송서버에서 정보를 가공하여 필요한 json 문자열을 생성 후 반환, 이 문자열은 주소록에서 보낸 정보의 양에 비례해서 늘어나게 됩니다.클라이언트 측에서 서버 측에서 보낸 json 문자열을 이용하여 JSONObject객체를 만든 후 이 JSONObject를 이용 리스트 완성eclipse의 MAT(Memory Analyzer)을 이용하여 어느 시점에서 OOM이 일어나는지를 추측해보았습니다. 서버에서 보내준 json형식의 문자열을 HttpURLConnection을 통해 전달받고 이를 StringBuilder를 이용하여 완전한 문자열으로 만들던 도중에 OOM이 일어나는 것으로 의심되었는데 이 때문에 JSONObject의 생성자에 json 문자열을 전달하기도 전에 메모리가 가득 차 버리니 매우 난감한 상황이었습니다.대게 주소록에 사람이 그렇게 많지 않으므로 (200~500명 정도) 아무런 문제가 없었지만 10000명 정도의 더미데이터를 주소록에 저장하고 테스트하다 보니 append 메서드를 호출하다 OOM에러를 뱉으면서 어플이 종료되었습니다. 문제는 append 메서드를 호출 시 StringBuilder의 capacity를 넘을 경우 내부적으로는 메모리 재할당과 copy과정이 일어난다는 것이었습니다. 그렇다고 초기 StringBuilder생성시 capacity를 무작정 높게 잡기도 애매한 상황이었습니다.gsongson은 Java객체를 json형식으로 변환하고 그 역으로도 변환할 수 있도록 도와주는 라이브러리입니다. gson의 사용법이 궁금하다면 gson user guide를 읽어보면 되고 api가 궁금하다면 gson api document를 참조하면 됩니다.gson 적용대략 이런 방식으로 프로젝트에 gson라이브러리를 적용하였고, HttpURLConnection을 통해 받아온 InputStream을 이용 바로 객체를 생성할 수 있었습니다. 이전에 StringBuilder를 이용할때 생기는 오버헤드가 사라진 셈이죠. 위와 같은 방식으로 OOM이 생기는 문제 상황을 해결 할 수 있었습니다.위의 예는 상황을 최대한 단순화하여 설명하려고 작성한 예제이고 이 사이트를 통해 더 상세하게 설명된 사용예를 보실 수 있습니다.#스포카 #개발 #개발자 #GSON #Java #인사이트 #google_gson
조회수 2065

당신이 고민해야 할 성능 분석 요소

IT 서비스는 더욱 복잡해지고 어플리케이션과 인프라의 경계도 클라우드 환경과 함께 허물어지고 있습니다. 많은 기업들이 가상화를 넘어 컨테이너로 가고 있으며 서버리스도 더이상 낮설지 않습니다. 인프라의 변화와 함께 아키텍처의 변화도 다양하게 만들어져 가고 있습니다. 복잡성이 아무리 높아져도 우리는 서비스의 성능을 보장해야 합니다. 서비스의 성능을 보장하기 위해 우리가 체크해야 할 중요 요소들을 알아보려고 합니다. 1. 인프라스트럭처와 클라우드서비스의 성능은 코드 밖에서도 만들어집니다. 그중에서도 인프라스트럭처는 매우 중요한 요소입니다. 국내에서 인프라스트럭쳐 분야는 클라우드로 전환하는 과도기적인 상황에 있습니다. SMB 시장에서 클라우드는 익숙한 환경이지만 국내 엔터프라이즈 기업의 클라우드 도입 비율은 20%가 되지 않습니다. 특히 클라우드를 도입하려는 엔터프라이즈 기업들은 데이터 센터, 퍼블릭 클라우드, 프라이빗 클라우드를 모두 사용하는 상황으로 넘어가면서 클라우드에 대한 모니터링 체계를 구성하는데 많은 어려움을 겪고 있습니다. 특히 기존의 자원 사용량을 설계하고 운영하던 방식에서 스케일의 변화를 통해 서비스의 성능을 실시간으로 조절하는 클라우드 서비스 운영 방법은 조직의 구조 변화를 동반하기 때문에 더욱 어려운 작업이기도 합니다. 이렇듯 클라우드의 전환은 최근 웹 서비스의 성능에 많은 영향을 미치고 있으며 데이터독이나 뉴렐릭 그리고 와탭 같은 성능 분석 서비스들은 클라우드 기반의 인프라 모니터링 기능들을 강화하고 있습니다. 2. 데이터베이스어플리케이션 성능 이슈의 80% 이상이 데이터베이스 레이어에서 발생합니다. 대부분의 엔터프라이즈 기업들은 자사의 어플리케이션을 성능 분석을 위해 DBA 포지션을 마련하거나 필요에 의해 컨설팅을 받고 있지만 아쉽게도 스타트업은 DBA포지션을 마련하는 경우가 거의 없습니다. 웹 서비스의 규모가 커지기 시작하면 데이터베이스로 인한 지연 장애가 매우 심각해 지기 시작합니다. 레거시로 인한 이슈까지 추가되면 서비스의 성능은 지속적으로 낮아지게 되므로 데이터베이스는 꾸준히 관리해야 하는 요소입니다.데이터베이스의 비중이 높다보니 어플리케이션 분석 서비스 중에서도 데이터베이스만 집중적으로 분석하는 도구들이 있습니다. 국내에서는 엑셈과 티맥스에서 데이터베이스 분석 솔루션을 제공하고 있습니다.  3. 오픈 소스와 써드파티 소프트웨어최근 두가지 형태의 트렌드가 서비스 성능에 영향을 주고 있습니다. 하나는 오픈 소스이고 다른 하나는 써드 파티 소프트웨어 입니다. 안정화 된 오픈 소스를 사용하더라도 설정 이슈 또는 사용 환경 이슈로 성능에 영향을 주는 상황이 많이 발생합니다. 위젯, 광고플랫폼, 플러그인등의 써드파티 또한 웹 서비스의 성능에 영향을 주는 요소입니다. 최근 써드 파티의 사용은 점점 늘어나는 추세로 인해 장애 발생에 대한 위험도는 더욱 높아가고 있습니다. 특히 써드 파티는 시간이 흐르면서 성능에 조금씩 부하를 누적시키기도 하므로 충분히 주의를 기울여야 합니다. 이런 환경에서도 서비스의 성능을 유지하기 위한 방법으로 통계 기반의 메소드 분석 기법 모니터링의 중요한 요소가 되어 가고 있습니다. 와탭의 Java 모니터링이 메소드 분석 서비스를 제공하고 있습니다. 4. 모바일구글 이 운영하는 더블클릭(https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/)에 따르면 북미에서 3G에서의 모바일 페이지 로딩까지 소요되는 시간은 평균 19초입니다. 한국은 이미 4G를 넘어가고 있기도 하고 모바일 기기의 성능도 매우 높아서 북미와 상황이 다르지만 모바일 기반의 웹 서비스 성능을 분석할 수 있는 방안의 필요성은 높아져 가고 있습니다. 이와 함께 다양한 환경을 지원하는 end-to-end 모니터링의 중요성이 점점 대두되고 있는 상황입니다.  5. 컨테이너최근 인프라스트럭처의 새로운 흐름은 컨테이너 입니다. 한국은 리눅스 기반의 서비스 구축 시스템이 잘 발달한 덕분에 클라우드 도입이 다른 나라보다 늦은 편입니다. 하지만 최근 국내에 컨테이너 기반의 인프라스트럭처 도입 기업들이 많아지고 있습니다. 우리나라는 가상화를 건너뛰고 컨테이너부터 활성화 될수도 있을 거라 생각됩니다. 컨테이너 환경은 가상화보다 더 많은 인프라를 더 유동적으로 사용하게 되므로 기존의 규모를 뛰어 넘는 관리 체계를 만들어 나가야 합니다. 데이터독과 뉴렐릭 같은 SaaS 기반의 모니터링 서비스들은 이미 컨테이너의 대한 지원을 하고 있으며 와탭 또한 단순 지원을 넘어 컨테이너 전용 서비스를 준비중에 있습니다. 6. 마이크로 서비스많은 기업들이 클라우드와 함께 Micro Service Arichtecture를 도입하고 있기 때문에 독립적인 어플리케이션을 기반으로 하는 서비스 구조는 계속 발전해 나갈 것입니다. 마이크로 서비스와 클라우드의 조합은 커져가는 서비스의 규모를 독립적인 작은 단위로 나눌 수 있어서 매력적이긴 하지만 과거와 다른 운영 조직과 프로세스를 만들어야 하는 숙제를 만들었습니다. 예를 들면 기존에는 하나의 임계치를 사용하여 서비스의 위험도를 관리했다면 이젠 독립적으로 동작하는 서비스들의 임계치를 각각 어떻게 설정하고 관리할 것인지 고민해야 합니다. 독립된 마이크로 서비스의 성능 이슈가 전체 서비스 성능 이슈로 확대되지 않더라도 작게 발생하는 이슈들을 관리하지 못한다면 지속적으로 발전해야 하는 서비스의 미래도 흔들리게 될 것입니다. 7. 서버사이드 코드정상적인 상황이라면 서버사이드 코드에서 발생되는 지연시간은 찰나에 가깝지만 장애 상황에서의 지연은 서버사이드에서 발생하는 경우가 많습니다. 특히 방어가 되어 있지 않은 코드들은 물리적 요소의 작은 변화에 대처하지 못하고 웹 서비스 전체에 영향을 미치게 됩니다. 스타트업의 경우 개발팀이 운영을 함께 맡고 있는 경우가 많기 때문에 서버사이드의 코드를 직접 분석하곤 합니다. 하지만 서비스의 성능이 느려지는 상황 자체를 파악하지 못하는 경우가 많습니다. 서버 사이드에서 평균 응답시간을 체크하는 경우 10초 평균 응답시간이 0.5초를 넘는 경우는 거의 없습니다. 하지만 0.5초의 평균 응답시간을 같는 서비스라 할지라도 하루 동안 10초이상 걸린 고객의 숫자는 규모에 따라 1,000명이 넘을 수도 있습니다. 서비스에 규모가 있다면 꼭 APM을 사용해야 합니다.8. 네트워크 지연네트워크의 지연으로 인한 고객 불만은 예상외로 많이 발생합니다. 인프라스트럭처 이슈로 볼 수도 있겠지만 서비스를 운영한다면 항상 체크하고 있어야 하는 요소입니다. 해당 이슈를 확인 하려면 웹서비스 모니터링을 사용하시면 됩니다. 웹서비스 모니터링을 통해 네트웍상태를 포함한 서비스의 응답시간을 체크해 볼수 있습니다. 와탭의 경우 내부적으로 웹서비스 모니터링을 개발하여 사용하고 있지만 아직 서비스 하고 있지는 않습니다.  9. 자원 사용률자원 사용률은 최근 새로 떠오르는 이슈입니다. 이전에는 인프라스트럭쳐가 고정값이였기 때문에 자원 사용률이 모자라는 경우 서비스 성능을 포기하고 초과되는 고객의 요청을 앞단에서 버리거나 대기시키는 기법들을 사용해왔습니다. 클라우드 환경에서는 자원 사용량의 임계치가 넘어가면 자동으로 스케일을 조정하는 환경이 마련되면서 성능을 유지하는 것이 가능합니다.  클라우드 환경에서 과부하 상태에 접근하면 자동으로 인프라의 규모가 확장되고 과부하 상태는 정상으로 돌아갑니다. 이렇게 환경이 바뀌면서 자원 사용률의 중요 이슈가 성능에서 비용으로 전환되고 있습니다. 부하에 따른 스케일링 정책을 어떻게 정하는지에 따라서 성능과 비용 모두가 영향을 받기 때문에 Auto Scale에 대한 모니터닝이 관심을 받고 있습니다.  마무리웹 서비스의 성능에 영향을 주는 요소는 정말 많습니다. 와탭랩스 IT 기업의 어플리케이션을 모니터링 하기 때문에 기업의 IT 어플리케이션 성능 문제에 대해 항상 고민하고 있습니다. 해당 내용은 매달 또는 분기별로 트렌드를 반영하여 업데이트하고 할 생각입니다. 많은 분들에게 도움이 되었으면 좋겠습니다. #와탭랩스 #개발자 #개발팀 #인사이트 #경험공유 #일지
조회수 2113

(개발자)가 !(개발자)와 일하는 방법

 이 포스트는 제가 개발팀에게 했던 세미나를 정리한 것입니다. 개발자와 기획자, 개발자와 디자이너 사이에 의사소통에 대해서 얘기하는 글이 너무나 많습니다. 디자이너(기획자)가 개발자와 일하기 위해 알아야하는 최소한의 개발 용어, 기획자와 개발자가 절대 하지 말아야 할 말들 등등 재밌는 포스트들이 인터넷에 떠돌고 여러 담당자들의 공감과 비판을 사고 있지요. 언제 이야기해도 농담을 주고 받으며 할 수 있는 좋은 주제인 것 같습니다. 그러나 그런 글들은 해당 개발자 또는 기획자가 쓴 글이기 때문에 바이어스가 걸리기 마련이지요. 우스갯소리로 넘기기에는 껄끄럽고 진지하게 받아들이기에도 껄끄럽죠. 왜 이런 말들이 이렇게 많이 나올까요? 왜냐하면 실제로 그들이 대화하는 방식이 너무나 다르고 서로가 하는 일을 이해하기 힘들기 때문입니다. 서로간에 말이 정말 잘 통했다면 그럴 일이 없겠지요. 심지어 화성에서 온 개발자 금성에서 온 기획자라는 말이 한 때 많이 나돌아 다녔지요.UI/UX도 모르면서...결국 게시판 만들라는 거잖아요이런걸 기획서라고 써오다니...아니 그걸 다 된다고 하면 어떡해요이거 하나 바꾸는게 그렇게 어려운가요?언제까지 가능한지만 얘기해주세요여기서는 되는데 우리는 왜 안되나요?개발 공부 할거에요! 공감 하시나요? 저는 개발자이지만 한번 기획자의 입장에서 왜 그렇게 할 수 밖에 없었는지 핑계를 대보겠습니다. 도대체 기획자는 저딴 방구인지 말인지 모를 말들을 할까요? 와이컴비네이터의 폴 그래햄의 유명한 에세에인 Do things that don’t scale의 한국어 요약본입니다. 영어가 싫고 1분1초가 아까운 여러분을 위해서 준비했습니다 :) 읽어보시면 스타트업에서 처음부터 규모가 큰 작업을 하거나 그것을 자동화하는 일이 얼마나 위험한 일인지 간접적으로 느끼실 수 있을것 같아요. 그 중에 일부만 발췌하여 말씀드리면1. 모집 : 사람들은 많은 선택권을 가지고 있기 때문에 우리 제품을 써야할 필요가 없음그들을 선택하려면 빠른 프로토타입이 필요하고 요구사항에 맞춰 변화할 필요가 있음2. 황홀감 : 모든 유저들에게 황홀한 수준의 경험을 제공해야하는데 엔지니어 교육과정중에 유저 만족에 기울어야한다는 내용이 없어서 생각하기 힘듬3. Meraki : 하드웨어 벤처의 경우 수동으로 기계를 생산/조립하면서 기존에는 알지못했던 핵심 요인들을 발견할 수 있음4. 수동 : 초기에는 소프트웨어가 할일을 사람이 직접하는게 좋을 수도 있음.수동으로 해결하다가 해결책을 자동화하는 것은 확실한 고객을 확보할 수 있지만, 처음부터 자동화된 해결책으로 아무런 문제도 해결하지 못한다면 확실한 실패로 이어짐5. 대형 : 처음부터 큰 스케일로 일을 벌인다고해서 성공으로 이어지는 건 아님. 수동을 싫어하기 때문에 크게 일을 벌리는 것은 큰 실패로 이어짐.큰 버그가 아니고 시장 진입 타이밍이 중요하다면 바로 출시할 수도 있다 이 중에서도 저는 4번의 수동이라는 덕목을 가장 중요하게 생각합니다. 개발자라는 족속들이 수동을 굉장히 싫어하는 경우가 많습니다. 수동은 쿨하지 않거든요. 그래서 모든 것을 자동화시키려고 하죠. 자동은 쿨하니까요. 어떤 포털사이트의 랜딩 페이지를 개발해야하는 프로젝트가 생겼다고 예를 들어봅시다. 개발자는 생각합니다.매일매일 갱신되는 랜딩페이지를 만들자. 좋아요와 댓글이 많은 글들을 최신순으로 정렬하여 보여주는데 매일 자정에 랜딩 페이지가 새로운 내용으로 갱신되는게 좋겠다. 이미 한번 게시되었던 글은 다시는 게시되지 않도록 구성해야겠군. 좋아요와 댓글의 가중치는 1:2 정도가 좋겠지? 이렇게 랜딩 페이지를 하나 구성하는데 엄청난 노력과 시간을 투자합니다. 기획자 또는 마케터는 왜 이렇게 일이 오래걸리는지 답답해하죠. 빨리 출시해서 고객들의 반응을 보고 싶은데 개발이 늦어지니까요. 사실 고객들은 포털 사이트의 메인 컨텐츠가 자동으로 구성되던 수동으로 구성되던 관심이 없어요. 그건 기획자 또한 마찬가지지요. 그들에게 어떤 컨텐츠를 보여줘야 좋아할까 고민하지요. 심지어 그전에 랜딩 페이지라는 기능이 유효한지 증명되지도 않았지요. 실제로 이전에 제가 만들었던 시크릿차트라는 서비스에서 병원의 랭킹을 계산하여 유저들에게 보여주는 기능을 만들 때도 비슷한 일이 있었습니다. 병원 랭킹 기능이란 각 병원이 언급된 블로그와 카페 글을 스크레이핑하여 몇 개인지 세고 데이터베이스를 쌓고 블로그와 카페 글이 많은 순서대로 정렬하여 보여주는 기능입니다. 처음에 저도 욕심이 생기는 겁니다. 검색 포털의 API를 이용하여 스크레이핑 봇을 만들고 데이터베이스를 구축해주는 프로그램을 만들고 싶었습니다. 그 프로그램을 만드는데는 테스팅까지 약 1주일이라는 시간이 꼬박 들겠지요. 그래도 굉장히 쿨하고 재밌어 보였습니다. 그러나 그 욕망을 꾹 참고 수동으로 세서 데이터베이스를 구축하기로 결심합니다. 검색 포털에서 검색하여 나온 숫자를 눈으로 직접 보고 데이터베이스에 직접 접근하여 수동으로 입력하는 방식입니다. 저는 기획자와 다른 개발자에게도 입력하는 것을 도와달라고 협조를 요청했습니다. 그렇게 2일만에 우리는 데이터베이스를 구축했고 빠르게 배포하여 고객의 반응을 살폈습니다. 고객의 반응을 살펴보던 기획자들은 그 기능이 정말 잘 작동하고 고객들이 좋아한다는 것을 증명해냈고 저는 그제서야 API를 이용하여 모든 것을 자동화했지요. 우리는 자동화의 욕심을 버려야합니다. 물론 시간과 비용, 효율을 따져서 해야겠지요. 효율을 따지는 것은 여러분이 더욱 능숙하실거라고 생각합니다. 우선은 간단한 예로 비개발자들이 왜 요상한 말과 행동을 하는지 알아보았습니다. 그러면 개발자인 우리는 그들에게 어떻게 이야기해야할까요? 어떻게 해야 싸우지 않고 일할 수 있을까요? 애자일 개발방법론 중에 하나인 익스트림 프로그래밍에서도 이야기하듯이 지식 섬 현상(Islands of Knowledge)은 굉장히 위험한 요소입니다. 서로가 이해하는 것이 다르기때문에 계속적인 커뮤니케이션을 통해 지식 섬을 없애야합니다. 저는 그 지식섬을 없애기 위한 실질적인 방법을 소개하려고 해요.조카에게 설명하듯이1. 훈민정음 아시겠지만 개발 용어는 절대 금지입니다. 정말로 필요한 경우가 아니면 절대 개발 용어를 쓰지마세요.2. ABC 제목만 보면 훈민정음 룰과 반대되는 내용인 것 같죠? 예를 들어서 설명할게요. 태그 기능을 만든다고 합시다. 그런데 거기서 기획서에 나오지 않은 허점을 우리는 발견했습니다. 손가락을 이리저리써가며 태그가 여러개가 되었을 때 꼬이는 현상을 설명하려 하지마세요. 태그A, 태그B, 태그C 이렇게 설명하세요, 또는 "가나다"도 좋겠군요.3. 연필 & 종이 미팅을 할때 무조건 연필과 종이를 챙겨가세요. 그리고 말보다는 그림을 그려가며 설명하세요. 종이를 아끼지 말고 최대한 자세하게요. 또는 미리 정리한 문서를 준비해가세요. 문서를 보면서 설명하면 빼먹지않고 더 잘 설명할 수 있지요.4. 메타포를 사용하라 익스트림 프로그래밍에도 나오듯이 시스템 전체 또는 기능 전체를 하나의 메타포로 정의하여 설명하는 방법입니다. 현재 제가 만들고있는 IoT 관제 솔루션의 뒷면에는 기획자 또는 디자이너가 절대 이해하지 못할 프로토콜이라고 불리는 부분이 있습니다. 우리는 프로토콜을 어떻게 개발자가 아닌 사람에게 설명해야 할까요? 저는 커피머신을 메타포로 사용하여 설명하겠습니다. 우리는 제품으로부터 raw data라는 가공되지 않은 커피빈을 받습니다. 그냥 겉으로만 보면 어떤 유용한 데이터를 가지고 있는지 전혀 모르죠. 커피빈을 볶고 갈아서 사람이 마실만한 에스프레소를 만듭니다. 거기에 우유, 크림, 초콜릿 등을 더해서 다른 사용자가 좋아할 만한 또다른 커피도 만들 수 있겠죠. 데이터베이스를 모르는 사람들이 보는 깔끔한 그래프가 나오는 화면은 아메리카노, 라떼 등으로 비유할 수 있겠군요. 정말 조카에게 설명하듯이 쉽게 친절하게 설명하시면 됩니다. 그럼 다음으로 여기서 한발짝 더 나아가서 심화학습을 해보죠. 우리는 개발자로서 비개발자인 그들에게 어떻게 해주면 더 좋을까요?1. 기획의도를 이해하기 왜 이렇게 기획했는지 이해하면 좋습니다. 유저의 요구사항이 무엇이고 왜 그런 요구를 했는지 Back-log를 알면 개발이 더 쉬울 뿐만 아니라 빠르게 배포할 수 있을지도 모릅니다. 예를 들어 배포 30분전에 버그가 발견되었습니다. 개발자는 "헉, 버그다."이러면서 열심히 고치겠지요. 그러면서 기획자에게 배포를 내일해도 되냐고 물어봅니다. 기획자는 안된다고 하고 또 싸우겠죠. 만약 기획의도를 이해한다면 이 싸움이 필요하지 않을지도 모릅니다. 해당 기능을 작동시키는데 있어서 크리티컬한 것이 아니면 서비스를 우선 배포하고 이 후에 고쳐도 되겠지요. 또는, 마케팅이나 시장은 타이밍이 중요하기 때문에 기능 구현의 우선순위를 기획자가 잡아줄 수도 있습니다.2. 프로토타입을 빠르게 개발자는 코드로 이야기합니다. 그러나 비개발자는 이해 못합니다. 움직이는 프로토타입은 고객뿐만 아니라 동료의 이해도를 드라마틱하게 높일 수 있지요.3. 계속해서 점검받기 점검받는다고 그들의 아래에 있는 것이 아닙니다. 우리는 프로젝트를 완수하기 위해 각자 다른 역할을 수행하고 있는 동등한 존재임을 잊지맙시다. 개발자는 비개발자에게 계속해서 움직이는 프로토타입을 보여주고 피드백 받으면서 지식의 섬을 없애나가야 합니다. 고객들이 원하는대로, 기획자들이 기획한대로, 디자이너 디자인한대로 구현하는 것이 프로젝트에서는 무엇보다도 중요하니까요.4. 데드라인은 꼭 지키기 데드라인을 지키는 것은 개발자와 비개발자간에 신뢰관계를 높이는 방법 중에 개발자가 할 수 있는 가장 효과적인 방법입니다. 또한 고객과도 마찬가지죠. 약속을 지키지 못하는 회사의 제품을 사가는 사람은 없습니다.  우리는 서로에 대해 너무 조금만을 알고 있습니다. 그래서 서로의 입장을 모르고 문제가 생기기 마련이지요. 당연히 서로에 대해 자세히 알 필요는 없지요. 우리팀에서 프로젝트를 망치고 싶어하는 사람은 없습니다. 그러나 상황이, 그리고 오해가 프로젝트를 망치게 하지요. 그리고 누구나 똥을 쌉니다. 서로 부족한 점이 있으니 부족한 점을 욕하기보다는 부족한 부분을 채우기위해 영역을 넓혀가는 건 어떨까요? 저건 내 일이 아니니 알아서 되겠지라는 태도보다는 다 같이 고민하며 빈 공간을 채우는 편이 좋다고 생각합니다. 서로를 비난하면서 프로젝트를 할 것인가, 서로를 이해하는 마음가짐으로 즐겁게 프로젝트를 할 것인가... 선택은 당신의 손에 달렸지요.#비주얼캠프 #인사이트 #경험공유 #조언 #개발자 #개발팀 #협업 #팀워크
조회수 878

VCNC 개발팀 워크숍을 소개합니다. - VCNC Engineering Blog

VCNC 에서는 최근에 모빌리티 서비스 이동의 기본 타다를 출시했습니다. 신규 서비스를 준비하면서 팀도 새롭게 구성되고 새로운 멤버들이 팀에 합류했습니다. 이러한 변화 속에서도 좋은 개발 문화를 유지하기 위해서 VCNC 개발팀은 큰 노력을 하고 있습니다. 그중에서도 모두가 자랑하고 싶어 하는 VCNC 개발팀 워크숍을 소개합니다.VCNC 개발팀 워크숍최근 VCNC 개발팀 워크숍은 2018년 12월 19일 수요일에 진행되었습니다. 2016년 12월 처음 시작해서 최근까지 총 6번의 워크숍이 열렸습니다. VCNC 가 SOCAR에 인수되어 타다 서비스를 바쁘게 준비했던 2018년 8월을 제외하고 1년에 3번씩(4, 8, 12월) 꾸준히 개최되고 있습니다.VCNC 개발팀 워크숍은 개발팀 멤버들이 업무 외적으로 가지고 있던 각자의 관심사들을 공유하고 개발자들이 할 수 있는 고민을 같이 나눠보기 위한 욕구에 의해 처음 제안되었습니다. 포맷을 어떻게 할지 논의한 끝에 아래와 같은 포맷으로 워크숍을 진행하기로 했고 최근까지 이 포맷으로 워크숍을 진행하고 있습니다.오전 시간에는 모든 멤버가 각자의 관심사에 대해 5~10분 정도로 가벼운 라이트닝 톡을 하자.오후 시간에는 토의 주제를 정해서 몇 가지 깊은 토의를 나눠보자.회사의 업무에서 완전히 벗어나서 집중하기 위해 프로젝터 사용이 가능한 외부 카페를 대관하자.고기 회식을 하자!2018년 12월 제 6회 VCNC 개발팀 워크숍 단체 사진라이트닝 톡라이트닝 톡은 위에 언급했던 대로 모든 멤버가 5~10분 정도의 시간 동안 각자의 관심사에 대해서 다른 멤버들에게 소개하는 시간입니다. 발표 주제는 처음에는 개발로 한정 지었다가 더 폭넓게 관심사를 공유하기 위해 자유 주제로 변경했습니다. 다들 워크숍 전날까지는 어떤 발표를 해야 할지 걱정하며 투덜대지만, 막상 워크숍 당일이 되면 굉장히 흥미로운 주제들을 가지고 참여를 합니다. 라이트닝 톡이라는 의미에 맞게 1회 워크숍에서는 타이머를 켜고 시간 체크를 하면서 간단하게 발표를 했습니다. 그런데 기대했던 것보다 훨씬 좋은 발표들이 나오면서 발표 시간을 유동적으로 해서 발표의 퀄리티를 더 높이기로 했는데, 바로 다음 워크숍에 1시간 10분짜리 장대한 강의가 등장하는 바람에 절제의 중요성을 다시금 느끼면서 다시 타이머를 켜기로 했습니다…2017년 12월 워크숍에서는 PB팀이 상품 협찬을 해줘서 (PB팀 감사합니다!) 최고의 발표를 선정해 밀크 미니 인형을 지급했습니다. 영예의 수상자는 욕망의 흐름 이라는 발표를 정말 욕망의 흐름대로 발표한 Max로 선정되었습니다.<iframe src="https://docs.google.com/presentation/d/e/2PACX-1vQChBaARqlj8XfZx75MtkcejwupwBPt9tgD47sL99L1mHceYnPR2yDJnVAKFq8nFHXG9Pc9QbWBA5Eb/embed?start=false&loop=false&delayms=10000" frameborder="0" allowfullscreen="true" mozallowfullscreen="true" webkitallowfullscreen="true"> 지금까지 워크숍을 6회나 진행했기 때문에 상당한 양의 라이트닝 톡 발표자료들이 모였습니다. 그중에서 몇 가지 발표의 슬라이드를 공유합니다.Glitches of Mario by PrinceOrigami - 종이접기와 수학 by PrinceLattice-based Cryptography by BradTADA-Android 회고 by David기반 작업들을 무엇을 했는가? + RIB 간단 설명Contract by DoogieAd Fraud by HughBB84 - 양자 역학을 이용한 절대적으로 안전한 키 분배 프로토콜 by James불완전성 정리 by James삼단논법 by JamesGAN by MaxReinforcement Learning based on AlphaGo by NelsonSteganography by Nelson재귀의 폭풍 by TedUBER: COSTS & REVENUES by TerryProbabilistic Filter by Youngboom다음 워크숍부터는 발표를 녹화해서 슬라이드와 함께 공유해보도록 하겠습니다.최고의 발표로 선정된 Max종이접기로 각의 3등분선 구하기 실습필자의 발표를 경청하는 멤버들디스크의 위험성을 온몸으로 표현 중 심층 토의VCNC 개발팀 워크숍에서는 회사의 주요 결정사항 혹은 공통으로 관심이 있는 이슈들을 선정해서 모두의 의견을 듣고 공감대를 형성하거나 액션 플랜을 세우는 토의를 진행합니다. 토의의 주제는 발전적이고 열린 커뮤니케이션을 지향하는 멤버들의 특성상 회사 생활 과정에서 자연스럽게 형성됩니다. VCNC 에서는 평소에도 서로의 의견을 공유하는 자리를 자주 가집니다. 그 예로는 매 달 진행하는 매니저와의 1:1 개인 리뷰 제도, 각 팀별 주간 회고 회의, 제품 피쳐 개발 단위로 진행하는 회고 회의 등이 있습니다. 이러한 의견 공유 과정에서 멤버 각자가 생각하는 불만, 문제점, 희망 사항들이 자연스럽게 워크숍의 토의 주제로 발전됩니다. 토의는 특별한 절차 없이 모든 구성원이 자연스럽게 끼어들면서 자신의 의견을 펼치며 진행됩니다. 모두의 의견을 듣는 것이 중요하기 때문에 특별한 주제가 아니라면 적은 인원으로 조를 구성해서 토의한 뒤 의견을 취합합니다. 정리한 내용은 제품팀 및 HR 담당자에게 전달되며 그 후 우리가 해볼 수 있는 시도들을 하거나 새로운 회사의 정책들이 생겨나기도 합니다.둘러앉아서 토의에 집중하는 멤버들 (편안한 자세 가능)아래의 항목들은 실제로 진행했던 토의의 주제들입니다.순수 개발 관련점차 높아지는 개발 복잡성을 어떻게 해결할까?서버-클라 간 프로토콜 문서화 문제제품 개발 프로세스 관련제품 개발 프로세스를 스프린트에서 칸반으로 변경하고 지금까지 겪었던 느낀 점, 문제점 및 해결 방안은?이슈 관리가 잘 안 되는데 원인 및 해결책은?QA가 필요한가? 제품 품질을 높이기 위해선 무엇을 해야 하는가?회사의 문화, 복지 등 전반회사에서 팀 간 커뮤니케이션을 원활하게 하기 위해 Manager 제도가 도입되는데 Manager 는 어떠한 역할을 맡아야 하는가?Manager 제도의 후기 공유 및 개선 방향.어떠한 모습의 회사를 원하는가?필요한 사내 문화 및 복지는 무엇이 있을까?개인의 발전 관련언제 동기부여가 되는가? 저하되게 만드는 요인은?어떠한 사람과 같이 일을 하고 싶은가?어떠한 모니터링 및 피드백을 받고 싶은가?VCNC 개발팀 워크숍의 토의 결과로 회사의 많은 부분이 발전하고 있습니다. QA 팀이 생겼고 해외 및 국내 콘퍼런스 지원 관련 복지 정책이 새로 생겼습니다. 제품 개발 프로세스는 새로운 시도를 거치면서 지속해서 발전해 나가고 있습니다.그 외우걱우걱워크숍에는 풍족한 먹을거리가 함께합니다. 카페를 대관하는 경우에는 무제한으로 음료가 제공되며 점심시간에는 배달을 시켜서 먹으면서 함께 이야기를 나눕니다. 마무리로 저녁에는 고기를 먹고 싶은 만큼 맘껏 먹으면서 역시 이야기꽃을 피웁니다.미니게임워크숍의 포맷이 라이트닝 톡 + 심층 토의 조합으로만 진행되어 느껴지는 지루함을 탈피하기 위해 2018년 4월 워크숍에서는 2인 1조로 팀을 구성해서 미니게임을 진행했습니다. 개발자 감성에 걸맞게 스크래치 게임인 Lightbot 2로 1시간 정도 플레이를 했습니다. 승패가 있는 대결은 아니었지만 다들 피로감을 호소할 정도로 엄청나게 집중하면서 시간을 보냈습니다.워크숍의 핵심은 고기를 굽는 것점심에는 피자를 시켜 먹으며 자유로운 대화를 나눕니다.집중해서 Lightbot 을 플레이하는 플레이어휴식 중에도 즐거운 대화는 계속됩니다. 마치며VCNC 개발팀 워크숍은 앞으로도 계속됩니다. 앞으로도 좋은 회사의 문화를 소개하는 기회를 자주 만들도록 노력하겠습니다. 저희와 함께 VCNC 를 발전시킬 좋은 분들을 기다리고 있으니 많은 지원 바랍니다!
조회수 4550

신입 개발자를 위한 코드의 정석

Overview대학을 수석으로 졸업했지만, 정작 회사에서는 A부터 Z까지 제대로 할 줄 아는 게 없었습니다. 실수를 남발할 때마다 느꼈던 좌절감은 아직도 생생하지만 되돌아보면 그때의 삽질이 소중한 피와 살이 되었지요. 오늘은 헤매고 있는 신입 개발자를 위한 글을 쓰려고 합니다. 신입 개발자, 당신! 내 이야기를 편하게 듣고 가지 않으실래요? 남을 위한 코드, 클-린 코드“너랑 같이 일하는 사람은 어떻게 보라는 거야?” “한 명이 짠 코드인데, 어째 한 사람이 짠 것 같지가 않다..” “이게 네 스타일이냐?” 대학생이었을 땐, 대부분 혼자서 프로젝트를 진행했습니다. 다른 사람이 제 코드를 보는 일도 거의 없어서 띄어쓰기나 들여쓰기 등에 통일이 없었고, 함수의 네이밍도 전혀 고려하지 않았습니다. 이게 나쁜 습관이었다는 걸 입사하고 알게 되었죠. 이 습관을 고치려고 코딩 컨벤션(coding convention)을 지키는 것에 꽤 오랜 시간을 들여야만 했습니다. 우리는 협업을 하는 사람들입니다. 사람들이 더러운 방보다 깨끗한 방을 좋아하는 것처럼, 당신과 협업하는 개발자도 보기 어려운 코드보다 깨끗한 코드를 더 좋아합니다. 클린 코드를 작성하기 위한 세 가지 기본 원칙을 잠시 소개합니다. 클린 코드를 위한 세 가지 기본 원칙 코드를 최초로 작성한 사람이 끝까지 유지보수를 한다는 보장은 없다.이미 잘 정리된 코드는 효율성이 증가한다. 정리할 시간에 코드 한 줄을 더 분석할 수 있으니까!리팩토링은 미루었다가 한꺼번에 하는 것이 아니다. 코드를 작성하는 매순간 함께 하는 활동이다.작은 것 하나부터 습관을 들여보세요. 분명 깔끔하고 보기 좋은 코드를 만드실 수 있을 겁니다. 머지 않아 “남을 위한 코드는 곧 나를 위한 코드”라는 것도 알게 될 거고요. 책의 한 구절이 떠오르네요. “우리는 저자이다. 저자에게는 독자가 있다. 그리고 저자에게는 독자와 잘 소통해야할 책임이 있다.”⌈Clean Code⌋의 저자, Robert C. Martin 설마가 사람 잡는다, 철저한 검증만약 누군가 검증 단계에서 잊지 말아야할 것이 뭔지 묻는다면 이렇게 대답하고 싶습니다. “절대 사용자가 입력한 값을 신뢰하지 말라. 프론트엔드에서도, 백엔드에서도.” 모든 사용자가 각 항목에 맞게 올바른 정보만 입력해준다면 얼마나 좋을까요? 세상에는 다양한 사용자가 있습니다. 너무 바빠서 얼른 회원가입을 해야하는 사용자는 항목을 채우지도 않고 신청 버튼을 누를 수도 있습니다. 영어로 입력해야 하는 항목엔 한글을 입력한 사용자도 있을 겁니다. 이런 휴먼 에러(human error)뿐만 아니라 의도적으로 비정상적인 요청을 시도하는 사용자도 분명 있습니다. 이 때문에 개발자는 기능에 대해 항상 검증해야 합니다. 바로 이렇게요!그런데 프론트엔드에서 유효성 검사를 하면, 백엔드에는 유효한 값만 넘어온다고 보장할 수 없습니다. 자바스크립트는 브라우저 엔진에 따라 다르게 동작할 수도 있습니다. 또 자바스크립트에서 다루는 값들은 크롬의 개발자도구(option + command + i)를 이용하면 얼마든지 값을 변조하거나 검증을 회피할 수 있습니다. 또 불온한 시도가 아니더라도 다양한 예외 케이스들이 존재하기 때문에 백엔드에서도 무조건 검증해야 합니다.페이스북 페이지의 개발자 도구를 열었을 때 노출되는 화면입니다. 얼마나 나쁜 사람들이 많으면 경고화면까지 만들었을까요?누군가 질문할 수도 있겠군요. “프론트엔드의 검증이 의미가 없다면, 백엔드에서만 검증을 해도 되지 않을까요?” 네, 아닙니다.(단호) 많은 양의 일을 한꺼번에 하는게 힘든 것처럼 무분별한 요청이 서버에 쏟아지면 서버도 사람처럼 지치고 말 겁니다. 응답이 느려지는 등의 문제가 생길 수도 있고, 결국 사용자가 불편해질 것입니다. 그러므로 가장 좋은 검증 방식을 3단계로 정리하면 아래와 같습니다. 고수가 되는 검증 방식 3단계프론트엔드에서 먼저 값 검증을 하여 빠른 사용자 경험을 제공한다.백엔드에서 다시 한 번 더 검증을 거쳐 상황에 적절한 응답 코드를 내려준다.프론트엔드는 상황에 맞게 적절한 UX와 메시지를 보낸다. 동작 그만! 정리는 하고 코딩하자!예전에는 요구사항이 있으면 바로 키보드 위에 손부터 올렸습니다만, 그건 좋은 태도가 아니었습니다. 팀장님이 “이 경우엔 어떻게 하지?”라고 질문하면 아무 대답도 하지 못했기 때문이죠. 팀장님은 늘 “항상 먼저 생각하고 코딩하자!“라고 조언하십니다. 맞습니다. 최대한 모든 경우의 수를 머릿속에 정리하고 코딩을 시작해야 합니다. 시간이 없다는 핑계로 무작정 시작하면 분명 문제가 발생합니다. 또 구현할 기능만 몰두하지 말고, ‘이 기능이 다른 기능에 영향을 미칠 수 있을까?’를 고민하면 훨씬 좋은 코드를 만들 수 있을 겁니다. “이런 거 다 생각하고 짜면 도대체 코딩은 언제 하라고?” “얼른 선임 분들에게 코딩하는 내 모습을 보여줘야 하는데!” “당장 코드 안 짜고 있으면 노는 것처럼 보이지 않을까?” 혹시 이런 생각을 하고 계신가요? 나도 그런 생각을 했던 적이 있습니다. 하지만 요구사항을 확실하게 정리한 후, 코드를 짜는 게 더 효율적입니다. (그렇지 않으면.. ‘수정’이란 이름 아래 모든 것을 뒤엎고 처음부터 다시 시작해야할 수도 있습니다.) ‘더 나은 개발자가 되는 8가지 방법(8 Ways to Become a Better Coder)’이란 글에는 이런 내용이 있습니다. “동작하는 코드는 끝이 아니라 시작이다.” 신입 개발자는 종종 요구사항에 따라 동작하는 코드만 짜면 된다고 여길 때가 있습니다. 물론 사회생활에 적응하느라 정신 없는 와중에 그나마 자신의 코드가 요구사항대로 동작하면 무척 뿌듯할 겁니다. 하지만 동작만 한다고 절대 지나치지 말아주세요. 위에서 언급한 것처럼 깨끗한 코드가 되도록 리팩토링을 하고, 검증하고, 동작이 제대로 되는 것인지 의심하면서 꾸준히 노력해야 합니다. 마지막으로 항상 중요하게 생각하는 문장 하나를 남기고 글을 마치겠습니다.“진정으로 훌륭한 프로그래머는 적극적으로 어디가 잘못되었지를 찾는다. 자기가 놓친 결함은 결국 ‘사용자’가 발견하게 된다는 것을 알고 있기 때문이다.” Esther SchindlerConclusion지금까지 다룬 내용은 결국 같은 맥락입니다. 모든 개발조직은 좋은 품질의 소프트웨어를 개발할 줄 아는 개발자, 협업할 줄 아는 개발자를 원합니다. 누군가 “당신은 잘 지키고 있는가”라고 질문한다면, “저 또한 노력하고 있습니다.”라고 답변하고 싶습니다. 같은 자리에 머무르는 개발자가 될 것인지, 부족함을 알고 항상 배우고 나아가는 개발자가 될 것인지는 스스로의 몫이라고 생각합니다. 이 글을 끝까지 읽은 신입 개발자 당신! 같이 노력하지 않으실래요? :-) 참고 Robert C. Martin, 「Clean Code」, 케이엔피북스(2010)Esther Schindler, 8 Ways to Become a Better Corder, New Relic, 2018.03.02.유석문, 「프로그래머 철학을 만나다 - 소프트웨어를 사랑하는 기술」, 로드북(2014)임백준, 「읽기 좋은 코드가 좋은 코드다」, 한빛미디어(2012)팀장들이 꼽은 신입 PHP 개발자가 가급적 빨리 알았으면 하는 것들프론트에서”만” 유효성 검사가 문제인 경우남을 위한 코드 만들기 - 클린코드글김우경 대리 | R&D 개발1팀kimwk@brandi.co.kr브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 935

Node.js - Event

Event(이후 '이벤트'로 통칭)Node.js(이후 '노드'로 통칭)는 이벤트 기반 비동기 방식으로 작동한다. 그러므로 노드를 잘 다루기 위해서는 이벤트에 대해 이해하여야 한다.노드에서 이벤트를 호출하고 여러 처리를 하기 위해서는 EventEmitter 객체를 상속받아 구현해야 한다.아래 예제 코드를 통해 EventEditter를 상속받은 객체를 가지고 이벤트를 생성하고 호출하는 등 여러 처리하는 법을 살펴보자.* 코드 복사붙여넣기가 필요한 경우 http://madeitwantit.tistory.com/32 에서 가능하다.EventEmitterEventEmitter 클래스는 events 모듈에 의해 정의되고 제공된다.EventEmitter = require('events');위와 같이 EventEmitter를 정의할 수 있다.EventEmitter의 메서드EventEmiter.on('이벤트 이름', '리스너 함수') - 지정한 '이벤트 이름' 이벤트에 '리스너 함수'를 리스너 배열 가장 끝에 추가한다. EventEmiter.once('이벤트 이름', '리스너 함수') - on() 메서드와 기능이 비슷하다. 다만 이 메서드로 등록된 리스너는 일회성으로 한 번 실행된 후 제거된다. EventEmiter.addListener('이벤트 이름', '리스너 함수') - on() 메서드와 같다.EventEmiter.emit('이벤트 이름'[, arg]...) - '이벤트 이름'  이벤트에 등록된 리스너 함수를 등록된 순서에 따라 호출한다. 이벤트가 존재한다면 true, 그 외에는 false를 반환한다.EventEmiter.setMaxListeners(n) - EventEmitter는 디폴트로 최대 리스너 수가 10으로 지정되어 있다. 10보다 더 많은 리스너를 등록할 때 사용한다. Infinity나 0을 지정하면 제한 없이 리스너를 등록할 수 있다.EventEmiter.getMaxListeners() - 현재 EventEmitter에 지정된 최대 리스너 수를 반환한다.EventEmiter.listenerCount('이벤트 이름') - '이벤트 이름'에 등록되어 있는 리스너의 수를 반환한다.EventEmiter.listeners('이벤트 이름') - '이벤트 이름'에 등록되어 있는 리스너 배열의 사본을 반환한다.EventEmiter.removeAllListeners(['이벤트 이름']) - 모든 리스너나 파라미터에 지정한 '이벤트 이름'의 리스너를 제거한다.EventEmiter.removeListeners('이벤트 이름', '리스너 함수') - '이벤트 이름'에 등록되어 있는 특정 '리스너 함수'를 제거한다. 같은 리스너가 여러 개 등록되어 있으면 이 메서드를 여러 번 호출해야 한다.EventEmitter의 이벤트'newListener' - 새로운 이벤트를 등록할 때, 추가될 리스너를 리스너 배열에 추가하기 전에 호출된다. 이벤트에 리스너가 전달되기 위해 이벤트 이름과 추가될 리스너가 전달된다.'removeListener' - 리스너가 제거된 후 호출된다.하단의 예제를 통해 newListener가 호출되는 시점에 대해 살펴보자.                                                              * 코드 복사붙여넣기가 필요한 경우 http://madeitwantit.tistory.com/32 에서 가능하다.참고문헌:모던 웹을 위한 Node.js 프로그래밍 - 윤인성Haruair (http://haruair.com/blog/3396)Node.js Documentation (https://nodejs.org/api)조대협의 블로그 (http://bcho.tistory.com/885)#트레바리 #개발자 #안드로이드 #앱개발 #Node.js #백엔드 #인사이트 #경험공유
조회수 1016

S/W 공학과 실전과의 거리감

학교에서 배우는 소프트웨어 공학이 왜? 실제 업무에서 사용이 안되는가?그동안 후배들에게 멘토링을 할 때에 가장 많이 받았던 질문 중의  하나이다. 평소에 답변하던 것들을 글로 옮겨 본다.소프트웨어를 전공하는 많은 후배들은 대학생활 4년 동안 배우는 다양한 이론들과 소프트웨어공학들의 수많은 이론을 배운다. 하지만. 대부분의 선배들은 사회생활의 실제 프로그래머로 취업을 한다고 해도, 프로그래밍을 실제 업무에서 하지만, 실제 관련된 이론과 기술. 수많은 가이드라인과 품질 관련 이슈에 대해서 실제 적용하기 어렵거나, 거의 사용하지 않는다고 선배들에게서 이야기를 듣는다.물론, 이 경향은 많이 바뀐 것은 사실이다. 이제 대부분 공학적인 접근법을 사용한다. 하지만, 그럼에도 불구하고 실제 현장에서는 이 현상이 그다지 바뀌지는 않았다.과연 우리가 학창 시절 배우는 그 많은 이론들은 도대체 왜? 만들어졌는데, 실제 사용이 안 되는 이유는 무엇인가? 학창 시절에는 자바나 C와 같은 프로그래밍 스킬만 높이면 되는 것인가? 도대체, 학생 시절 배우는 그 많은 이론과 공학, 품질 관련 이슈들은 실제 업무에서 그렇게 쓸모없는 것이라고 대부분의 선배들이 이야기하는가?실전과 대한민국의 현실. 그리고. 소프트웨어 프로그래밍에 대해서 학생들에게 삽질의 대가가 한마디 하려 한다. 왜? 우리는 학교에서 배우는 이론을 실제 사용할 기회가 없는 것일까?필자는 소프트웨어 공학을 학창 시절 배운 것이 아니다. 오히려, 실제 소프트웨어 개발 활동을 하면서, 공학적인 것이나 소프트웨어의 시각화를 해야만, 소프트웨어의 품질을 관리할 수 있다는 것을 몸으로 느끼고, 이것이 실제 소프트웨어를 상품이나 서비스의 명목으로 사용자들에게 제공하는 경우에 정말 필요하다는 것을 20년의 실제 개발자 생활을 하면서 그 필요성에 대해서 처절하게 느껴왔다.차라리, 필자가 핵심 서비스와 중요한 개발 내용을 직접 코딩하는 개발자의 역할을 할 때에는 이러한 공학적인 것이나, 작은 규모의 소프트웨어를 개발할 때에는 이러한 필요성을 느끼지 못했었다. 대부분의 작은 규모의 소프트웨어를 개발할 때에는 단기적인 일들이 많았다.사용자의 요구사항에 맞추어서 그 시기에 그때에 맞추어서 소프트웨어를 개발하였고, 해당 소프트웨어를 다시 유지 보수한다던가, 다시 수정 작업을 하지 않는 식의 작업을 하는 경우에는 이러한 공학적인 개념이나 그 배경으로 디자인하고 설계한다는 것에 대해서 매우 귀찮게 생각했었다.과거 첫 경험이었던 코볼이나 클리퍼 시절에는 해당 소프트웨어의 규모가 크지도 않았으며, 데이터의 구조 설계 또한 대부분 파일 중심의 데이터였었고, 화면의 구조 또한 수십 개를 넘지 않는 정도의 규모였다.오히려, 고속의 인덱스를 걸기 위한 테이블 접근법이나, 고속으로 화면에 출력하는 방법. 데이터를 조금 더 빠르게 구성하는 방법들에 집중할 시기에는 굳이 플로우 차트를 왜? 그리는 것이며, 파일 구조에 대해서 디자인해야 하는지에 대해서 의아함을 똑같이 가지고 있었으며, 굳이 설계나 디자인 없이 바로 코딩과 개발을 하던 시절이었다.하지만, 대규모 시스템을 주로 구사하는 웹서비스의 시대에 있어서, 단순한 로그 정보하나를 시리얼라이즈화시키는 것만 봐도 그 사람의 수준을 파악할 수 있고, 텍스트 중심의 구성 설계를 보면 향후 시스템의 성능에 대해서도 예측이 되는 경험을 축적하게 되면, 가장 중요한 것은 역시... 공학적인 접근법이다.필자가 소프트웨어 공학의 첫 번째 개념에 대해서 눈을 뜨고, 그 필요성을 절감하던 첫 번째가 바로, 고객에게 제공되는 소프트웨어가 지속적인 유지보수성을 가지기 시작할 때에 그 필요성을 처음으로 인지하기 시작하였다.처음의 요구사항이 변화되면서 사용자의 업무 흐름이 소프트웨어의 구조와 데이터베이스의 구조를 계속 변화하여 나가고, 이러한 상황을 미리 설계된 자료를 통해서 예측하거나, 소프트웨어 아키텍처적인 관점으로 조금 더 세밀한 환경에 대해서 메모가 되어있고, 그 구성에 대해서 서술해두었다면, 상당히 고속 개발을 하고, 소프트웨어 품질을 향상시키는데 매우 중요한 첫 번째 개발 행위가 되었을 것이라고 느꼈었다.또한, 개발자가 수십, 수백 명 단위로 소프트웨어의 설계가 대단위로 변화하고, 그 개발 품질에 대한 통제와, 적정한 수준의 개발 수준을 형성하게 하는 방법에 대해서 고민할 때에도 똑같이 이러한 소프트웨어 개발의 시각화에 대해서 인지하기 시작한 것이다.당시에는 공학적인 개념 없이 유사한 방법이나 표현방법을 고안하였으나, 관련된 내용을 찾아보고, 전문가들에게 조언을 구해보니, 상당 부분 그 부분에 대해서 전문가들 간의 협의가 있었고, 그 표준화되는 시각화 방법들과 방법론들이 매우 많이  연구되었다는 것을 알게 되었다.필자는 오히려, 이러한 개발과정에 있어서 필요한 것들을 개발하다가, 공학적인 베이스나 방법론들이 어떻게 실제 개발에 사용되어야 효과적인가에 대해서 실전에서 터득하고, 실전에 배치되는 것에 대해서 이해를 넓혔다.또한, 미국에서 개발되어진 개발 방법론이 국내의 실정이나 환경에 적합하지  않은다는 것을 깨닫고, 그러한 부분들을 어떻게 지식을 바꾸어야 하며, 실제 실천해야  하는지에 대해서 아키텍트 포럼이나 모임에서 역설하기 시작하였고, 그 부분을 실제 개발에 접목하려 애써왔다.그리고, 그 경험을 중심으로 소프트웨어 아키텍팅과 관련된 경험을 늘려왔고, 모바일과 웹서비스를 중심으로 하는 기업에서 개발 총괄을 하는 경우에는 그동안 축적한 소프트웨어 개발의 경험을 바탕으로 소프트웨어 형상관리 SCM(Software Configuration Management)을 중심으로 이슈관리, 개발, 테스트, 배포의 단계를 자동화하는 소프트웨어 개발의 비주얼라이제이션을 어떻게 실현할 것인가에 대해서 고민하고, 그 환경을 보다 쉽게 전파할 수 있는 공정과 형태를 미국 중심의 CMMI체계와 국내의 SP의 기준을 배경으로 상당 부분 고민하고 있다.그런데, 가끔 만나는 후배들이나 이제 막 개발자의 생활을 시작하려는 친구들에게서 많이 받은 질문 중의 대표적인 질문이 ‘도대체, 학교에서 배우는 소프트웨어 공학은 언제 사용하나요?’, ‘도대체, 대학 4년 동안 배우는 그 많은 이론들은 언제쯤 사용할 수 있는 것일까요?라는 질문들을  그동안 수십 번, 수백 번 받아왔다.심지어, 소프트웨어 개발 생활을 몇 년정도 한 후배들에게서 마저도 듣게 되니, 이 부분에 대해서 한 번쯤은 글로 남겨 두어야 하겠다고 생각하였다.과거, ‘서울 행복 직업박람회’에서  질문받은 내용은 이러했다.그 당시 필자에게 찾아온 대학생이 질문한 내용은 매우 간단하지만, 매우 어려운 답변일 수 있었다. 그것은, ‘왜 대학교 때 배우는 이론이나 원론과 같은 기본적인 내용들이 실제 사회생활 나가면 필요 없다고 자기의 선배들이 이야기하는 것일까요?. 실제. 취업하면 정말 그런가요?’이 질문은 이번 이야기의 주제이며, 필자가 20년을 넘게 소프트웨어 개발자 생활을 하면서 받아온 질문 중에 가장 빈도수가 높은 질문이라고 하겠다. 필자가 자부해온 삽질의 대가라는 점에서 그 친구는 그 친구는 정말 그 이야기를 잘 해줄 사람을 찾아온 것이라고 생각하면서 다음과 같이 설명했다.결과론적으로 '필요하지만, 필요없는 곳도 있다. 하지만, 가능한 필요한 곳을 찾아봐라.'라는 식의 이야기를 해주었다.자, 그렇다면. 필자가 이런 선문답 식의 답변을 하게 된 내용을 하나씩 풀어서 설명해보자. 도대체, 대한민국의 소프트웨어 개발을 하는 곳에서 왜? '소프트웨어 공학'적인 개념이나 이론들이 사용이 안되고 있는 것일까?물론, 정답은 간단할 수 있다. 국내의 대부분의 소프트웨어 개발회사의 경우에는 소프트웨어 공학쯤은 없어도, 아무런 문제(?) 없이 소프트웨어 개발이 가능한 경우이다.실제, 그런 회사도 그런 개발 조직도 상당히 많다는 것을 필자는 경험으로 알게 되었다. 그렇다면, 그렇게 소프트웨어 공학쯤은 필요 없는 기업이나 개발 조직은 어떤 곳들일까? 그곳들부터 알아보자.개발 총괄 책임자의 대우가 형편없는 회사필자는 개발자의 생활을 시작하는 어린 친구들이 첫 번째 직장을 가지는 곳에 대한 선택에 대해서 조언을 해왔을 때에 가장 먼저 해주는 조언은 이것이다. 면접을 보려는 회사의 개발 총괄 책임자나 리더에 대한 대우와 회사 내에서의 위치를 먼저 살펴보라는 것이다.대부분 대우가 형편없거나, 매일 야근과 반복된 개발 일정의 반복이 계속되는 회사의 경우에는 그 대우가 형편없는 것 이상으로 개발의 공정이나 개발의 방법이 정형화되어있지 못할 가능성이 매우 높다.물론, 소프트웨어 개발이 시각화가 되면, 요구사항의 변동폭이 보이게 되고, 해당 정량적인 지수가 도출되므로, 해당 부분에 대해서 대응이 가능하지만, 개발 총괄 책임자의 지위가 낮거나 대우가 형편없다는 이유는 다음의 두 가지의 경우에 해당이 된다.하나. 공학적인 방법이나 정형화된 방법을 제안하는데, 회사의 최고책임자가 인정하지 않는 경우이다.이 경우에는, 보통은. 제대로 알고 있는 소프트웨어 개발자들은  해당되는 조직을 빠르게 떠나고, 별로 기대할 수 없다는 것에 대해서 자괴감이나 패배감과 같은 분위기가 개발 조직 내에 흐른다는 것을 곧 감지할 수 있을 것이다.둘. 실제 이러한 공학적인 방법 따위의 개발 방법론으로 통제할 수 없는 고객이 '슈퍼갑'인 경우이다.실제, 소프트웨어 개발 활동을 해당 '슈퍼갑'에서 영업적인 능력으로 얻어낸 경우의 회사의 경우에는 아무리, 옳은 이야기, 옳은 방법론으로 대응한다고 해도, 개발 막판에 개발의 방향성 자체를 손 뒤집듯이 바꿔버리는 상황이 빈번한 경우이다.대부분 이런 경우에는 소프트웨어 개발 총괄 책임자가 오히려, 공학적인 것을 알고 있거나, 똑똑한 사람이라면 멘붕에 빠지거나, 자괴감에 빠져서,  대충대충 소프트웨어 개발을 하거나, 자기가 먼저 자리를 뜨는 경우가 대부분이다. ( 버티는 사람은 몰라서 버틸 수 있다고 설명하는 것이 더 바람직하겠다. )물론, 이 경우에도 그런 것을 당연시하면서, 공학적인 개념도 모르는 리더가 고객과 같이 동조하는 경우가 오히려, 업무가 수월해지는 경우가 많은 것 또한 현실이다. 고객과 개발 책임자가 같이 '닭짓'을 하는데, 개발 조직이 온전할 리 없다. 공학 따위는 집어치우고, 프로세스나 정량화된 목표, 자동화된 방법과 같은 소프트웨어 품질은 그냥, '책'에만 나오는 단어이며, 개념일 뿐이다.실제, 똑똑하고 말 잘하고, 올바른 방향으로 이끄는 리더가 이 조직에 리더가 된다고 하더라도. 어쩔 수 없이, 버티지 못하고, 떠나게 되는 것을 흔히 보게 된다.그리고, 이러한 조직에 있는 대부분의 개발자들은 '소프트웨어 공학'따위의 '장난'은 실제 개발이 필요 없다고 역설하고, 이것을 당연하게 여긴다. 보통, 이렇게 만들어지는 소프트웨어의 품질은 보장할 수 없고, 이 보장할 수 없는 소프트웨어를 통해서, '슈퍼갑'에서 꾸준한 유지보수 비용과 일거리가 발생하는 방법은.. 아마도, '4대 강'처럼. 한번 만들어 두면, 끊임없는 유지보수 업무를 발생시키는 식의 문제 정의와 처리방법이라고 할 수 있겠다.당연한 것이지만, 결론적으로 이야기하자면, 이런 개발 조직에서 개발 총괄 책임자의 대우는 형편없고, 일정 조절이나 개발에 대해서 지휘할 수 있는 권리나 인사권 같은 것도 매우 부족한 상황으로 변화한다.그래서, 이런 회사일 수록, 소프트웨어 공학은 그냥, 뜬구름 잡는 이야기가 되는 경우가 일상다반사이다.실제, 소프트웨어 개발을 하지 않는 회사소프트웨어 개발 조직이 있지만, 실제 소프트웨어는 개발하지 않고, 심지어. 소프트웨어 유지보수마저도 관련 업체에 일임하거나 위임하는 경우의 조직이 해당되는 경우이다. 대부분의 슈퍼갑인 회사와, 어설프게 소프트웨어를 개발하는 기업들의 전산실에  해당하는 곳이 이런 환경에 해당된다.이 경우 소프트웨어의 공학적인 배경이나, 개발에 대한 스킬과 협조보다는, 일반 회사의 기획과 경영, 회계와 관리에  해당하는 업무들이 가장 중요하므로, 소프트웨어 개발의 시각화나 공정에 대해서는 그다지 관심이 없는 경우이다. 오히려, 제품을 선택하고, 유지보수 업체를 어떻게 관리하고 운용할 것이냐에 핵심과 초점이 있기 때문에, 소프트웨어 공학적인 배경은 가장 중요한 선택의 포인트가 되지 못한다.오히려, 투입 대비 효과에 대한 경영학적인 관점의 스킬과 개념이 더욱더 중요하다고 하겠다. 필자는 개인적으로 대부분의 대학에서 이러한 관점으로 교육을 하지 않는 것에 대해서 매우  불만족스럽다.분명, 소프트웨어 개발과 소프트웨어를 개발, 유지보수, 운영 및 관리한다는 것은 매우 연관성이 높기 때문에, 이와 관련된 과정이나 소통방법, 그리고. 윤리체계와 운영방법 등에 대해서도 충분하게 소프트웨어 관련학과에서 교육이 필요하다고 생각한다.이러한 회사에 입사하게 되는 개발자의 경우에는 소프트웨어 개발자가 된다기 보다는, 소프트웨어 개발과 운영을 관리하는 회사를 관리하는 업무를 더욱더 많이 배우고 경험하게 되므로, 소프트웨어 개발공학 따위의 뜬구름 잡는 이야기는 경력이 쌓여갈수록 더더욱 필요 없게 된다.사장이 직접 개발하는 소규모 개발회사이러한 경우도 몇 가지의 사례로 나눌 수 있지만, 대부분의 구성 형태는 정말 비슷해지는 점이 매우 특이하다. 그것은, 소프트웨어 개발회사에 있어서 개발 총괄 책임을 '사장님'이 직접 통제를 하는 경우이고, 실제, 중요한 코딩도 '사장님'께서 직접 하는 경우이다.이 경우에는 '소프트웨어 공학'적인 콘셉트보다는, '사장님'의 경험적인 바탕에 의해서 소프트웨어 개발의 시각화가 만들어지고, '사장님'의 지극히 개인적인 경험과 지식의 배 경위에서 '정량적'지수들이 결정되는 경우이다.이 경우에는 '사장님'의 스킬이 높은 파트의 경우에는 매우 느슨할 수도, 매우 강하게 조일 수 있고, 사장님의 경험이 부족하거나 어색한 지식을 가진 파트의 경우에는 매우 불완전하고, 매번 변경된다는 것을 개발 조직 전체가 느낄 수 있다.이러한 조직의 특성은 상당 부분 필요한 소프트웨어 품질을 유지하고 있기는 하지만, 특정 버그나 특정 형태, 특정 상황에 대해서는 포기하는 경우가 많다는 점이다. 또한, 개발 조직의 구성역시 특정한 방향으로 구성되어진 기형적인 개발 조직이 만들어진다는 것이다.물론, 이 방향이 완전히 틀린 것이 아니라는 점 또한 매우 중요한다. 해당 업무나 설루션, 패키지에 적합한 방향에 대해서 '사장님'의 경험에 의해서 구축되었기 때문에, 특정 공학적인 지식을 가지고 있거나, 개발의 경험이 풍부한 사람이 해당 조직에 들어와서 보기에는 매우 어색한 점이나, 매우 이상한 형태를 느끼게 된다.대부분 이러한 소프트웨어 개발 조직은 보통, 수년 이상 설루션이나 서비스를 진행해오고 있고, 특정한 형태로 발전되어 있고, 적당한 개발자들이나 서비스 운영조직과 내재화된 자체들의 경험들이 중첩되어 있어서, 정말 세밀하게 분석하고, 환경을 조절하기에는 정말 어려운 환경으로 진화된 경우가 많다.대부분, 급여와 업무, 직원들의 잦은 이탈과 특정 개발 조직에 대한 '사장님'의 편애가 눈에 뜨일 정도로 보이는 경우가 많다. 그것은, 해당 소프트웨어와 서비스가 그 환경에 가장 적합한 구조를 가지고 있기 때문에 발생하는 경우이기 때문에, 냉정하게 분석해보면, 그 조직의 형태가 매우 적합한 구조인 경우가 많다.그래서, 이러한 조직에 들어가는 경우에는 '이론적'인 소프트웨어 공학은 잠시 뒤로하고, '경험적으로 구축되어진 개발 프로세스'에 익숙해져야만 그 조직과 프로세스를 이해할 수 있게 된다. 이러한 회사의 경우에는 필요한 경험과 지식에 대해서 매우 제한적이기는 하지만, 나름대로의 규칙과 개발 철학, 향후. 발전방향에 대해서 어느 정도 구축하고, 이를 따라서 개발 조직을 운영하고 있다는 점이기 때문에, 어설픈 개발공학적인 개념으로 이러한 환경을 이해한다는 것은 매우 어려울 것이다.초보 개발자들의 경우에는 이러한 개발 조직에서 수년 이상을 지내야만, 이러한 방법을 이해하는 경우가 대부분이다. 그래서, 초기에는 '공학'따위는 없다고 푸념하거나, 필요 없다고 이야기하는 경우이다.소프트웨어 공학은 해당 개발 조직과 개발자들의 수준, 축적된 시각화 방법들을 종합화하여 보이는 활동이기 때문에, 이러한 개발 조직은 이러한 정착된 패턴에 대해서 한 번쯤은 시각화를 위한 종합진단과, 형태에 대해서 정립하고 자신들만의 개발 문화를 선언하는 방법을 택하는 것이 좋다. 그래서, 공학적인 방법에 대해서 고민하고, 품질에 대해서 조금은 더 발전적인 방법으로 진화할 수 있게 하는 방법이 될 것이다.하여간, 잘 모르는 사람들에게는 이러한 개발 조직은 매우 이상하게 보인다. 단, 이 조건에 가장 적합한 회사의 경우는 '적당한 수익을 시장에서 얻고 있으며, 그 시장에 맞추어 개발 조직과 문화가 발전한 회사의 경우'를 의미하는 경우이다.당연한 것이겠지만, 이러한 환경으로 '시장'에서는 버티기 매우 어려울 것이고, 곧 망할 가능성이 높은 경우이다. 물론, 영업적은 능력으로 개발 조직이나 회사가 운영되고 있다면, 자연스럽게, '개발 총괄 책임자의 대우가 형편없는 기업'으로 변화되기 때문이다.특정 개발 조직이 관습화 된 인사권을 행사하는 경우보통은 이러한 회사를 게임회사에서 잘 찾아볼 수 있다. 특정 서버의 기술이나 클라이언트의 개발팀에서 사람을  구인하는 데 있어서, 일반적인 구인의 방법보다는 인맥이나, 특정 방법에 의해서 인력을 수급하는 경우이다.이 경우에 중요한 개발 공정이나 프로세스와 개발경험들은 내부의 팀에서 내부의 팀원들을 통해서만 서로 간에 운영되는 형태이며, 보통은 게임회사나 특정 하드웨어 기술을 가진 업체들에게서 이러한 환경들이 빈번하게 나타난다.한편으로는 이러한 방법이 개발 조직 내에서의 테두리가 제한되기는 하지만, 어느 정도 회사가 성장하거나, 회사의 규모 이상이 되지 않는다면, 그렇게 문제가 되지 않는 경우가 된다. 필자의 경험에 의하면 매출 1조 원을 넘기는 기업이 되는 경우의 하드웨어 업체이거나, 매출 1천억을 넘기는 소프트웨어 기업의 경우에 이러한 개발 조직의 문화가 가장 큰 걸림돌이 되는 경우를 많이 보아왔다.이런 경우에 대부분의 중심 개발 조직이 아닌 조직에서는 자신들이 공정을 변화시키거나 제품의 중요 기능을 다룰 수 없고, 반복적인 유지보수나 무의미한 행위들이 연속되는 경우를 계속 경험하게 되므로, 소프트웨어 공학에 대해서 많은 의아심을 가지게 되는 경우이다.이상의 몇 가지 기업의 형태를 살펴보면서 필자가 알게 된 것은 소프트웨어 개발의 형식은 역시 무형식이며, 그 상황과 형태에 따라서 변화되고 진화한다는 것이다. 또한, 위에서 이야기한 몇 가지의 경우의 공통점은 바로, ‘소프트웨어의 품질’이 그다지 중요하지 않은 기업의 경우에 해당한다고 이야기할 수 있다.위에서 언급한 회사들의 공통점은 ‘소프트웨어의 품질’ 때문에 개발 조직을 변화시키거나, 개발 문화에 대해서 고민할 필요가 없는 회사라는 점이다. 당연한 것이겠지만, 소프트웨어 공학은 ‘뜬구름 잡는 이야기’를 하는 학창 시절 때에나 이야기한다고 이야기를 하는 선배들을 대부분 만날 것이다.대한민국에서 만날 수 있는 대부분의 소프트웨어 개발 활동들은 소프트웨어의 품질이 그다지 중요하지 않은 경우가 참 많다는 것이다.일단, 가동을 시작한 서비스가 죽게 되면 크게 문제가 되는 경우이거나, 해당되는 소프트웨어가 작은 문제로 인해서, 실제 비즈니스와 업무에 크게 문제가 되는 경우가 아니라면, 소프트웨어의 품질에 대해서는 그 중요성이 떨어지게 되는 것이 당연하다.충분한 소프트웨어 가치를 인정받을 수 있는 평가와 방향성에 대해서 충분하게 고민하고 있지 않은, 회사이거나 소프트웨어 개발 조직의 경우에는 당연한 것이겠지만, ‘소프트웨어 공학’은 그다지 중요하지 않다는 것이 결론이라고 하겠다.소프트웨어 품질이 정말 필요한 곳인가?이렇게 답변을 정의할 수 있다.소프트웨어 품질이 중요한 가치를 가지는 곳에서는 충분하게 소프트웨어 공학적인 이론과 배경이 가장 중요한 것이 될 것이다. 필자가 아는 어느 회사의 경우에는 소프트웨어의 기본적인 행위하나 가 실제 큰 비용으로 계산되는 경우가 있었다.단순한 하나의 물류이지만, 어떤 물류를 크레인을 사용하여 한 번 잘못 이동하게 되고, 해당되는 물품이 전혀 엉뚱한 나라에 가있거나, 해당 물품이 적재되고 내려지는 과정이 중첩되면서 만들어지는 비용을 단 한번 행위의 가치로 평가하였을 때에 1번 펑션이 1억 원 정도의 비용으로 계산되는 경우라면, 소프트웨어 개발의 펑션이나 개발 프로세스에 대해서 얼마나 고수준으로 설계하고 평가될 것인가에 대해서 생각해보면 될 것이다.이미, 은행에서 자금이 이체되고, 움직이는 과정에 대해서도 개별적인 가치에 대해서 평가를 할 수 있을 것이다. 과연, 내가 만드는 소프트웨어의 기본가치는 어떻게 되는 것일까? 에 대해서 생각해보면, 우리가 만드는 소프트웨어에 얼마나 고품질이 필요한 것인가에 대해서 설명할 수 있을 것이다. 그렇지만, 필자는 이렇게 이야기하겠다.슬프지만, 대한민국의 IT 중에서 소프트웨어 개발 분야에 있어서, 정말 고품질이나 고성능을 요하는 수준으로 요구하는 곳이 거의 없기 때문에 이러한 문제는 계속 발생할 것이며, 계속 이러한 질문은 만들어질 것이다.대부분의 학생 시절에 우리가 배우는 기본과 이론들은 쉽게 설명해서 죽지 않는 서버와 데몬을 만들고, 가능한 정해진 규칙 하에서는 다운되지 않는 웹서비스를 만들려고 그런 기본과 이론을 배운다.하지만, 대부분의 서비스들은 죽으면, 서버의 데몬 프로세스를 죽였다가, 다시 동작하면 되는 수준의 업무면 충분한 경우가 대부분이다. 더군다나, 외국에서 만들어진 프레임웍이나 만들어진 소프트웨어 위에서 동작되는 소프트웨어를 만드는 환경에서라면, 이러한 공학이나 이론 따위야 그다지 중요한 것이 아니게 될 것이 아니라는 점이다. ( 그 책임은 비싸게 구매한 DBMS나 프레임웍이 해결해야할 책임이라고 떠넘긴다. )결론적으로 마지막 이야기를 한다면, 과연 이러한 소프트웨어 가치를 충분하게 만들어 낼 수 있는 소프트웨어 개발 활동을 내가 하고 있는가에 대해서 고민해보자. 그리고, 그러한 행위를 할 수 있고, 발전 가능성이 있는 곳이야말로, 이러한 고수준의 품질활동이 필요한 곳이 될 것이다.그리고, 이러한 고수준의 소프트웨어 품질활동이 필요한 곳은, 바로. 아직은 단 한 번도 이러한 소프트웨어나 서비스가 만들어지지 않은 곳에서 이러한 활동이 더 많이 필요하다. 그것은 바로, 스타트업이나 이제 서비스를 개시하려는 곳일수록, 적절한 소프트웨어 품질활동이나 시각화가 필요하다고 이야기할 수 있겠다.소프트웨어 활동을  시각화한다는 것은 결론적으로 소프트웨어 개발자가 투입하는 행위에 대한 가치에 대해서 얼마나 고수준으로 끌어올린 것이며, 어느 정도 적절한 품질 수준을 고려할 것인가에 대한 활동을 의미한다.그러므로, 현재 스타트업을 꿈꾸고 있거나, 적적할 소프트웨어의 개발비용을 고민하고 있는 곳이라면, 소프트웨어 공학은 매우 중요한 활동이나 방향성에 대해서 정답에 근접하도록 도움을 줄 것이다. 소프트웨어 고품질의 세계와 소프트웨어 공학의 세계는 소프트웨어 개발자들이 어떤 생각을 하고, 개발에 참여하느냐에 따라서 결정되어진다. 그 선택은 역시, 각자가 하는 것이다.

기업문화 엿볼 때, 더팀스

로그인

/