스토리 홈

인터뷰

피드

뉴스

조회수 1626

로봇 공학의 새로운 패러다임! 한화정밀기계의 협동 로봇을 만드는 로봇사업부 인터뷰!

한화정밀기계의 협동로봇 HCR-5 / 출처 - 한화정밀기계 이제 번거로운 작업은똑똑하고 안전한 협동 로봇에게 맡기세요! 제조 산업의 다양한 과정들이 점차 기계화되어가고 있습니다. 기계화의 과정에서도 사람이 개입되어야 하는 번거로운 과정들이 남아있기 마련인데요. 사람이 꼭 필요한 섬세하고 동적인 역할까지 수행하면서 기계의 편리성을 살릴 수 있는 ‘협동 로봇(코봇)’의 탄생으로 그 고민이 해결되었습니다.머지않은 미래에 협동 로봇의 춘추전국시대가 예상되는 가운데, 2017년 시장에 진입한 한화정밀기계의 HCR 시리즈 협동 로봇은 뒤늦게 시장에 합류했지만, 유려한 디자인과 다양한 기능, 안전성을 고려한 특색 있는 제품 생산으로 전 세계 고객들의 사랑을 받으며 점유율을 확대해가고 있습니다. 협동 로봇의 발전으로 개발과 연구를 전문으로 하는 직업도 탄생했는데요. 한화정밀기계에는 협동 로봇 전문가집단인 로봇사업부가 존재합니다. 이 부서의 수장인 장우석 로봇사업부장에게 자세한 이야기를 들어보겠습니다. Q. 안녕하세요. 우선 협동 로봇에 대해 간단히 설명 부탁드립니다!한화정밀기계 장우석 로봇사업부장 / 출처 - 한화정밀기계안녕하세요. 한화정밀기계 로봇사업부의 장우석입니다. 산업 현장에서 사람들을 돕기 위해 만들어진 로봇이 바로 협동 로봇입니다. 이들은 정확성과 일관성이 요구되는 반복적인 업무들을 처리하는데요. 기존의 반복적인 업무를 대신하고, 작업자는 주관적인 판단이나 유연성이 요구되는 일을 할 수 있도록 돕는 것이죠. 현재의 협동 로봇 이전에 주로 사용했던, 기존의 산업용 로봇은 굉장히 한정적인 업무만을 수행할 수 있었습니다. 가령 물건을 하나 옮긴다고 가정하면, 그에 맞는 고난도의 컴퓨터 프로그램을 입력해야 그 일을 할 수 있습니다. 만약 다른 장소로 물건을 옮기려고 한다면 조립공정을 멈추고 중장비를 사용해 옮겨야 합니다. 따라서 시간과 비용이 굉장히 많이 듭니다. 반면 협동 로봇은 이러한 번거로운 과정들을 한 번에 해결해줍니다. 특히, 한화정밀기계의 HCR 협동 로봇은 사용자 친화적인 인터페이스를 갖추고 있어서 작업자가 작동법을 익히는데 하루도 채 걸리지 않습니다. 또한, HCR 협동 로봇의 워크플로를 세팅하거나 변경할 때는 단순히 필요한 항목들만 클릭해 바꾸면 됩니다.싱가포르 합자법인 공장에서 HCR-5를 생산하고 동남아시아 시장에 공급할 예정인 한화정밀기계 / 출처 - 한화정밀기계 Q. 한화가 로봇 산업에 진출하게 된 계기는 무엇인가요?한화그룹은 4차 산업혁명의 일환으로 로봇 산업을 시작했습니다. 다양한 분야 중 저희는 협동 로봇에 초점을 맞췄고, 작년에 국내 최초의 협동 로봇인 HCR 시리즈를 출시했습니다.한화그룹은 항공엔진, 에너지, 산업 장비, CCTV 카메라와 같이 다양한 산업 분야에 관심을 두고 있습니다. 이러한 시장을 키우고 선두가 되기 위해, 한화는 정밀기계, 동작 조종 기술, 사물 인식 소프트웨어, 자동 내비게이션과 같은 분야에서 전문성을 높이고 있습니다. 이러한 모든 것의 중심이 바로 로봇 산업입니다.이렇게 다양한 산업 지식, 경험 그리고 기술을 바탕으로 로봇사업부를 키울 수 있었고, 지금의 HCR 시리즈 같은 제품을 시장에 내놓을 수 있게 된 것입니다. 특히 로봇 공학 분야와 소프트웨어 개발에 매우 높은 전문성을 가진 인력을 보유하여 협동 로봇 기술 개발(R&D)을 빠르게 진전시킬 수 있었습니다. 한화정밀기계와 싱가포르 정밀 엔지니어링 전문 업체인 PBA 그룹의 합자법인 "PBA-Hanwha Robotics"의 개소식 모습 / 출처 - 한화정밀기계  Q. 한화 협동 로봇의 제품 현황과 고객 반응은 어떤가요?한화정밀기계의 협동로봇 HCR-5 / 출처 - 한화정밀기계한화정밀기계는 현재 세 종류의 협동 로봇(HCR)을 출시하였으며, 각각 3kg, 5kg, 12kg의 무게를 들 수 있습니다. 이 세 종류의 협동 로봇은 크기가 작고, 옮기기 쉬우면서 방대한 범위의 업무를 진행할 수 있기 때문에 다양한 업무 지원이 필요한 중소 제조 기업에 이상적인 모델이라 할 수 있습니다. HCR 시리즈의 시장 내 고객 반응은 매우 호의적입니다. HCR 시리즈만이 가진 가장 큰 장점은 사용자가 단일 제어 장치에서 두 개의 HCR 협동 로봇을 실행할 수 있다는 점입니다. 그렇기 때문에 운영비가 최대 10%까지 절감되는 효과가 있죠. 거기에 HCR 시리즈 조작이 쉽다는 점까지 장점으로 작용하면서 시간을 절약하고 생산성을 더욱 높일 수 있습니다.  기능과 안정성을 모두 잡은 HCR 시리즈만의 디자인 또한, 고객들은 HCR 협동 로봇의 수려한 디자인을 가장 크게 평가합니다. 보통 산업용 기계는 튀어나온 부분들이 있어서 긁히거나 부딪힐 위험이 있는데 HCR은 부드러운 곡선 모양으로 제작되어 안전하고 디자인이 뛰어납니다. 산업 디자인은 보이는 게 전부가 아닙니다. 사람들이 협동 로봇과 같이 일할 때 실제로 안정감을 느낄 수 있어야 합니다. 그런 이유로 더 안전하고 부드럽게 보이도록 곡면을 살려 디자인했습니다. 디자인과 기능 면에서도 HCR 시리즈는 매우 안전한 제품입니다. HCR 협동 로봇은 작업자의 옆에서 업무를 보조하는데, 자동 충돌 감지 기능이 있어서 부딪히면 즉각적으로 작동을 멈춥니다. 2017 iF 디자인 어워드, 제품 디자인 부분에서 본상을 수상한 HCR 협동 로봇 / 출처 - 한화정밀기계 Q. 협동 로봇의 미래에 대한 예측과 향후 개발하고자 하는 협동 로봇은?미래에는 AI와 딥러닝, IoT 등 4차 산업혁명을 대표하는 기술들이 접목된 협동 로봇이 시장을 주도할 것이라 예측합니다. 특히 AI와 딥 러닝 기술로 인해 조만간 로봇 산업에는 큰 지각 변동이 있을 것이라 예상합니다. 원래는 5년이나 10년 주기로 일어날 것으로 생각했는데, 이제는 그것보다 더 앞당겨질 것 같네요. 예전에는 몇 년 더 걸릴 것으로 생각했던 기술들이 AI와 딥러닝 기술이 접목된 지 2년 반 만에 이미 구현되고 있으니까요!그래서 한화정밀기계에서는 앞으로 생산될 제품에 AI나 빅데이터, IoT를 어떻게 접목하고, 실제로 어떻게 적용될 수 있을지에 대해 연구하고 있습니다. AI가 접목된 협동 로봇은 어떠한 상황이나 조건에서도 최대한 쉽게 일을 수행할 수 있습니다. 특히 기술 접목 분야에서 한화그룹은 다양한 산업군과 계열사가 있다는 것이 매우 큰 장점인데요. 다양한 계열사에 자문하면서 실제로 협동 로봇이 어떻게 업무에 적용이 되고, 앞으로 어떻게 발전시킬지 논의하고 있습니다. 협동로봇 합자법인 공장 투어 모습 / 출처 - 한화정밀기계 한화정밀기계의 장우석 부장은 피처폰에서 스마트폰 시대로 바뀌었듯이, 로봇 시장도 향후 몇 년 이내로 큰 패러다임 전환이 일어나리라 전망했습니다. 단순히 몇 개의 일을 수행하는 로봇에서 거의 모든 일을 처리할 수 있는 로봇으로 변화하는 것입니다. 협동 로봇 시장은 아직 초기 단계에 있으며 시장 규모도 매우 작지만, 앞으로의 사업 성장 가능성이 매우 큰 분야입니다.한화정밀기계는 현재 유럽과 동남아시아 시장의 큰 성장 가능성을 두고 사업에 박차를 가하고 있는데요. 단기적인 목표는 시장점유율을 매년 두 배로 늘리는 것이며, 장기적인 목표는 협동 로봇 분야에서 세계적인 선도 기업이 되는 것이라고 합니다.4차 산업혁명에 힘입어 자동차와 스마트 팩토리를 중심으로 기술 트렌드를 이끄는 기업을 목표로, 글로벌 로봇 시장을 선도하는 기업이 되기 위해 끝없는 노력을 거듭하고 있습니다. 점차 확대되는 협동 로봇 시장을 선도하는 한화정밀기계의 미래를 함께 응원 부탁드립니다!#한화 #한화그룹 #한화정밀기계 #구성원인터뷰 #직무정보 #기업정보 #기업문화 #비전 #목표 #채용정보 #공채정보
조회수 2154

Android Gradle Tips

안드로이드와 GradleAndroid 가 Gradle 을 이용하기 시작한 것도 3년이 다 되어 갑니다. 이제는 많은 유저가 당연히 Gradle 을 Android 기본 개발 환경으로 사용하고 있습니다.하지만 기본 설정으로만 Gradle 을 사용하는 사용자들이 많습니다. 게다가 구글에서 Android Gradle Build DSL 을 끊임없이 변경했기 때문에 많은 사용자들이 이를 이해하기도 전에 변경이 되는 경우가 매우 빈번했습니다.Gradle Dependency 분리하기안드로이드 자동화 툴위 두번의 포스팅을 통해서 TossLab 에서 사용하고 있는 Gradle 에 대해서 소개를 해드렸습니다.오늘은 Android 팀이 사용하는 Custom 설정들에 대해서 정리하도록 하겠습니다.1. 초기화 값 검증 및 설정하기개발자들이나 CI 에서 관리해야하는 속성 값에 대해서는 각각 다르게 설정할 필요가 있습니다.안드로이드 팀은 3개의 추가적인 속성값을 추가하여 사용하고 있습니다.# gradle.properties inhouse_version=2 # 배포/qa 버전의 hofix version 을 관리학 ㅣ위함 report_coverage=false # coverage 측정에 대한 on/off 기능 dev_min_sdk=21 # minSDK 의 개별적인 관리를 위함 위의 3개의 값은 존재 하지 않으면 빌드가 되지 않도록 하는 강제사항으로 만들었으나 새로운 개발자가 입사하게 되었을 때 또는 CI 서버에 실수로 기입하지 못하게 되었을 때 Project Import 나 빌드가 아예 되지 않는 현상이 발생하였기에 초기 값을 설정할 수 있도록 하였습니다.report_coverage 는 5. Android Gradle DSL 에서 buildTypes.debug.testCoverageEnabled 에서 사용되며 이 값은 설정에 따라서 디버그 과정에서 변수값들이 제대로 노출되지 않게 됩니다. report 가 필요한 CI 서버 용으로 만들어진 값입니다.// valid.gradle def checkValidProperties() { println "Properties Valid Checking.........." if (!project.hasProperty("inhouse_version")) { println "set up to gradle.propeties --> inhouse_version = 1 (default)" project.ext.inhouse_version = 1 } if (!project.hasProperty("report_coverage")) { println "set up to gradle.propeties --> report_coverage = false (default)" project.ext.report_coverage = false } if (!project.hasProperty("dev_min_sdk")) { println "set up to gradle.propeties --> dev_min_sdk = 19 (default)" project.ext.dev_min_sdk = 19 } println "Properties Valid Check OK" } checkValidProperties() // ------------------------------- // build.gradle apply from: 'valid.gradle' 위와 같이 설정한 뒤 gradle.properties 에 아무런 값을 설정하지 않고 빌드를 하게 되면 빌드 최초에 다음과 같은 log 를 보실 수 있습니다.================================================================================ Properties Valid Checking.......... set up to gradle.propeties --> inhouse_version = 1 (default) set up to gradle.propeties --> report_coverage = false (default) set up to gradle.propeties --> dev_min_sdk = 19 (default) Properties Valid Check OK ================================================================================ 2. APK Copy 하기QA 팀 전달 또는 스토어 배포시에 Android Studio 의 기본 기능을 이용하지 않고 Gradle Task 를 사용하여 빌드를 하게 되면 /app/build/outputs/apk 에 있는 패키지를 복사하는 것이 여간 귀찮은 작업이 아닐 수 없습니다.그래서 Gradle 에서 기본적으로 제공되는 Copy Task 를 이용하여 APK Copy Task 를 만들었습니다.// apk-copy.gradle android.applicationVariants.all { variant -> // 1. Copy Task 생성 def task = project.tasks.create("copy${variant.name}Apk", Copy) task.from(variant.outputs[0].outputFile) // 2. 바탕화면 Task 로 복사 task.into("${System.properties['user.home']}/Desktop/") // 3. 복사하는 과정에서 APK 이름 변경 def targetName = "jandi-${variant.baseName}-${variant.versionName}.apk" task.rename ".*", targetName task.doFirst { println "copy from ${source.singleFile.name} to $destinationDir" } task.doLast { value -> println "completed to copy : $targetName" } } // --------------- // build.gradle apply from: 'apk-copy.gradle' 위의 Task 는 총 3개의 단계로 구분할 수 있습니다.Copy Task 생성~/Desktop 으로 복사복사 할 때 APK 이름 변경Task 를 정의하는 과정에서 application 의 flavor, build-type, version 을 기반으로 복사하도록 한 것입니다.위와 같이 설정하면 다음과 같이 사용할 수 있습니다.# flavor : qa , build-type : Debug $> ./gradlew assembleQaDebug copyqaDebugApk # 또는 줄여서 아래와 같이 쓸 수 있습니다. $> ./gradlew aQD copyQDA Application Variant 에 대한 변수는 링크에서 확인하실 수 있습니다.3. CI TasksCI 용으로 CheckStyle 과 PMD 를 사용하기 때문에 관련 설정 또한 별도로 처리하였습니다.task pmd(type: Pmd) { source 'src/main' include '**/*.java' ruleSetFiles = files('../pmd.xml') ignoreFailures = true } task checkstyles(type: Checkstyle) { configFile file('../checkstyle.xml') source('src/main') include '**/*.java' classpath = files() showViolations = true ignoreFailures = true } // --------------- // build.gradle apply from: 'ci-tasks.gradle' CheckStyle 과 PMD 설정에 필요한 정보 또한 별도의 script 로 설정하였습니다.4. Gradle Properties빠른 빌드를 위해 추가적인 설정을 하고 있습니다.# gradle.properties # 백그라운드 빌드 org.gradle.daemon=true # 동시 빌드 org.gradle.parallel=true # jvm heap size org.gradle.jvmargs=-Xmx4346m # build jdk org.gradle.java.home=/Library/Java/JavaVirtualMachines/jdk1.8.0_101.jdk/Contents/Home 위의 설정 중에서 제일 보셔야 할 것이 org.gradle.jvmargs 입니다. Android Gradle 설정 중에서 위의 값이 적으면 빌드속도가 현저히 느려집니다.빌드 할 때 console log 를 확인하시고 값을 적절하게 맞춰주실 것을 권장합니다.5. Android Gradle DSL 추가 정의하기 // build.gradle // ...중략 android { // 특정 Flavor에서 Release Build 막기 android.variantFilter { variant -> if (variant.buildType.name.equals('release') && (variant.getFlavors().get(0).name.equals('qa') || variant.getFlavors().get(0).name.equals('dev'))) { variant.setIgnore(true); } } buildTypes { debug { debuggable true testCoverageEnabled = project.hasProperty("report_coverage") && report_coverage.toBoolean() } // ..중략... } productFlavors { dev { // demo version applicationId 'com.tosslab.jandi.app.dev' versionName(defaultConfig.versionName + ".dev." + inhouse_version) minSdkVersion project.hasProperty("dev_min_sdk") ? dev_min_sdk : 19 } // ..중략.. } // 빌드 과정에서 CPU 와 Ram 최적화 하기 dexOptions { javaMaxHeapSize "2g" maxProcessCount Math.max(1, ((int) (Runtime.getRuntime().availableProcessors() / 2))) } } variant-filter 를 이용해서 qa 나 dev 용 빌드는 release 버전이 빌드되지 않도록 하였습니다.buildTypes 와 productFlavors 에서는 앞서 설정한 gradle-properties 에 대해서 설정에 따라 기본값이 지정되도록 하였습니다.dexOptions 설정은 개발하는 기기의 PC 환경에 따라 다를 수 있습니다.Android DSL 에 의하면 Dex 빌드 과정에서 최종적으로 사용하는 메모리는 heapsize * process-count 라고 합니다.heapsize 기본값 : 2048MBprocess-count 기본값 : 4참고문서6. Android Resource Image 의 EXIF 정보 삭제하기보통 디자이너가 Photoshop 과 같은 툴을 이용하여 이미지를 만들게 되면 자동으로 adobe 와 관련된 exif 정보가 붙게 됩니다. 그래서 빌드 할 때 libpng warning : iCCP ... 와 같은 warning 메세지를 보실 수 있습니다. 이는 Android Build 과정에서 aapt 가 이미지 최적화 하는 과정에서 불필요한 exif 정보로 인해서 오류를 내게 됩니다.따라서 exif 정보를 초기화 해주는 작업이 필요합니다.맥 사용자에 한해서 지원됩니다.HomeBrew 를 이용해서 exiftool 을 설치하셔야 합니다. exiftool 설명find . -path '*src/main/res/*' -name '*.png' -exec exiftool -overwrite_original -all= {} \; 저는 별도로 쉘 스크립트를 만들어서 실행합니다.아래를 복사해서 붙여넣기로 실행하시면 됩니다.echo "find . -path '*src/main/res/*' -name '*.png' -exec exiftool -overwrite_original -all= {} \;" > exif_clean.sh chmod 744 exif_clean.sh 관련 정보 : adt-dev google group 에서 제시된 해결책Wrap up안드로이드 팀은 Gradle 을 이용하여 반복적일 수 있는 작업을 자동화 하고 다양한 초기화 설정과 편의를 가지고자 하였습니다.초기화 값 검증 및 설정Apk 복사 자동화CI Task 정의Gradle Properties 지정Android Gradle DSL 정의Android Resource Image EXIF 삭제Gradle 을 얼마나 잘 활용하냐에 따라서 조직에 필요한 Task 를 금방 만드실 수 있습니다. 이번 포스팅이 도움이 되었기를 바라며 활용해보실 것을 권장합니다.#토스랩 #잔디 #JANDI #개발자 #개발팀 #앱개발 #안드로이드 #인사이트
조회수 3095

코딩, 어떤 언어로 시작하지?

경영학과 학생 윤수는 요즘 주변에서 이런 말을 자주 듣는다."앞으로는 코딩을 모르면 문맹이다.""4차 산업혁명 시대에 대비해야 한다.""소프트웨어가 세상을 잡아먹고 있다."정확히 뭔 소리인지는 모르겠지만 일단 프로그래밍을 배우기로 결심한다. 그런데 '프로그래밍 언어'라는 게 또 뭐가 이렇게 많은지... 어떤 걸로 시작해야 할지 도무지 감이 안 잡힌다.그래서 공대생 친구들에게 물어본다. 친구 1: "일단 가장 기본인 C부터 배워."친구 2: "한국에서 제일 많이 쓰는 자바부터 배워."친구 3: "파이썬이 배우기 쉬워."친구 4: "요즘은 자바스크립트가 대세지."누가 정답일까? 사실 이 중에 "틀린" 사람은 없다. 각자 관심 분야와 목적이 다르기 때문이다. 만약 다음 달에 아이폰 어플을 개발해야 한다면 어쩔 수 없이 곧장 스위프트를 배워야 한다. 내일모레까지 사이트 레이아웃을 완성해야 한다면 더 물을 것도 없이 그냥 HTML과 CSS를 시작하면 된다. 그러나 일반적으로 첫 프로그래밍 언어를 추천하라면 내 톱 초이스는 단연 파이썬, 그다음은 HTML/CSS + 자바스크립트일 것이다. 이 3개의 기준으로 평가하였다:1. 배우기에 얼마나 어려운 언어인가?2. 이 언어에 대한 수요가 얼마나 있는가?3. 나는 프로그래밍으로 뭘 하고 싶은가?*우연히 보게 된 CSDojo라는 유튜브 채널에서 너무 훌륭하게 정리해줘서 참고하였다.1. 배우기에 얼마나 어려운 언어인가?나는 고등학교 때 C를 독학하는 것으로 프로그래밍에 입문했다가 금방 질려서 그만두었다. 창업에 관심이 생겨 다시 시작했는데 이번에는 파이썬으로 배워보았다. 그제야 흥미를 느꼈고, 프로그래밍이 마냥 어렵기만 한 게 아니라는 걸 깨달았다.어떤 차이가 있는 걸까?파이썬은 C보다 쓰기 쉽다. C로 수백 줄을 써야 하는 프로그램을 파이썬 몇십 줄로 쓸 수 있다. 파이썬 코드 몇 줄이면 쓸모 있고 흥미로운 결과물을 만들어낼 수 있다는 뜻이다. "Life is short, use Python"이라는 말이 있을 정도다. 물론 파이썬이 무조건적으로 C보다 좋은 건 아니다. 파이썬 프로그램은 C 프로그램보다 느리기 때문에 특정 업무에는 적합하지 않다. 하지만 그런 건 지금 신경 쓸 필요가 없다. 첫 프로그래밍 언어로 "컴퓨터적인 사고력"을 익히고 나면 새로운 언어를 배우는 것은 어렵지 않기 때문에, 일단은 배우기 쉬운 언어로 시작해라.비교적 배우기 쉬운 언어:    - Python    - Ruby    - JavaScript2. 이 언어에 대한 수요가 얼마나 있는가?시장에서 필요로 하는 언어를 배우는 게 좋다. 세계에서 가장 큰 웹사이트들은 어떤 기술을 사용하는지 살펴보자:출저: 위키피디아위 테이블에는 미국의 웹 서비스들만 정리되어 있다. 지역과 직군에 따라 요구하는 언어가 다르기 때문에 로켓펀치, 더팀스, 위시켓, 링크드인, 인디드, 사람인, 잡코리아 등의 구인/구직 사이트에서 직접 살펴보는 걸 추천한다.인기가 많은 언어일수록 커뮤니티가 크기 때문에, 도움을 받을 수 있는 자료들이 많고 가져다 쓸 수 있는 코드가 많다는 장점도 있다. 세계 최대 규모의 프로그래밍 커뮤니티인 스택오버플로우의 언어 점유율을 참고해보자.출저: 스택오버플로우이 중에서 HTML/CSS(웹 레이아웃), SQL(데이터베이스), Bash/Shell(Unix)은 아주 특수한 경우에 쓰이는 언어이기 때문에 제외하고 보자. 수요가 높은 언어:    - JavaScript    - Java    - Python3. 나는 프로그래밍으로 뭘 하고 싶은가?분야별로 자주 사용되는 언어가 있다. 간단하게 정리하자면:1. 데이터 과학, 공학 => Python, R, MATLAB2. 웹 프런트엔드 => HTML/CSS + JavaScript3. 웹 백엔드 (서버) => Python, Ruby, JavaScript, Java, Go, C, C++, PHP 등4. 아이폰 어플 => Objective-C, Swift (이제는 거의 Swift로 넘어갔다)5. 안드로이드 어플 => Java, Kotlin (슬슬 Kotlin으로 넘어가고 있다)6. 게임 개발 => C#, C++7. 임베디드 시스템 => C, C++결론: 왜 파이썬, 자바스크립트인가?앞서 이야기했듯 당장 급히 배워야 하는 언어가 있으면 그 언어를 배우면 된다. 교수님이 연구실에서 다음 주부터 C언어를 쓴다고 하면, 뭐 어쩌겠나? 그냥 당장 C를 배우는 수밖에. 하지만 조금 더 여유롭게, 제대로 프로그래밍을 배우고 싶다면 이 포스트에 나와 있는 세 가지 기준을 고려해서 결정하는 걸 추천한다. 배우기 쉬운 언어로는 파이썬, 루비, 자바스크립트를 선정했고, 수요가 높은 언어로는 자바스크립트, 자바, 파이썬을 선정했다. 두 기준에 모두 부합하는 언어는 파이썬과 자바스크립트이다. 이 중 무엇을 택할지는 3번 기준으로 결정하면 된다. 데이터 분석에 관심 있으면 파이썬부터, 웹 개발에 관심 있으면 자바스크립트부터 시작하면 된다. 참고로 자바스크립트를 하기 위해서는 기본적으로 HTML과 CSS를 알아야 한다!데이터 과학과 웹 개발 둘 다 관심 없으면 자바스크립트보다는 파이썬으로 시작하는 걸 추천한다. 개인적인 의견이지만 초보자 입장에서 파이썬 언어가 자바스크립트보다 깔끔하다고 생각하기 때문이다. 또한 HTML과 CSS를 미리 배워야 하는 수고를 덜 수 있다.어디서 배우지?온라인으로 프로그래밍을 가르치는 사이트가 굉장히 많다. 해외에는 Codecademy, Treehouse, Coursera, MIT OpenCourseWare 등이 있고 한국에는 인프런, 엘리스, 코드잇, 생활코딩 등이 있다. 국내외 서비스를 통틀어서 가장 추천하는 곳은 코드잇이다. 영어로 된 수업이 당연히 더 좋을 것이라 생각한다면 큰 오산이다. Codecademy나 Treehouse는 쉽고 재미있지만 막상 수업을 다 들어도 직접 무언가를 할 수 있겠다는 생각이 들지 않는다. 반면 Coursera나 MIT OpenCourseWare는 대학 수업과 흡사하기 때문에 지루하고 어려워서 이수율이 5% 정도밖에 되지 않는다. 코드잇은 내용의 깊이와 재미를 모두 잡았다. 심도 있는 내용을 난해하지 않고 간결하게 풀어내어 졸업률이 60%나 된다. 코드잇 수업 안 들은 사람은 있어도 하나만 들은 사람은 없다는 말이 있을 정도인데, 수강 후기를 보면 정말 수강생들의 애정이 드러난다. 무료로 샘플을 들어볼 수 있으니 일단 한 번 해보도록.Python으로 배우는 프로그래밍 기초 수업, HTML/CSS로 배우는 웹 퍼블리싱 수업, JavaScript로 배우는 인터랙티브 웹 수업을 모두 들으면 자신감을 갖고 프로그래밍 커뮤니티에 입문할 수 있을 것이다.이제 어떤 프로그래밍 언어를 어디서 배워야 하는지 알았으니, 주저 말고 시작해보길 바란다!#코드잇#코딩교육 #개발자양성 #교육기업 #인사이트 #경험공유
조회수 1986

더 빠른 Android App Build

Android App Build의 변화Android App 개발에서 빌드는 올해 중순을 기점으로 큰 변화를 가져왔습니다.Ant 에서 Gradle 로… Eclipse 에서 Android Studio 로…Android Studio 는 JetBrains 사의 IntelliJ 의 Community 버전을 커스터마이징한 것입니다.Gradle 은 Ant 의 빌드 기능 에 Maven 의 의존성 관리 기능이 접목된 빌드 툴입니다. 그만큼 제공하는 기능이 다양하며 동시에 의존성에 대한 문제도 함께 해결이 되었습니다.큰 변화는 장점과 단점 모두를 가져왔습니다. 대표적인 장점은 기존에 Eclipse 에서는 한계가 있었던 Plugin 기능이 더욱더 다양해졌다는 것입니다. 반면 갑작스럽게 바뀐 IDE 와 빌드툴은 여전히 큰 장벽으로 존재하고 있습니다.특히 Gradle 의 성능 문제는 줄곧 거론되었습니다. Eclipse 에서는 빠르게 빌드되던 것이 Gradle 기반으로 전환되면서 적게는 2배에서 5배 이상 오래 소요되는 문제를 가져오게 되었습니다.그러한 문제는 토스랩의 안드로이드 팀도 빗겨갈순 없었습니다.코딩-빌드-실행이라는 반복적인 패턴에서 빌드에 소요되는 시간이 개발의 흐름을 끊게 되는 상황에서 이를 개선하는 것은 필수적인 요소였습니다.이 포스팅은 그동안 잔디의 안드로이드 팀이 빌드 속도를 개선하기 위해 노력했던 흔적들의 모음입니다.New Android App Build System1. Bazel (Google)본디 Android 만을 위한 빌드는 아니고 iOS 까지 빌드 할 수 있는 통합 빌드 시스템이라고 보시면 됩니다. Google 의 빌드 시스템인 Blaze 에서 파생된 빌드 프로젝트로 현재 베타로 등록, 진행되고 있습니다.2. Buck (Facebook)Bazel 보다는 좀 더 다양한 언어를 지원하기 위한 프로젝트로 보여집니다. 실제로 Go, Rust 등 다양한 언어를 지원하는 빌드 툴이라고 생각하시면 됩니다.3. Pants (Twitter, FourSquare, Square)3개의 회사가 협동해서 만든 빌드 툴입니다.특이점은 Bazel 만 Mobile Platform 을 위해 개량된 빌드 툴이고 2개는 좀 더 다양한 빌드 환경을 제공한다는 것입니다.Build 시스템의 성능들1. Bazel| —-| 출처 : Bazel(http://bazel.io/docs/mobile-install.html)|구글의 자료에 의하면 기존에 비해 4배~10배 의 성능 향상이 있다고 합니다.2. Buck|**Gradle**|**Buck**| | ----|----|----|----| clean build|31s|6s|5x| incremental build|13s|1.7s|7.5x| no-op build|3s|0.2s|15x| clean install|7.2s|7.2s|1x| incremental install|7.2s|1.5s|4.8x| 출처: Buck (https://buckbuild.com/article/exopackage.html)Gradle 과 비교Gradle 팀에서는 Bazel 에 대해서 2015년 3월 포스팅에 아래와 같이 평하였습니다.Gradle 팀이 꼽은 Bazel 의 단점Bazel 은 구글의 특화 되어 있으며 쉽게 빌드 할 수 있을만큼 고수준 상태가 아니다확장성이 떨어진다.성능은 의존성이 해결된 이후의 문제이다.*nix 환경(Mac, 유닉스, 리눅스를 지칭)에서만 가능하다. 아직 많은 엔터프라이즈 툴들이 .Net 기반이다.(51%)플러그인을 위한 생태계가 구성되어 있지 않다.결론각각의 빌드 시스템들이 제공해주는 정보에 따르면 새로운 빌드 시스템은 큰 차이를 보여주는 빌드 환경을 제공해줍니다. 하지만 그런 이점에도 불구하고 잘 알려지지 않은 이유는 설정에 큰 어려움이 있기 때문입니다. Gradle 과 Android Plugin 에서 제공해주던 것을 직접 스크립트로 작성을 해야하며 각각의 의존성에 대해서도 직접적으로 명시를 해줘야 하기 때문에 정교하고 어려운 작업입니다. 또한 개별적으로 Plugin 을 제공하지 않아 Crash Report 를 위한 툴이나 Build 과정에서 추가적인 작업들이 필요한 경우에도 별도의 작업을 필요로 합니다.이러한 어려움에 기존의 Gradle 에서 새로운 빌드 환경으로의 전환은 쉽지 않으며 끊임없는 도전이 될 것입니다.그래서 잔디의 안드로이드 팀이 선택한 것은 Gradle 에서 성능 극대화 하기 입니다.Gradle 의 성능 개선하기1. Gradle 의 최신화$> vi $project/gradle/wrapper/gradle-wrapper.properties distributionUrl=https\://services.gradle.org/distributions/gradle-2.9-all.zip2. Android Gradle Plugin 최신화buildscrpt { dependencies { classpath 'com.android.tools.build:gradle:1.5.0' } }3. 최소 지원 기기 설정하기android { productFlavors { dev { minSdkVersion 21 } prod { minSdkVersion 14 } } }minSdkVersion 을 LOLLIPOP 으로 설정하게 되면 Build 하는 과정에서 큰 부분이 생략이 되고 특히 MultiDex 를 설정한 프로젝트에서 더 큰 효과를 보실 수 있습니다. Android 는 컴파일 및 패키징과정에서 Class to Dex 와 Merge Dex 을 거치게 됩니다. 이때 하지만 LOLLIPOP 부터는 art 기반이기때문에 Merge Dex 과정이 생략되기에 빌드 성능이 크게 개선됩니다. 단, API 21을 바라보기때문에 lint 나 개발 과정에서 API 특화 대응이 되질 않을 수 있습니다. 유의해서 API 를 사용해주세요.4. Gradle 속성 추가$> vi $project/gradle.properties org.gradle.daemon=true org.gradle.parallel=true org.gradle.jvmargs=-Xmx768m5. DexOption 추가android { dexOptions { incremental true } }※incremental 은 잠재적 오류가 있을 수 있으니 조심해서 사용하라고 합니다. (참고링크)빌드 성능 비교빌드 환경 : MacBook Pro Retina 2012 (i7 2.3Ghz, 8GB Ram)|**변경 전**|**변경 후**| | ----|----|----|----| SingleDex clean build|57s|47s|1.2x| SingleDex incremental build|16.3s|9.6s|1.7x| MultiDex clean build|71s|71s|1x| MultiDex incremental build|48s|17.6s|2.7x| Incremental Build 를 보면 Single Dex, Multi Dex 모두에서 주목할만큼 성능 향상이 있습니다. 개발 과정에서는 Incremental Build 가 대다수의 빌드임을 감안한다면 Gradle 옵션을 수정이 개발 과정에서도 충분히 좋은 성능을 얻을 수 있음을 알 수 있습니다.코딩-빌드-실행을 반복해야하는 패턴에서 최대한 코딩과 테스트에 집중할 수 있는 환경을 만들기 위해 했던 많은 시도들이 다른 안드로이드 개발자분들에게 큰 도움이 되었으면 합니다.#토스랩 #잔디 #JANDI #개발 #개발자 #개발팀 #모바일 #안드로이드 #Android #꿀팁
조회수 2897

DevOps 팀을 위한 모니터링 팁

다음 중 몇 개나 해당하시나요?1~5명 규모의 작은 개발팀에서 일한다.DevOps 조직이다.우여곡절 끝에 서비스는 런칭했지만, 개발과 동시에 운영을 해야하는 상황이다.서버 인프라 지식이 별로 없다.무중단 서비스 운영 경험이 별로 없다.팀 내에 시스템 엔지니어(SE)와 데이터베이스 전문가(DBA)가 없다.하나라도 해당한다면 이 글이 도움이 될 지도 모릅니다.누구나 쉽고 빠르게 앱을 만들고 서비스를 런칭할 수 있는 시대가 되었지만 문제는 런칭 이후입니다. 런칭 이후에는 고객이 100명이라도 안정적인(High Availability) 서비스를 운영해야 하는 것이 백엔드 개발자의 임무이기 때문입니다.안정적인 서비스를 운영하기 위해서는 체계적인 모니터링 필수라고 하는데 그마저도 쉽지 않습니다. 가장 큰 문제는 (장애가 터지기 전까지) 무엇을 모니터링 해야 하는지조차 모른다는 것이고, 당장 개발해야할 것들이 산더미처럼 쌓여있는데 사람도 부족한 것도 문제입니다.그렇지만 누군가는 해야하는 일입니다. 리디북스 역시 모니터링이 전혀 없던 시절이 있었으나, 크고 작은 실패와 좌절을 겪으며 조금씩 경험을 쌓아가고 있습니다. 이번 글에서는 우리가 모니터링과 관련하여 고민해 온 내용들을 소개해볼까 합니다.어떻게 모니터링할 것인가시스템의 안정성을 높이기 위해 투입해야 하는 노력은 지수적으로 증가합니다. 아래 표에서 보듯이 SLA 를 99.999% 에서 99.9999% 로 높이려고 한다면 1년에 약 5분의 가용시간을 얻을 뿐이지만 이를 위해 수백시간 이상의 노력을 들여야 합니다.가용성연간 장애 시간주간 장애 시간99.995%26.28 분30.24 초99.999%5.26 분6.05 초99.9999%0.525 분0.6048 초완벽함을 추구하면 할 수록 얻을 수 있는 고객 만족은 미미한 것에 비해 이를 위한 개발자의 노력은 기하급수적으로 증가합니다. 따라서, 먼저 대응의 적정선을 찾고 효율적으로 움직이기 위한 계획을 세워야 합니다.리디북스에서는 해야할 일을 4가지로 분류하여 중요한 일부터 처리하는 아이젠하워 매트릭스에서 그 대응 원칙을 차용하였는데, 그 이유는 시사하는 바가 동일하기 때문이었습니다. 즉, 중요한 것은 대부분 긴급하지 않고, 긴급한 것은 대체로 중요하지 않다는 점입니다. 그리고 매트릭스의 두 축은 아래와 같습니다.얼마나 급한가?사무실의 무선 인터넷이 안된다면 서비스에 큰 문제는 아니지만, 당장 해결해야 하는 급한 일입니다. 반대로 백업 스크립트가 며칠째 동작하지 않아서 최근 데이터의 스냅샷이 없다면, 이는 당장 해결할 필요는 없겠지만 매우 중요한 일입니다.그리고 장애란, 단순히 “고장”을 의미하는 것이 아니라 서비스 이용에 지장이 없더라도 어떤 수치나 결과가 예상과 다른 상황을 의미해야 합니다. 예를 들어, 웹서버의 평균 CPU 사용률이 70%가 넘는다거나 네트워크 대역폭을 90% 이상 사용하는 상황은 정상이 아닙니다. 조금만 트래픽이 몰려도 문제가 발생할 가능성이 매우 높기 때문에 잠재적인 장애로 간주해야 합니다.우리는 급한 문제를 우선적으로 처리하는 경향이 있어서, 덜 급하지만 더 중요한 일을 놓치는 경우가 많습니다. 이를 피하려면 장애의 그 심각도에 따라서도 구분해야 합니다.얼마나 심각한가?심각도를 처음부터 너무 상세하게 구분할 필요는 없으며, 크게 서비스 이용에 치명적인 것과 그렇지 않은 것으로 나누어 생각하면 됩니다. “치명적”의 의미는 서비스마다 다를 수 있지만 대개 아래에 해당합니다.사업에 지장을 초래한다.고객을 잃는다.만약 웹페이지의 로딩 속도가 매우 느려서 나쁜 이미지를 준다면 이 역시 치명적일 수 있습니다. 실제로 아마존에서는 로딩 속도가 100ms 지연될 때마다 눈에 띄는 매출 하락이 발생했다는 테스트 결과가 있습니다. 따라서 속도에 대한 매트릭을 모니터링 지표에 추가하는 것은 좋은 선택입니다.이상을 토대로 장애 종류에 따른 대응 원칙을 정리하면 아래와 같습니다. 급함안급함심각함➀ 즉각 대응, 즉각 인지➁ 평소 보완, 항상 경계안심각함➂ 빨리 대응, 최소 대응➃ 대응하지 않기이 중에서 항상 의식하고 놓치지 말아야 하는 것은 안급하지만 잠재적으로 심각한 장애(➁)입니다. 그리고 모니터링은 한 번 시작하게 되면 관리를 위한 비용이 꾸준히 투입되어야 하기 때문에 사소한 문제(➂, ➃)를 굳이 파헤치는 것은 오히려 독이 될 수도 있습니다.모니터링 측면에서 본다면 발생중인 장애는 최대한 빨리 발견하는 것이 중요하며, 잠재적인 장애는 상태의 변화를 최대한 빨리 감지하는 것이 중요합니다. 예를 들어, 디스크의 여유공간은 완전히 바닥나기 전까지 어떠한 경고도 나타나지 않지만 부족한 상황이 발생하면 어떤 부작용이 생길지 예측할 수 없습니다.필수 모니터링 갖추기모니터링을 해야할 대상은 기술 스택과 코드 구현에 따라 달라지겠지만, 빼놓을 수 없는 것들이 몇 가지 있습니다. 리디북스에서는 서버의 프로비저닝과 동시에 아래 내용들을 함께 준비하고 있습니다.1. 리소스 및 시스템 모니터링각종 시스템 리소스 및 하드웨어 상태는 필수 모니터링 대상입니다. 모니터링 툴을 설치해보면 측정해주는 항목들이 너무 많아서 당황스러운 경험을 하게 되는데요. 그 중에서도 우리가 주목하고 있는 항목들은 아래와 같습니다.CPU UsageLoad AverageDisk UsageDisk Utilization (iowait, IOPS)Swap Memory Usage (사용시)Temperature (인프라 직접 구축시)RAID Status (인프라 직접 구축시)S.M.A.R.T Errors (인프라 직접 구축시)이 중 몇가지는 New Relic 에서 무료로 지원하므로 당장 여력이 없다면 이를 이용하는 것도 좋은 방법입니다.클라우드 환경이 아닌 데이터센터에서 인프라를 직접 구축하여 운영하고 있다면 좀 더 많은 노력이 필요합니다. 하드웨어적인 장애를 직접 신경써야 하기 때문입니다. 실제로 팬(fan)이 고장나거나 케이블이 환풍구를 막아서 서버의 온도가 비정상적으로 높아지다가 기기가 오동작하는 어처구니없는 상황도 발생합니다.Disk서버 환경에서 SSD 사용이 점점 대세가 되어가고 있는데, 최근 구글이 공개한 정보에 따르면 SSD에서 배드블럭이 발생하는 일은 매우 흔하며, 시간이 오래될 수록 안정성이 떨어진다고 합니다.따라서 디스크와 관련된 RAID나 S.M.A.R.T 오류는 가능한 빨리 대응해야 합니다. 특히 RAID 장비를 구성할 때에는 같은 공정에서 출하된 같은 벤더의 제품을 일괄적으로 구매해서 사용하기 때문에, 동일한 하드웨어 결함을 지니고 있거나 평균 수명도 비슷하므로 결코 안이하게 대응해서는 안됩니다.리디북스에서는 전자책 원본을 보관하는 스토리지에서 4개의 사본(replica) 중 3개가 연달아 깨지는 끔찍한 사고를 경험한 이후로, 디스크 오류는 1순위로 대응하고 있습니다. 참고로 스토리지 서버를 구축한지 3년째가 되는 해였고, 모두 S사의 제품이었습니다.iowait 은 CPU가 유휴(idle) 상태로 I/O를 대기하는 시간을 나타낸 수치입니다. 이를 통해 현재 시스템이 I/O 병목을 겪고 있는지 판단할 수 있기 때문에 중요합니다. 이 수치가 너무 높다면 블록 디바이스나 네트워크가 너무 느린 상황이거나 포화 상태일 수 있으므로, 더 높은 IOPS 장비로 업그레이드하거나 부하를 분산해야 합니다.단, CPU 성능에 영향을 받는 수치이므로 고성능 CPU를 사용할수록 평균 iowait이 높게 측정됩니다. (따라서 성능을 평가하기 위한 지표로는 IOPS도 함께 분석해야 합니다.)Load AverageLoad Average(평균 부하)는 마치 서버의 종합 성적표 같아서, 이 역시 주목할 필요가 있습니다. Load Average에 변동이 생긴다면 평소와는 다른 처리량(throughput)을 내고 있다는 뜻입니다. 요청량이 증가하여 수치가 올라갔다면 서버 증설과 튜닝에 대비해야 하지만, 그렇지 않다면 어딘가 병목이 발생하여 처리 효율이 낮아졌다는 신호입니다.아직 Load Average를 모니터링하고 있지 않다면 주요 서버군부터 아래 규칙을 참고하여 초기 기준치를 설정하기를 권장합니다. 물론 어디까지나 초기 설정 값이며, 실제 상황에 적합하지 않을 수 있습니다.Warning Level : 0.7 * number of cores Critical Level : 1.0 * number of cores간혹 커널 자체에 문제가 있거나, 커널 모드에서 예외가 발생하는 경우에는 syslogd 데몬이 남기는 로그를 파악해야 합니다. Papertrail, Splunk, Loggly 등의 서비스는 크리티컬 수준 이상의 syslog 에 대해 알림을 설정할 수 있을 뿐 아니라, 텍스트 형태로 남겨지는 모든 로그에 대한 관리를 쉽게 도와줍니다. 비록 유료지만 커널 모니터링 용으로만 사용한다면 비용이 많이 들지 않습니다.2. 응용프로그램 모니터링앱이나 서버에서 발생하는 크래시와 예외를 수집하는 도구 역시 장애 예방에 필수입니다. 해당 기능을 실시간으로 제공하는 다양한 서비스들이 존재하는데 많이 쓰이는 것으로는 Sentry, Rollbar, Airbrake, NewRelic APM 등이 있습니다. 대부분 5분만에 설정이 가능한데다 어느것을 선택하더라도 핵심 기능에는 부족함이 없습니다.단, 현재까지 가성비로는 Sentry가 제일 뛰어납니다. Python의 Flask와 Jinja의 개발자로 유명한 Armin Ronacher가 팀에 합류했기에 발전가능성 측면에서도 많은 기대가 됩니다.Sentry의 실시간 에러 대시보드3. 데이터베이스 모니터링팀에 DBA가 있나요? 모든 서버 개발자들이 인덱스와 스토리지 엔진의 특징에 대해 잘 이해하고, DB를 능숙하게 다루나요? 그것도 아니라면 개발자들이 작성한 모든 스키마와 쿼리에 대한 검증 과정을 거치고 있나요? 만약 그렇지 않다면 슬로우쿼리 모니터링은 필수입니다.우리가 서비스 초기에 겪은 문제의 대부분은 인덱스를 잘 다루지 못하거나 새로 도입한 ORM에 대한 이해도가 낮아서 발생한 문제였습니다. 그 중에서도 특정 쿼리가 너무 많은 I/O를 유발하던 것이 주된 원인이었으며, 작고 가벼운 쿼리가 너무 많이 호출되어 문제가 된 경우는 거의 없었습니다.잘못 설계된 스키마나 쿼리는 평소에는 드러나지 않다가 사용자가 몰리기 시작하면 큰 부하를 발생시켜서 기어이 서비스를 마비시키곤 합니다. 문제가 커지기 전에 그 조짐을 감지할 수는 없을까, 고민 끝에 우리가 시도한 방법은 “2초 이상 수행되는 쿼리에 대해서 로그를 남기고, 초당 3개 이상 로그가 발생할 경우 알림”을 받도록 하는 것이었습니다.MySQL에서는 아래 설정으로 로그를 활성화시킬 수 있습니다.[mysqld] long_query_time=2 # 2초 이상 수행되는 쿼리에 대해서 slow_query_log=1 # 로그를 남겨주세요 쿼리 분석에는 Percona의 pt-query-digest 를 추천합니다. VividCortext 혹은 MONyog 등의 솔루션은 시각적으로 화려하고 실제로도 강력한 기능을 갖추고 있지만, 유료라는 큰 단점이 있습니다.모니터링을 통해 알림을 받게 되면 문제가 더 커지기 전에 해당 기능을 수정하거나 중단시킬 기회가 생깁니다. 특히 새롭게 추가한 기능을 배포할 때 서비스가 불안해 질 수 있는데, 퍼포먼스 문제를 미리 발견하고 롤백을 서두를 수 있다는 것도 장점입니다.물론 가장 이상적인 상황은 n초 이상 수행되는 쿼리를 모두 없애는 것입니다. 하지만 현실은 튜닝을 포기하고 테이블을 풀스캔하도록 두는게 나은 선택일 수 있으며, OLAP/ETL 인프라가 별도로 구축되어 있지 않은 상황에서는 어쩔 수 없이 슬로우쿼리가 발생하게 됩니다. 우리가 초당 로그 갯수로 판단을 하게된 것도 이러한 이유 때문이었습니다.자동으로 슬로우 쿼리를 받아보면 문제해결에 도움이 됩니다.4. 배치 작업(scheduled task) 모니터링매일 백업 스크립트를 돌리고는 있는데, 백업이 정상적으로 완료가 되었는지는 어떻게 판단하면 될까요? 에러는 위에서 설명한 도구들로 확인이 가능하겠지만 스크립트가 수행도중 멈춰버렸거나, 서버의 전원이 꺼졌다면? 게다가 크론 작업(crontab)이 수십개가 넘어가면 이를 수동으로 체크하는 것도 일이므로, 반드시 자동화해야 합니다.이러한 상황에서 활용할 수 있는 유용한 도구가 PushMon 입니다. PushMon은 정해진 시간에 ping을 보내지 않으면 이메일이나 SMS로 알림을 주는 서비스로, 원리는 매우 단순하나 없어서는 안될 기능을 “무료”로 제공합니다.모니터링에 대응하기모니터링을 효율적으로 하기 위한, 즉 서비스 안정성을 높이기 위한 핵심 원칙은 “필요한 인원이 필요한 알림만 받는것”입니다.알림이 너무 많이 와서 음소거(Mute)를 하고 싶은 생각이 든다면 모니터링 체계에 문제가 있다는 신호입니다. 불필요하게 많은 경고는 안전 불감증을 낳을 뿐더러 정작 중요한 경고를 놓칠 확률을 높이기 때문입니다. 치명적인 알림은 모든 채널로 즉각 수신하고, 경고성 알림은 메일로 수신하되 정기 리포트나 메일함 자동분류 기능을 이용하여 중요한 정보를 놓치지 않는 습관이 중요합니다.불필요하게 많은 인원이 알림을 받는 상황도 문제입니다. 알림 수신자를 늘리면 모니터링의 퀄리티가 높아질 것이라고 생각하지만 절대 그렇지 않습니다. 오히려 방관자 효과가 발생하여 아무도 알림에 대응하지 않는 상황이 발생하게 됩니다. 따라서 알림이 발생했을 때에는 1차, 2차 담당자를 사전에 지정하고 운영할 필요가 있습니다.방관자 효과의 적절한 예팀에서 Slack을 사용한다면 기능 연동을 통해 실시간으로 이슈를 파악할 수 있고, 담당자 지정을 보다 쉽고 명확하게 할 수 있습니다. 특히, 별것 아닌 이모티콘(emoji) 만으로도 방관자 효과를 크게 줄일 수 있는데, 예를 들면 아래와 같습니다.👀 - 확인중 ✅ - 확인 완료 😱 - 확인은 하였으나 나는 해결을 못하겠음Sentry를 Slack에 연동한 모습또한, 모니터링 시스템에 대한 모니터링도 중요합니다. SaaS를 이용하는 경우에는 최악의 경우 해당 서비스의 점검기간에 대비할 수 없으며, 심지어는 점검중이라는 사실 조차 인지하지 못할 수 있습니다. 이에 대비하기 위해 리디북스에서는 Server Density로 모니터링을 모니터링하고 있습니다.맺음말장애를 얼마나 꼼꼼하게 예방하는지, 그리고 얼마나 즉각적으로 반응하는지는 팀 구성원의 실력으로 정해지는것이 아니라 팀의 문화와 원칙에 따라 정해집니다. 아직 팀에 뚜렷한 대응 원칙이 없다면 먼저 상황에 맞는 기준과 척도를 결정하고 공유해볼 것을 추천합니다.무엇보다 DevOps를 수행하는 것은 사람임을 잊지 말아야 합니다. 인간은 99.99% 가용성이나 24/7 을 보장하지 못하며, Uptime은 하루도 되지 않습니다. 최근 DevOps가 대세가 되어가지만 Ops에서의 인간적인 측면은 진지하게 고려되지 않고 있습니다. 이러한 환경을 개선하기 위한 HumanOps에 대한 소개와 함께 글을 마칩니다.     HumanOps 계명시스템을 만들고 고치는 것은 인간이다.인간은 지치고 스트레스를 받으며, 행복과 슬픔을 느낀다.시스템은 아직 감정이 없다. 오로지 SLA만 있다.인간은 스위치 온/오프 상태를 반복해야 한다.시스템을 운영하는 인간의 행복이 시스템의 안정성에 영향을 준다.빈번한 알림 == 인간의 피로최대한 자동화하고, 최후의 수단으로 인간에게 이관하라.문서화하고, 훈련하고, 시간을 아껴라.창피 주지 마라.인간의 문제는 시스템의 문제다.인간의 건강은 사업의 건강에 영향을 준다.인간 > 시스템#리디북스 #개발 #DevOPS #모니터링 #인사이트 #서버개발 #운영 #꿀팁
조회수 1475

스타일쉐어에서 이미지 분류하기 (시작 편) feat.ML

안녕하세요.스타일쉐어에서 백엔드 개발을 하고 있는 김동현입니다.작년 11월 스타일쉐어에서 뷰티에 관련된 사진들을 따로 모아서 보여줄 피드.바로 뷰티피드 라는 것을 만들었습니다. 하지만 피드를 만드는 과정이 순탄치 만은 않았는데요.그간의 과정과 얻었던 경험들을 공유하고자 합니다.들어가기에 앞서혹시 설명을 하다 보면 스타일쉐어에서만 사용되는 단어가 있을 수 있다는 생각이 들어 단어에 대한 공유를 먼저 드리고자 합니다.스타일쉐어에서는 이를 “피드”라 칭합니다.스타일쉐어에서는 이를 “스타일”이라 칭합니다.여러 가지 카테고리 중에서 왜 뷰티인가요?기존의 서비스에서는 유저들이 올리는 스타일에 대한 카테고리가 없어서 유저들이 보고 싶어 하는 스타일들을 쏙쏙 뽑아서 보여줄 수 없는 상황이었지만 “내가 보고 싶은 것들만 볼 수 있었으면 좋겠다”라는 유저들의 니즈는 계속 올라가고 있었습니다.서비스 특성상 1020 유저들이 많이 있었고 하루 동안 올라오는 스타일에 대해서 사람이 직접 카테고리를 하나하나 나눠봤을 때 가장 활발하게 대화가 이루어지고 반응이 좋고 충성도도 높은 카테고리가 바로 뷰티였습니다.뷰티만이라도 따로 보여줄 수 있도록 해보자그럼 어떻게 뷰티에 관련된 게시물들을 뽑아낼 건가요?올라오는 스타일들 중에서 뷰티라는 속성을 찾아내어 분류하는 방법으로 두 가지의 제안이 나왔습니다.1. 사람이 직접 뽑아낸다.2. 요즘 뜨고 있는 딥러닝을 이용해서 뽑아낸다.처음엔 사람이 직접 모니터링 해볼까? 라는 이야기가 나왔었습니다.당장이라도 시작 할 수 있다는 점과 높은 정확도를 가졌다는 장점이 있기 때문이였죠.하지만 주말 관계없이 4000~6000개씩 올라오는 스타일들을 상시 모니터링하고 모두 검토해야 하는 상황이 너무 막막하게 느껴졌습니다. 관련 업무를 하시는 분의 업무 만족도는 낮을 것이 당연하기도 했지만 그럴만한 인적자원이 충분하지 않았습니다.그래서 요즘 뜨고 있는 딥러닝을 이용해보자는 방향으로 일이 진행되었습니다. 게다가 요즘 딥러닝으로 Image Classification 하는데에 있어서 정확도가 사람을 넘어섰다는 이야기도 결정에 한몫을 했답니다.딥러닝으로 분류하기로 결정했다! 근데 트레이닝 셋은?딥러닝을 하시는 분들이 애용하는 사이트인 캐글만 가보아도 문제와 트레이닝 셋이 잘 정리되어있기에 개발자는 어떻게 하면 잘 예측할 수 있을까에 대한 고민만 했으면 되었었습니다. 하지만 당연하게도 실제 필드에서 처리해야 하는 문제와 그에 대한 트레이닝 셋은 존재하지 않았습니다.우선 딥러닝으로 분류하기로 결정을 하였으니 서비스에서 뷰티라는 카테고리 안에 넣을 소카테고리를 나누었고 다음과 같았습니다.* 눈 화장 관련* 입술 화장 관련* 얼굴 화장 관련* 헤어* 화장품* 발색* 네일그래도 태양 아래 새로운 것은 없다 라는 말처럼 비슷한 것들이 존재할까 하고 찾아보았으나…https://www.kaggle.com/openfoodfacts/openbeautyfactshttp://www.antitza.com/makeup-datasets.htmlㅇ…없잖아?!그렇습니다. 공개된 것은 없던 새로운 것이었습니다. 위의 소카테고리들을 모으는 방법을 모색해야 했습니다.위에서 언급했듯이 잉여 인적자원이 없었기 때문에 몇만 개의 데이터를 모을만한 데이터를 모으는 일은 저를 포함해서 개발자 2명이서 진행을 했었습니다.그래서 결국 뷰티 피드는…성.공.적.다행히도 잘 마무리되었습니다. 화자 되고 있는 딥러닝 기술을 실제로 사용해볼 수 있어서 좋았고 팀원들도 이게 되는구나, 다른 것도 해볼 수 있겠다 라는 피드백을 많이 받았고 저 또한 개발을 하면서도 이게 된다고? 하는 반응이 제일 많았던 것 같습니다. 물론 앞으로 모델을 계속 개선해나가야겠지만요.사실 딥러닝을 거의 처음 공부하는 수준에 가까웠고 초반에 우왕좌왕 하기도 많이 했었는데 믿고 기다려줬던 스타일쉐어 팀원 분들 덕분에 잘 마무리될 수 있었던 것 같습니다.분류와 트레이닝 셋에 대한 좀 더 자세한 글은 다음 포스팅 (분류 편)에서 찾아뵙겠습니다.#스타일쉐어 #개발팀 #개발자 #개발후기 #경험공유 #인사이트
조회수 1454

[H2W@NL] 전문가들의 고정밀 시너지, 하이브리드 HD 매핑

네이버랩스의 인재상은 passionate self-motivated team player입니다. 어쩌면 '자기주도적 팀플레이어'라는 말은 형용모순(形容矛盾)일 지도 모릅니다. 하지만 우린 계속 시도했고, 문화는 계속 쌓여갑니다. 다양한 분야의 전문가들이 경계없이 협력하고 스스로 결정하며 함께 도전하는 곳의 이야기를 전합니다. How to work at NAVER LABSH2W@NL 시리즈 전체보기지난해 11월, 네이버랩스는 국내 기업 중 최초로 도로 HD맵 데이터셋을 무상 배포했습니다. 수많은 국내 자율주행 연구자들을 위해서입니다. 그렇다면, 왜 자율주행 연구에 HD맵은 중요할까요? 안전하고 효과적인 자율주행을 위해서입니다. 센서 데이터와 HD맵을 연동하면 고층 빌딩이 즐비한 도심에서도 현재 위치를 끊김없이 정확하게 인식할 수 있도록 해주고, 복잡하게 얽혀있는 도로 구조를 광범위하게 파악해 효과적인 경로 계획을 세울 수 있으며, 신호등/횡단보도 등의 위치를 HD맵을 통해 미리 확인해 실시간 인지 정확도를 높일 수도 있습니다. 그래서 네이버랩스는 자율주행 연구 시작 시점부터 HD맵 솔루션을 함께 연구해 왔습니다. 그 결과가 하이브리드 HD 매핑입니다. 항공사진과 MMS 데이터를 융합해 고정밀 지도를 만드는 기술입니다. 다른 어디에서도 시도하지 못했던, 가장 독창적인 방식의 매핑 솔루션은 어떻게 개발되었을까요? 그 주역들의 이야기를 들어보았습니다.Q. 왜 HD맵 기술을 개발하나요?HD맵은 도로 자율주행을 위한 시작(김형준|시스템 소프트웨어 개발) 자율주행 시대가 온다고 합니다. 그렇다면, 반드시 그보다 먼저 필요한 것은 HD맵입니다. 자율주행 차량이 도로를 안전하게 주행하려면, 차선 단위의 아주 정밀한 정보가 필요하기 때문입니다. 보통은 MMS (Mobile Mapping System) 차량이 일일이 돌아다니며 수집한 도로 데이터로 HD맵을 제작하는 것이 일반적이지만, 이 방식은 소요되는 시간과 비용이 많습니다. 지역이 광범위해지면 더 많은 리소스가 필요하고요. 우리는 그걸 획기적으로 줄일 수 있는 방법을 찾고 싶었습니다. 정확도는 유지하되, 도시 단위의 넓은 지역을 더 빠르고 효율적으로 제작하는 솔루션을 찾았습니다. 그 결과가 네이버랩스의 하이브리드 HD 매핑 기술입니다. 항공 사진을 통해 대규모 지역의 도로의 레이아웃과 건물 정보 등을 얻고, 이 위에 자체 MMS 차량인 R1으로 취득한 데이터를 정합해서 HD맵을 만듭니다. R1이 최소한만 주행해도 HD맵을 제작할 수 있기 때문에, 소요되는 시간과 비용을 획기적으로 줄일 수 있습니다.(전준호|비주얼 피처맵 개발) 이렇게 완성된 HD맵에는 도로 자율주행에 필수적인 고정밀 정보들이 담겨 있습니다. 도로의 구조 정보인 로드 레이아웃 맵(Road Layout Map), 기하 정보를 가진 포인트 클라우드 맵(Point Cloud Map), 시각 정보를 가진 비주얼 피처 맵(Visual Feature Map) 등이죠.(신용호|센서 캘리브레이션) 우리가 하이브리드 HD 매핑이란 새로운 방식을 고안하고 완성할 수 있었던 건, 그 동안 지속적으로 개발해 온 자율주행 기술과 항공 사진 기반의 지도 생성 기술을 모두 내재화하고 있었기 때문이죠.도시 규모의 HD맵을 효율적으로 제작할 수 있는 독자 솔루션(이진한|PM/소프트웨어 개발) 사실 자율주행 기술을 연구하는 회사들은 많습니다. 그런데 독자적인 HD 매핑 기술까지 보유한 회사는 의외로 많지 않아요. 네이버랩스도 처음엔 그랬어요. 자율주행 프로젝트가 시작된 2016년 무렵엔 자체 HD 매핑 기술이 없다는 점이 아쉬웠어요. 센서만으로는 얻기 힘든 정보들을 미리 담아둘 수 있는 그릇이 HD맵인데, 바로 그 정보들이 자율주행의 성능을 높이는데 큰 역할을 하거든요. 결국 이 그릇을 만드는 방법을 내재화했죠. 이제는 도시 규모의 HD맵을 효율적으로 제작할 수 있는 독자 솔루션을 갖췄습니다. 실제로 이 결과물을 Localization에 바로 활용하여 자율주행 기술도 함께 고도화하고 있습니다.Q. 어떤 협업을 통해 개발되었나요?아웃풋이 바로 새로운 인풋이 되는(이진한|PM/소프트웨어 개발) 하이브리드 HD 매핑은 여러 분야의 전문가들이 함께 했습니다. 한 프로젝트의 결과물이 다른 프로젝트의 입력으로 연결되는 구조라고 할 수 있겠네요. 예를 들어 R1 하드웨어 장비 개발 프로젝트는 Sensor Calibration 프로젝트로 이어지고, 항공 매핑을 통해 만들어진 로드 레이아웃 데이터에 MMS 데이터를 연결하고… 이렇게 유기적인 의존 관계로 진행되었습니다.(이웅희|센서 데이터 툴 개발) 자체 개발한 MMS 차량인 R1에는 다수의 카메라, 라이다, GPS, 자이로센서 등 많은 센서들이 탑재되어 있어요. 이러한 개별 센서들에 대한 드라이버 개발은 물론 전체 센서 데이터가 동시에 들어왔을 때 유실 없이 저장할 수 있는 시스템 개발, 그리고 운용 소프트웨어 개발이 필요했습니다.(신용호|센서 캘리브레이션) R1이 수집된 데이터를 융합하기 위해서 반드시 필요한 과정이 있습니다. 캘리브레이션입니다. 각 센서간에는 상대적인 위치와 방향 등의 차이가 발생하는데, 캘리브레이션을 통해 정확하게 매칭을 시켜야 하죠. 그렇지 않으면 수집한 데이터들을 제대로 사용할 수가 없습니다.하늘과 도로에서 획득한 데이터를 융합하여 도시 규모의 HD맵 생성(김진석|항공 매핑) R1이 지상을 담당한다면, 저희는 하늘에서 찍은 정보를 활용합니다. 항공 사진을 통해 정확도를 획기적으로 높이는 방식을 개발했습니다. 항공 사진에서 8cm 해상도로 왜곡이 제거된 연직 정사영상(TrueOrtho)을 생성한 후, 도로 영역의 2D/3D 로드 레이아웃을 생성합니다. 여기에 R1이 수집한 포인트 클라우드 데이터를 정합하면, 대규모 지역의 HD맵을 빠르고 효율적으로 만들 수 있게 됩니다.(임준택|라이다 피처맵 개발) 이처럼 R1이 도로의 포인트 클라우드를, 항공기가 대규모 지역의 로드 레이아웃을 스캔해 결합하는 방식은 아주 새로운 솔루션입니다. 물론 그냥 붙인다고 HD맵이 바로 나오는 것은 아닙니다. 스캔 데이터에서 자동차나 사람같이 불필요한 부분을 지우는 딥러닝 모델을 만들고, HD맵을 사용할 차량이나 로봇을 위한 특징점을 추출하는 과정도 필수적입니다.서로 다른 분야의 전문가, 하나의 팀(전준호|비주얼 피처맵 개발) HD맵을 이루는 요소들, 즉 Road Layout Map/Point Cloud Map/Visual Feature Map 등의 구축 알고리즘을 각기 개발해, 이 데이터들을 잘 포함하고 있는 HD맵을 제작하는 거죠. 이렇듯 많은 팀의 협력으로 완성한 매핑 솔루션입니다. 항공 사진의 정합과 인식, MMS 차량의 데이터 수집을 위한 장비와 센서 시스템 구축, GPS와 LiDAR 데이터를 이용한 위치 인식 기술, 시각 정보 추출을 위한 딥러닝 기술 등 서로 다른 전문가가 하나의 팀으로 모여있어요. 같은 목적을 갖고 밀접하게 협업하기에 더 높은 수준의 연구와 개발이 가능한 것 같습니다.“결과도 중요하죠. 하지만 문제를 같이 정의하고, 함께 해법을 찾아가는 과정은 더 중요한 것 같아요. 그래야 좋은 결과가 이어질 수 있으니까요.”(김형준|시스템 소프트웨어 개발) 다양한 분야의 전문가들이 모여 유기적인 협업이 언제든 가능하다는 것은 프로젝트에서 난항을 겪을 때 큰 힘을 발휘합니다. 예전에, 데이터 취득 시스템의 안정성에 문제가 생긴 적이 있어요. 그때 하드웨어 엔지니어와 소프트웨어 엔지니어들이 모두 모여 동시에 검토를 했습니다. 필드를 돌며 문제 발생 시점의 상황을 함께 체크하고, 그 중 기구 엔지니어 분들이 원인을 찾아 문제를 해결했습니다.(김상진|하드웨어 설계) 저도 그때가 기억나요. 차량 진동으로 인한 간헐적인 회로 단락이 원인이었죠. 짧은 시간에 가장 정확한 답을 찾기 위해 필요한 것은, 역시 유기적인 팀웍인 것 같아요.(신용호|센서 캘리브레이션) 팀이 없는 것처럼 협업이 잘 된다는 점도 자랑하고 싶어요. 함께 잘하기 위해서라는 목표만으로 일에 몰입할 수 있다는 건 정말 좋은 경험이죠.Q. 경과, 그리고 목표는?서울시 2,000km 로드 레이아웃 지도 구축(김진석|항공 매핑) 서울시 4차선 이상 도로 2,000km에 대한 로드 레이아웃 구축을 완료했습니다. 자율주행에 필요한 도로 구조 정보(차선, 중앙선, 정지선, 좌회전 등의 노면표시)를 정밀한 벡터 데이터 형식으로 변환했습니다. 서울시만큼 큰 대도시 규모의 매핑이란 관점에서 보자면, 국내에서 유일한 기술입니다.(김형준|시스템 소프트웨어 개발) 하이브리드 HD 매핑의 자체 프로세스가 정립되면서, 예전과 비교해 최소한의 작업으로 원하는 지역의 HD맵을 생성할 수 있게 되었습니다. 무상 공개한 판교 및 상암 지역 HD맵도 이 결과물 중 하나죠.(이진한|PM/소프트웨어 개발) 상암/판교 지역의 HD맵 무상 배포를 DEVIEW에서 발표했을 때가 정말 보람되었던 것 같아요. 국내에서 자율주행을 연구하고 있는 많은 기관에서 데이터셋 신청을 해주셨어요. 저희의 솔루션으로 만든 HD맵이 국내 자율주행 기술 고도화에 도움이 될 수 있었으면 좋겠습니다.(전준호|비주얼 피처맵 개발) 네이버랩스의 HD맵은 도로 위의 정밀 위치 인식을 최종 목표로 하고 있습니다. 예를 들어 Visual Feature Map의 경우 위치 인식에 필요한 최소한의 시각 정보와 기하 정보를 Descriptor 형태로 경량화 했기 때문에, 대규모 도심 지역의 데이터도 용량이 아주 작습니다. 이러한 최적화를 계속할 계획이고요.미래 모빌리티 세상으로 한 걸음 더(김상진|하드웨어 설계) 매핑 시스템 고도화의 목표는 결국 신뢰성 높은 지도를 만드는 것에 있습니다. 하드웨어 시스템의 신뢰성/유연성/운용성을 빠르게 개선하고, 이를 더욱 저비용으로 구현할 수 있도록 개발을 지속하고 있어요. 이런 연구들의 결과가 모이고, 이러한 고정밀 데이터가 쌓이면, 우리가 상상하고 있는 미래 모빌리티 세상을 더욱 앞당길 수 있다고 생각합니다.
조회수 582

프로그래밍 교육에서 동료 평가(Peer Assessment)란 무엇일까요?

전 세계적으로 프로그래밍 교육 열풍이 불고 있습니다. 몇 년 전부터 시작된 이 열풍을 타고 프로그래밍을 가르치는 공개 온라인 강좌(MOOC; Massive Open Online Course)가 우후죽순으로 생겨났습니다. 이들 수업은 시간과 장소에 구애받지 않고 어디에서나 누구나 자유롭게 수업을 들을 수 있는 MOOC의 특성을 십분 활용하여 수천 수만 명의 학생을 효과적으로 모집하고, 프로그래밍의 기초부터 전문가가 되기 위한 직업 교육의 영역까지 다양한 교육을 진행하고 있습니다.그러나 비디오 강의와 프로그래밍 숙제를 위주로만 이루어지는 온라인 프로그래밍 강의들은 아직까지 소규모 오프라인 강의들이 제공하는 수준의 효과적인 학습 효과를 제공하는 데에는 어려움을 겪고 있습니다. 이러한 학습 효과의 열화가 일어나는 원인에 대해서는 수많은 연구자가 각기 다른 이론과 실험을 근거로 들고 있지만, 그중에서도 많은 사전 연구와 실험을 통해 밝혀진 원인 중 하나는 “학생과 강사 사이의 소통”이 기존에 교육 환경에 비해 부족하다는 점입니다.비디오로 이루어진 강의에서 어떻게 강의를 전달하는 것이 효과적일지에 대한 연구가 진행되었습니다. 논문: How Video Production Affects Student Engagement: An Empirical Study of MOOC Videos몇 가지 예시를 들어보자면, 기존의 소규모 오프라인 교육 환경에서는 학생이 궁금한 점이 있을 때 강사에게 즉석에서 질문하고 답변을 받을 수 있지만, 이미 녹화된 동영상을 보며 학습하는 온라인 비디오 강의에서는 이러한 간단한 소통마저 아직 완벽하게 이루어지지 못하고 있고, 이러한 한계점은 연구자들에게 새로운 연구의 대상이 되고 있습니다.Elice에서는 학생이 문제를 풀다 질문이 생기면 조교와 1:1로 대화를 할 수 있습니다.비슷하지만 다른 예시로, 수업 시간 이외의 시간에 일어날 수 있는 소통의 예를 들어보자면, 숙제의 채점과 피드백을 예로 들어볼 수 있습니다. 소규모 강의에서는 몇몇 조교가 학생들이 제출한 프로그래밍 숙제를 하나하나 검사하고, 채점한 뒤 개개인에게 필요한 피드백을 주는데에 큰 문제가 없습니다. 그러나 많아야 수십 명의 조교가 많게는 수만 명의 학생이 제출한 과제를 채점해야 하는 MOOC 환경이라면 이야기가 달라집니다.MOOC 환경에서 과제의 효과적인 채점에 대한 연구는 아직도 활발하게 연구되고 있는 매우 흥미로운 주제입니다. 서론이 조금 길었던 것 같기도 하지만, 이번 글에서는 온라인 프로그래밍 강의가 좀 더 효과적으로 되기 위해 넘어야 할 허들 중 하나인 “수많은 학생이 제출한 과제를 어떻게 하면 효과적으로 채점하고 피드백을 줄 수 있을까?”라는 문제에 대해 elice 팀에서 연구한 내용을 여러분들과 공유해보고자 합니다.동료 평가 (Peer Assessment)MOOC 환경에서 몇 명의 조교만으로 제출된 수만 개의 과제를 채점하는 것은 현실적으로 불가능하므로, 이미 프로그래밍을 가르치는 일부 MOOC들은 연구를 통해 학생들이 제출한 과제를 자동으로 채점해주는 프로그램을 개발하여 사용하고 있습니다.Elice의 자동 채점. 정해진 답이 있는 경우 자동 채점은 실시간으로 학생들이 받을 수 있는 새로운 피드백 채널이 됩니다.그러나, 프로그래밍 과목에서 자동 채점 프로그램은 한정적인 상황에서만 성공적으로 사용될 수 있으며, 특히나 과제의 내용이 명확한 답을 요구하지 않는 형태이거나 (예를 들어, 오늘 배운 명령어들을 이용하여 멋진 집을 3D로 그려주는 프로그램을 작성하시오!), 단순한 비교만으로 정답을 매길 수 없는 경우에는 사용될 수 없다는 명백한 한계점이 존재합니다. 그래서 프로그래밍 교육을 연구하는 연구자들은 자동 채점 프로그램도 아니고, 조교도 아닌 누가 학생들의 과제를 채점하고, 피드백을 줄 수 있을까를 고민하던 도중 이미 다른 교육 분야에서 연구되어 사용되던 “동료 평가 (peer assessment)”라는 방법에 눈을 돌리게 되었습니다.동료 평가란 간단하게 말하자면 학생들이 서로 간의 과제를 채점해주는 방식의 과제 채점 방법을 말합니다. 제출된 과제의 수 만큼 이것을 채점할 수 있는 학생 수가 존재하기 때문에, 동료 평가는 강의에 크기에 거의 무관하게 사용될 수 있다는 장점이 있습니다. 또한, 학생들은 다른 학생들이 제출한 과제를 채점하면서 자기가 생각하지 못했던 새로운 아이디어를 발견하거나, 자신이 했던 것과 유사한 실수를 하는 친구에게는 자신의 경험을 바탕으로 건설적이고 유용한 피드백을 줄 수 있는 등의 장점도 있습니다. 물론 학생 개개인의 실력은 숙련된 조교보다는 미숙하기 마련이지만, 조교가 한 개의 과제에 대해 한 개의 피드백만 남겨줄 수 있는 시간적 여력이 있었다면, 동료 평가에서는 한 개의 과제에 대해 열 명의 학생들이 서로 다른 열 개의 피드백을 주어 학생 개개인의 부족함을 보완할 수 있습니다. 다양한 선행 연구에 따르면, 하나의 과제를 다수의 학생이 채점하게 될 경우 통계적으로 조교와 비슷한 수준의 채점을 할 수 있다는 점이 증명된 바 있습니다.캔버스에 그림을 그리거나 애니메이션을 만드는 문제에서 동료 평가가 활용되고 있습니다.동료 평가는 프로그래밍 교육 환경에서 특히나 더욱더 빛을 발하고 있는데, 이는 프로그래밍 과목이 기초 과학이나 수학과 같은 과목과는 달리, 프로그램의 작동 원리에 대한 이론과 이를 실제로 구현하기 위한 기술 두 가지가 모두 숙련되어야만 효과적으로 활용될 수 있는 특징으로부터 기인합니다. 하나의 원리를 배우더라도 다양한 구현을 보고, 연습해보는 것이 좋고, 이는 동료 평가를 통해 다른 사람들이 제출한 과제를 검사하며 효과적으로 이루어질 수 있습니다. 그 이외에도 숙련된 프로그래머의 자질을 평가하는 기준 중 하나로 사용되는 “코드의 가독성(다른 사람이 보고 이해하기에 얼마나 좋게 작성되었는가)”과 같이 기계적으로는 채점하기 항목들은 동료 평가를 통해 쉽게 평가될 수 있는 등 프로그래밍 교육 환경에서 동료 평가가 가지는 장점은 전부 나열할 수 없을 정도입니다.그러나 동료 평가가 항상 만능인 것만은 아닙니다. 다음 포스트에서는 프로그래밍 동료 평가가 왜 어려운지, Elice 팀에서는 이 문제를 어떻게 해결했는지 소개해 드리도록 하겠습니다 :)#엘리스 #코딩교육 #교육기업 #기업문화 #조직문화 #서비스소개
조회수 2102

Kubernetes에 EBS 볼륨 붙이기

Kubernetes에서 컨테이너에 Persistent Volume을 붙이는 방법은 몇가지 있다. 여기서는 Kafka 서비스를 예로 삼아 주요 접근방법을 간단히 알아본다.Kubernetes v1.4.0를 기준으로 문서를 작성한다.Static말이 Static이지 수동 마운트를 뜻한다. 기본적으로 관리자가 EBS 볼륨을 만들고특정 Pod에 그 볼륨을 붙이는 작업을 한다. Volumes 문서에 나오는대로 하면 간단하다.apiVersion: v1 kind: Service metadata: name: kafka1 labels: app: kafka1 tier: backend spec: ports: # the port that this service should serve on — port: 9092 name: port targetPort: 9092 protocol: TCP selector: app: kafka1 tier: backend — - apiVersion: extensions/v1beta1 kind: Deployment metadata: name: kafka1 spec: replicas: 1 template: metadata: labels: app: kafka1 tier: backend spec: containers: — name: kafka1 image: wurstmeister/kafka imagePullPolicy: Always volumeMounts: — mountPath: “/kafka” name: kafka1volume ports: — containerPort: 9092 volumes: — name: kafka1volume awsElasticBlockStore: volumeID: vol-688d7099 fsType: ext4여기서 핵심은 다음의 두 줄 뿐이다.awsElasticBlockStore: volumeID: vol-688d7099Dynamic수동으로 볼륨을 붙이는 방법은 간단해서 좋다. 하지만 Autoscaling하는 서비스에 넣기에는 아무래도 무리다. 서비스가 뜰 때 요구사항에 맞는 볼륨을 스스로 만들어 붙이는 방법도 있다. Kubernetes Persistent Volumes를 참고해 작업해본다.우선 Kubernetes 생성할 EBS 볼륨의 사양을 정한다.# storages.yaml apiVersion: storage.k8s.io/v1beta1 kind: StorageClass metadata: name: default1a provisioner: kubernetes.io/aws-ebs parameters: type: gp2 zone: ap-northeast-1a iopsPerGB: “10” — - apiVersion: storage.k8s.io/v1beta1 kind: StorageClass metadata: name: default1c provisioner: kubernetes.io/aws-ebs parameters: type: gp2 zone: ap-northeast-1c iopsPerGB: “10”default1a를 선택하면 ap-northeast-1a Availablity Zone에 기가바이트당 IOPS는 10인 General SSD EBS 볼륨을 생성한다. 이제 다시 Kafka의 돌아가면apiVersion: v1 kind: Service metadata: name: kafka1 labels: app: kafka1 tier: backend spec: ports: # the port that this service should serve on — port: 9092 name: port targetPort: 9092 protocol: TCP selector: app: kafka1 tier: backend — - apiVersion: extensions/v1beta1 kind: Deployment metadata: name: kafka1 spec: replicas: 1 template: metadata: labels: app: kafka1 tier: backend spec: containers: — name: kafka1 image: wurstmeister/kafka imagePullPolicy: Always volumeMounts: — mountPath: “/kafka” name: kafka1volume ports: — containerPort: 9092 volumes: — name: kafka1volume persistentVolumeClaim: claimName: kafka1volumeclaim — - kind: PersistentVolumeClaim apiVersion: v1 metadata: name: kafka1volumeclaim annotations: volume.beta.kubernetes.io/storage-class: “default1a” spec: accessModes: — ReadWriteOnce resources: requests: storage: 300Gi이제 awsElasticBlockStore가 아닌 PersistentVolumeClaim을 통해 볼륨을 할당받는다. kafka1volumeclaim은 default1을 기준으로 스토리지 정책을 정하므로Availablity Zone: ap-northeast-1aIOPS: 기가바이트당 10General SSD300Gi 이상인 스토리지를 원한다는 요구사항을 기술한다. 위의 설정은 이러한 스토리지에 부합하는 EBS 볼륨을 생성하여 kafka1 Pod에 할당한다.분석Dynamic은 Autoscaling에는 적합하나 kubectl delete [service] 또는 kubectl delete [deployment] 등의 명령을 수행하여 서비스를 내렸다가 다시 올린 경우에 기존에 쓰던 볼륨을 마운트하지 않고 새 볼륨을 만드는 문제가 있다. 물론 delete를 하지 않고 서비스를 업데이트만 하는 경우에는 볼륨이 유지되지만 이래선 아무래도 문제의 소지가 많다.그래서 또다른 시나리오를 고민해볼 수는 있다. 짧게 설명하자면관리자가 Volumn Pool을 만들어놓고 Autoscaling 서비스가 이 풀 안에서 볼륨을 할당받게 한다. 이러면 앞서 본 두 가지 방식의 장점을 골고루 흡수할 수 있다.flocker 또는 glushterfs 같은 스토리지 관리 서비스를 활용해도 좋다. 하지만 배보다 배꼽이 큰 것 같은 느낌이 들지도 모르겠다.#데일리 #데일리호텔 #개발 #개발자 #개발팀 #인사이트 #꿀팁
조회수 1837

Genius? Jininus!

나는 인생을 살면서 많은 "천재"들을 만났다. 스타트업에 있다보면 더더욱 "영재""천재"로 불리는 수 많은 사람들을 보게 된다. 그들은 학문적으로 놀라운 성과와 스펙을 보유하고 있었다. 아마 당신이 한 회사를 운영하는 사람이거나 인사 담당자라면 분명 혹할 것이다. 하지만 정작 나는 같이 일하고 싶었던 사람이 단 한 명도 없었다. 주변에서는 천재들과 같이 일하면 성공할 것이라고 생각하지만, 사업적 결과물과 두뇌는 별개의 문제라고 나는 생각한다. 대단한 능력을 가지고도 빛 없이 사라진 사람들을 얼마나 많이 보았는가. 물론 나도 대단한 사람과 일하고 싶다. 그러나 그 기준을 "영특함"에 국한시키고 싶지는 않다. 사업적으로 혹은 사회적으로 더 나은 미래를 후손에 물려주기 위해서는 그 이상의 "무언가"가 필요하다. 지금부터 나에게 그 "무언가"를 가르쳐 준 "진짜 천재"에 대한 이야기를 하고자 한다. 그에 대한 이야기를 하기 전에 나에 대한 이야기를 가볍게 하고자 한다. 5년 전만 해도 나는 비전과 목표가 없었다. 어려서 부터 돈 욕심만 많았다. 대학교를 다니면서도 돈을 벌 수 있는 방법이면 수단과 방법을 가리지 않았다. 한 일화로 당시에 학원 강사 아르바이트를 하고 있었는데 도매시장에서 트렌디한 문구류를 사와 수업을 가르쳤던 중/고등학생에게 팔았다. 시간과 행동에 제약이 있는 학생들은 수업 시간에 벌어지는 소소한 쇼핑에 돈을 지불했다. 그러나 끝이 좋지 않았다. 학생의 부모님에게 알려져 결국 학원에서 해고 조치 되었다. 지금의 내가 돌이켜보면 엄청나게 창피한 일이다. 학생들에게 단순한 편리와 재미를 줄 순 있었지만, 돈 말고는 남는게 없었다.20대의 대부분은 가치 없는 돈벌이의 연속이었다. 혹자는 말한다. 우선 돈 벌고 가치 있는 곳에 쓰면 된다고. 그러나 이런 식의 무의미한 접근은 내가 가야할 길이 아니라고 느꼈다. 인생에서 가치 있는 일을 찾아야 했다. 그때 발견했다. 혁신, 도전, 열정이 정말 실천되고 있는 세계가 있다는 것을. 스타트업이라는 단어조차 생소했던 시기였다. 심지어 IT라는 분야를 그 전까지 제대로 공부해 본 적도 없었다. 스타트업의 "ㅅ"도 모르던 내가 이 세계에 적응할 수 있는 방법은 뛰어난 사람들과 함께 시작하는 것 뿐 이었다. 온갖 미사여구로 괜찮은 연봉과 복지를 내세우는 기업도 꽤 있었다. 그러나 나에게 가장 중요한 건 "내가 성장할 수 있는지"와 “구성원”이였다. 꽤나 당연한 조건으로 기업을 찾았음에도 불구하고 찾을 수가 없었다. 그러다가 첫 스타트업으로 선택한 게 라우드소싱 이라는 작은 팀이었다. (찾게 된 과정에 대해서는 다른 글을 통해 소개하겠다) 안정적인 연봉도 없고, 확실한 미래도 없었지만 내가 이 팀과 같이 해야겠다 결정한 건 "권진" 이라는 단 한 사람 때문이었다. 모든 기업이 그렇지만 누구나 회사에 합류하면 3개월간의 수습기간을 거친다. 스타트업이라고 예외는 아니다. 오히려 더 냉정하게 자신을 되돌아 보는 시간을 가져야 한다. 나는 내 스스로를 입증하고 싶었다. “제가 3달 안에 이 회사가 성장할 수 있는 계약들을 가져오겠습니다. 그 정도 능력도 발휘 못한다면 제 발로 나가겠습니다” 3달 동안 권진은 일에 대해서 전혀 간섭하지 않았다 . 팀워크에 있어서 가장 중요한 부분은 신뢰라고 생각한다. 하지만 신뢰라는 부분이 친하다고 해서 혹은 비전과 목표가 같다고 해서 생기는 것이 아니다. 각자의 위치에서 최고의 성과를 목표로 내고, 한계를 뛰어넘어 성장하는 모습을 보여줄 때 강력한 신뢰가 생긴다. 서로가 같이 일하고 싶은 마음을 만들어 주는 것.이게 팀워크의 핵심이다. 나는 나대로 권진은 권진대로 각자가 맡은 일들을 완벽하게 수행했고, 우리는 그 일들을 하나의 사업으로 만들어 갔다. 그는 나에게 따로 주저리 주저리 피드백을 하지 않았다. 하지만 행동으로 결과물의 중요성을 보여주었고, 나는 3달동안 7건의 B2B 계약을 성사시켰다.애초에 같이 할 사람을 정할 때는 모든 부분을 면밀히 살피고 고민해야 하지만, 내가 같이 하기로 결정 했다면 상대가 최고의 결과물을 낼 수 있도록 믿어주는 것. 내가 배운 첫번째 교훈이었다.실력을 보여주었다고 환상적인 Fit일까? 누구든 본인이 만들어 내는 결과물을 혼자만의 능력이라고 오판하기 쉽다. 내가 영업처를 설득하고, 계약서를 체결해 왔기 때문에 내가 없었으면 이 계약도 없었을 것이다. 감각적이고 환상적인 디자인을 뽑아냈는데 이건 순전히 나의 재능에 의한 것이다. 팀원들이 이런 생각들을 하기 시작한다면 그 팀은 단시간 내에 모래성처럼 무너질 것이다. 권진은 개인이 만들어 내는 결과물도 팀원들이 각자의 분야에서 해 온 노력들의 최종산출물이라고 생각한다.영업처를 설득할 수 있었던 건, 우리 팀이 환상적인 서비스를 만들어 주었기 때문이다.나의 디자인은 기획팀과 마케팅팀의 노력을 하나로 담은 것 뿐이다.톱니바퀴처럼 팀원들이 맞물려 돌아가며 서로의 존재에 대해 감사함을 느낄 때 놀라운 일이 벌어진다. 내가 배운 두번째 교훈이다.권진이 지켜온 2가지 요건이 계속 좋은 사람을 팀으로 영입할 수 있었던 강력한 요소였다고 생각한다. 나의 실력을 우리 팀에 입증하는 것. 나의 결과물은 우리 팀 노력의 산물 이라는 것.권진과 함께 일하며 느낀 그의 주요한 능력은 개발도 디자인도 아니었다. (물론 이 2가지도 잘한다)팀 내의 균형을 맞추고 팀원들이 끊임없이 성장하게 도와주는데 있다. 개성 넘치는 팀원들을 하나의 비전으로 묶어서 성장할 수 있게 하는 사람을 나는 살면서 권진 이외에는 아직 본 적이 없다. 장담컨데, 만약 현재 더팀스 대표가 권진이 아니라 다른 사람으로 바뀐다면 팀원들은 전부 팀을 나갈 것이다. (연봉이 대폭 인상된다 할지라도)그래서 나는 이걸 Jin in Us 라고 명칭했다. 권진이라는 확실한 구심점 안에 개성넘치는 팀원들이 한 몸처럼 목표로 향해가는. 나는 앞으로 대표라는 역할을 할 생각이 없다. 권진 이라는 사람보다 대표의 역할을 충실히 수행할 자신이 없어졌기 때문이다.리더십이라는 분야가 있다면 그는 천재가 아닐까?내가 우리 팀에 합류시키고 싶은 사람이 있을 때면 하는 단골멘트로 이 글의 마무리를 짓는다.“우리 팀의 권진을 만나보세요. 분명히 함께 하고 싶을 겁니다”#더팀스 #THETEAMS #천재디자이너 #풀스택개발자 #CEO #리더십 #경험공유 #팀원자랑 #팀원소개 #회사의자랑
조회수 1694

비트윈 시스템 아키텍처 - VCNC Engineering Blog

VCNC는 커플을 위한 모바일 앱 비트윈을 서비스하고 있습니다. 비트윈은 사진, 메모, 채팅, 기념일 등 다양한 기능을 제공하며, 오픈 베타 테스트를 시작한 2011년 11월부터 현재까지 연인 간의 소통을 돕고 있습니다. 그동안 비트윈 시스템 아키텍처에는 많은 변화가 있었으며 다양한 결정을 하였습니다. 비트윈 아키텍처를 발전시키면서 배우게 된 여러 가지 노하우를 정리하여 공유해보고자 합니다. 그리고 저희가 앞으로 나아갈 방향을 소개하려 합니다.소프트웨어 스택Java: 비트윈 API서버는 Java로 작성되어 있습니다. 이는 처음 비트윈 서버를 만들기 시작할 때, 서버 개발자가 가장 빨리 개발해낼 수 있는 언어로 프로그래밍을 시작했기 때문입니다. 지금도 자바를 가장 잘 다루는 서버 개발자가 많으므로 여전히 유효한 선택입니다.Netty: 대부분의 API는 HTTP로 호출되며, 채팅은 모바일 네트워크상에서의 전송 속도를 위해 TCP상에서 프로토콜을 구현했습니다. 두 가지 모두 Netty를 통해 사용자 요청을 처리합니다. Netty를 선택한 것은 뛰어난 성능과 서비스 구현 시 Thrift 서비스를 통해 HTTP와 TCP 프로토콜을 한 번에 구현하기 쉽다는 점 때문이었습니다.Thrift: API서버의 모든 서비스는 Thrift 서비스로 구현됩니다. 따라서 TCP뿐만 아니라 HTTP 또한 Thrift 인터페이스를 사용합니다. HTTP를 굳이 Thrift서비스로 구현한 이유는, TCP로 메세징 전송 시 똑같은 서비스를 그대로 사용하기 위함이었습니다. 덕분에 빠른 채팅 구현 시, 이미 구현된 서비스들을 그대로 사용할 수 있었습니다. 또한, 채팅 패킷들은 패킷 경량화를 위해 snappy로 압축하여 송수신합니다. 모바일 네트워크상에서는 패킷이 작아질수록 속도 향상에 크게 도움이 됩니다.HBase: 비트윈의 대부분 트랜젝션은 채팅에서 일어납니다. 수많은 메시지 트랜젝션을 처리하기 위해 HBase를 선택했으며, 당시 서버 개발자가 가장 익숙한 데이터베이스가 HBase였습니다. 서비스 초기부터 확장성을 고려했어야 했는데, RDBMS에서 확장성에 대해 생각하는 것보다는 당장 익숙한 HBase를 선택하고 운영하면서 나오는 문제들은 차차 해결하였습니다.ZooKeeper: 커플들을 여러 서버에 밸런싱하고 이 정보를 여러 서버에서 공유하기 위해 ZooKeeper를 이용합니다. Netflix에서 공개한 오픈 소스인 Curator를 이용하여 접근합니다.AWS비트윈은 AWS의 Tokyo리전에서 운영되고 있습니다. 처음에는 네트워크 및 성능상의 이유로 국내 IDC를 고려하기도 했으나 개발자들이 IDC 운영 경험이 거의 없는 것과, IDC의 실질적인 TCO가 높다는 문제로 클라우드 서비스를 이용하기로 하였습니다. 당시 클라우드 서비스 중에 가장 안정적이라고 생각했던 AWS 를 사용하기로 결정했었고, 지금도 계속 사용하고 있습니다.EC2: 비트윈의 여러 부가적인 서비스를 위해 다양한 종류의 인스턴스를 사용 중이지만, 메인 서비스를 운용하기 위해서는 c1.xlarge와 m2.4xlarge 인스턴스를 여러 대 사용하고 있습니다.API 서버: HTTP 파싱이나 이미지 리시아징등의 연산이 이 서버에서 일어납니다. 이 연산들은 CPU 가 가장 중요한 리소스이기 때문에, c1.xlarge를 사용하기로 했습니다.Database 서버: HDFS 데이터 노드와 HBase 리전 서버들이 떠있습니다. 여러 번의 테스트를 통해 IO가 병목임을 확인하였고, 따라서 모든 데이터를 최대한 메모리에 올리는 것이 가장 저렴한 설정이라는 것을 확인하였습니다. 이런 이유 때문에 68.4GB의 메모리를 가진 m2.4xlarge를 Database 서버로 사용하고 있습니다.EBS: 처음에는 HBase상 데이터를 모두 EBS에 저장하였습니다. 하지만 일정 시간 동안 EBS의 Latency가 갑자기 증가하는 등의 불안정한 경우가 자주 발생하여 개선 방법이 필요했는데, 데이터를 ephemeral storage에만 저장하기에는 안정성이 확인되지 않은 상태였습니다. 위의 두 가지 문제를 동시에 해결하기 위해서 HDFS multiple-rack 설정을 통해서 두 개의 복제본은 ephemeral storage에 저장하고 다른 하나의 복제본은 PIOPS EBS에 저장되도록 구성하여 EBS의 문제점들로부터의 영향을 최소화하였습니다.S3: 사용자들이 올리는 사진들은 s3에 저장됩니다. 사진의 s3키는 추측이 불가능하도록 랜덤하게 만들어집니다. 어차피 하나의 사진은 두 명밖에 받아가지 않고 클라이언트 로컬에 캐싱되기 때문에 CloudFront를 사용하지는 않습니다.ELB: HTTP는 사용자 요청의 분산과 SSL적용을 위해 ELB를 사용합니다. TCP는 TLS를 위해 ELB를 사용합니다. SSL/TLS 부분은 모두 AWS의 ELB를 이용하는데, 이는 API서버의 SSL/TLS처리에 대한 부담을 덜어주기 위함입니다.CloudWatch: 각 통신사와 리전에서 비트윈 서버로의 네트워크 상태와 서버 내의 요청 처리 시간 등의 메트릭을 CloudWatch로 모니터링 하고 있습니다. 따라서 네트워크 상태나 서버에 문제가 생긴 경우, 이메일 등을 통해 즉각 알게 되어, 문제 상황에 바로 대응하고 있습니다. Netflix의 Servo를 이용하여 모니터링 됩니다.현재의 아키텍처처음 클로즈드 베타 테스트때에는 사용자 수가 정해져 있었기 때문에 하나의 인스턴스로 운영되었습니다. 하지만 처음부터 인스턴스 숫자를 늘리는 것만으로도 서비스 규모를 쉽게 확장할 수 있는 아키텍쳐를 만들기 위한 고민을 하였습니다. 오픈 베타 이후에는 발생하는 트래픽에 필요한 만큼 여러 대의 유연하게 서버를 운영하였고, 현재 채팅은 TCP 위에서 구현한 프로토콜을 이용하여 서비스하고 있습니다.HTTP 요청은 하나의 ELB를 통해 여러 서버로 분산됩니다. 일반적인 ELB+HTTP 아키텍처와 동일합니다.채팅은 TCP 연결을 맺게 되는데, 각 커플은 특정 API 서버로 샤딩되어 특정 커플에 대한 요청을 하나의 서버가 담당합니다. 비트윈에서는 커플이 샤딩의 단위가 됩니다.이를 통해, 채팅 대화 내용 입력 중인지 여부와 같이 굉장히 빈번하게 값이 바뀌는 정보를 인메모리 캐싱할 수 있게 됩니다. 이런 정보는 휘발성이고 매우 자주 바뀌는 정보이므로, HBase에 저장하는 것은 매우 비효율적입니다.Consistent Hashing을 이용하여 커플을 각 서버에 샤딩합니다. 이는 서버가 추가되거나 줄어들 때, 리밸런싱되면서 서버간 이동되는 커플들의 수를 최소화 하기 위함입니다.클라이언트는 샤딩 정보를 바탕으로 특정 서버로 TCP연결을 맺게 되는데, 이를 위해 각 서버에 ELB가 하나씩 붙습니다. 어떤 서버로 연결을 맺어야 할지는 HTTP 혹은 TCP 프로토콜을 통해 알게 됩니다.Consistent Hashing을 위한 정보는 ZooKeeper를 통해 여러 서버간 공유됩니다. 이를 통해 서버의 수가 늘어나거나 줄어들게 되는 경우, 각 서버는 자신이 담당해야 하는 샤딩에 대한 변경 정보에 대해 즉각 알게 됩니다.이런 아키텍처의 단점은 다음과 같습니다.클라이언트가 자신이 어떤 서버로 붙어야 하는지 알아야 하기 때문에 프로토콜 및 아키텍처 복잡성이 높습니다.서버가 늘어나는 경우, 순식간에 많은 사용자 연결이 맺어지게 됩니다. 따라서 새로 추가되는 ELB는 Warm-up이 필요로 하며 이 때문에 Auto-Scale이 쉽지 않습니다.HBase에 Write연산시, 여러 서버로 복제가 일어나기 때문에, HA을 위한 Multi-AZ 구성을 하기가 어렵습니다.한정된 자원으로 동작 가능한 서버를 빨리 만들어내기 위해 이처럼 디자인하였습니다.미래의 아키텍처현재 아키텍처에 단점을 보완하기 위한 해결 방법을 생각해보았습니다.Haeinsa는 HBase상에서 트렌젝션을 제공하기 위해 개발 중인 프로젝트입니다. 구현 완료 후, 기능 테스트를 통과하였고, 퍼포먼스 테스트를 진행하고 있습니다. HBase상에서 트렌젝션이 가능하게 되면, 좀 더 복잡한 기능들을 빠르게 개발할 수 있습니다. 서비스에 곧 적용될 예정입니다.Multitier Architecture를 통해 클라이언트와 서버 간에 프로토콜을 단순화시킬 수 있습니다. 이 부분은 개발 초기부터 생각하던 부분인데, 그동안 개발을 하지 못하고 있다가, 지금은 구현을 시작하고 있습니다. 커플은 특정 Application 서버에서 담당하게 되므로, 인메모리 캐싱이 가능하게 됩니다. 클라이언트는 무조건 하나의 ELB만 바라보고 요청을 보내게 되고, Presentation 서버가 사용자 요청을 올바른 Application 서버로 릴레이 하게 됩니다.Multitier Architecture를 도입하면, 더 이상 ELB Warm-up이 필요하지 않게 되므로, Auto-Scale이 가능하게 되며, 좀 더 쉬운 배포가 가능하게 됩니다.Rocky는 API 서버의 Auto-Failover와 커플에 대한 샤딩을 직접 처리하는 기능을 가진 프로젝트입니다. 현재 설계가 어느 정도 진행되어 개발 중에 있습니다. 알람이 왔을 때 서버 팀이 마음을 놓고 편히 잠을 잘 수 있는 역할을 합니다.기본적인 것은 위에서 언급한 구조와 동일하지만 몇 가지 기능이 설정을 추가하면 Multi-AZ 구성이 가능합니다.특정 커플에 대한 모든 정보는 하나의 HBase Row에 담기게 됩니다.HBase의 특정 리전에 문제가 생긴 경우, 일정 시간이 지나면 자동으로 복구되긴 하지만 잠시 동안 시스템 전체에 문제가 생기가 됩니다. 이에 대해 Pinterest에서 Clustering보다는 Sharding이 더 낫다는 글을 쓰기도 했습니다. 이에 대한 해결책은 다음과 같습니다.원래는 Consistent Hashing을 사용하여 커플들을 Application 서버에 샤딩하였습니다. 하지만 이제는 HBase에서 Row를 각 리전에 수동으로 할당하고, 같은 리전에 할당된 Row에 저장된 커플들은 같은 Application 서버에 할당하도록 합니다.이 경우에, 같은 커플들을 담당하는 Application 서버와 HBase 리전 서버는 물리적으로 같은 머신에 둡니다.이렇게 구성 하는 경우, 특정 HBase 리전이나 Application 서버에 대한 장애는 특정 샤드에 국한되게 됩니다. 이와 같이 하나의 머신에 APP과 DB를 같이 두는 구성은 구글에서도 사용하는 방법입니다.이와 같이 구성하는 경우, Multi-AZ 구성이 가능하게 됩니다.AWS에서 같은 리전에서 서로 다른 Zone간 통신은 대략 2~3ms 정도 걸린다고 합니다.Presentation의 경우, 비동기식으로 동작하기 때문에 다른 리전으로 요청을 보내도 부담이 되지 않습니다.HBase에서 Write가 일어나면 여러 복제본을 만들게 됩니다. 하나의 사용자 요청에 대해 Write가 여러번 일어나기 때문에 HBase연산의 경우에는 서로 다른 Zone간 Latency가 부담으로 작용됩니다. Haeinsa가 적용되면, 한 트렌젝션에 대해서 연산을 Batch로 전송하기 때문에 AZ간 Latency 부담이 적습니다.프리젠테이션다음은 2월에 있었던 AWS 유저 그룹 세미나에서 발표했던 자료 입니다. 비트윈 서버 아키텍처에 대해서 배포 방법을 중심으로 설명이 되어 있습니다. 비슷한 내용이 많이 있으니 살펴보시기 바랍니다.<iframe class="speakerdeck-iframe" frameborder="0" src="//speakerdeck.com/player/e4af60d05bb6013025f71231381b23b3?" allowfullscreen="true" mozallowfullscreen="true" webkitallowfullscreen="true" style="border: 0px; background: padding-box rgba(0, 0, 0, 0.1); margin: 0px; padding: 0px; border-radius: 6px; box-shadow: rgba(0, 0, 0, 0.2) 0px 5px 40px; width: 750px; height: 563px;">
조회수 1120

제니퍼 개발 이야기(UI/UX)_ 좀 더 쉽고 빠르게 더 멋지게 모니터링하자.

APM ,변화의 시작기업용 소프트웨어의 UI는 어렵다. 특히 애플리케이션 성능 관리(Application Performance Management, 이하 APM) 제품의 경우 더욱더 그렇다. APM은 애플리케이션의 성능 모니터링과 장애 예측을 통해 최적의 애플리케이션 상태를 보장하고 관리하는 일련의 시스템 관리 체계다. 사용자들은 애플리케이션의 성능을 모니터링하고 경우에 따라 발생할 수 있는 장애를 신속히 감지 및 예방해, 기업이 보유하고 있는 정보시스템의 성능을 최적의 상태로 유지하기 위해 APM을 구매하여 사용한다.  그런 이유로 초기 APM은 특정 부서나 특정 분야의 전문가만 다룰 수 있는 제품이었다. 사용법이 복잡하고 데이터의 분석을 통해 장애의 원인을 수동적으로 찾아야 하는 까닭에 APM 제품은 애플리케이션 모니터링 담당자나 개발자 등 전문가만 이해할 수 있는 영역으로 인식돼 왔다. 이런 APM이 최근 여러 현업 부서에서 사용하기 시작하면서 APM의 UI/UX에도 변화가 시작되었다. 기업 내 비즈니스가 다양해지고 복잡해 지면서 기업이 운영하고 관리하는 서비스에 대한 안정성 확보가 중요한 화두로 떠올랐다. 특히 APM은 서비스 지연이나 장애를 감지하고 대처하기 위한 영역으로 확장되고 있는데 모바일 등의 서비스를 통한 비즈니스 기회와 수익이 높아지고, 시장 경쟁이 더욱 치열해지면서 사용자 응답 지연이나 서비스 에러와 같은 문제들은 고객들에게 바로 다른 서비스로 전환을 하게 만드는 원인을 제공하게 된다. 이는 비즈니스 관점에서 매출이나 고객 충성도에 많은 영향을 미칠 수 있기 때문에 기업 내 IT 부서나 사용자 중심적인 서비스 관리 또한 중요한 관리 영역이 되고 있다.< 제니퍼소프트 개발자들이 만든 UI Framework인 JUI, 오픈소스로 공개하였다>APM, 사용자 만족을 위해 UI/UX를 더 쉽고 직관적으로 설계 제니퍼소프트의 APM 솔루션인 「제니퍼(JENNIFER)」는 이해가 어려운 제품을 사용자들이 좀 더 쉽게 이용하게 할 수 없을까 하는 고민에서 출발한 제품이다. 대게 APM 제품은 모니터링 제품의 특성상 이용자들이 모니터링 화면을 전광판으로 띄워 놓고 보거나 데스크에 서브 모니터를 두어 애플리케이션의 운영상태를 상시 모니터링한다. 만약 APM 의 UI/UX가 복잡하여 가시성 확보가 어렵거나 사용하기 어렵다면 중요한 정보를 즉각적으로 파악할 수 없다. 이런 이유로 제품의 UI가 보여주는 데이터의 시각화는 비전문가라 할지라도 애플리케이션의 성능 이상을 인지할 수 있도록 설계되어야 한다.제니퍼는 이런 모니터링의 중요한 본질을 담아 설계하였다. 2005년부터 사용자가 직관적으로 모니터링할 수 있는 뷰에 관심을 기울였는데, 이때만 해도 엔터프라이즈 제품은 UX/UI에 신경을 쓰지 않던 시기였다. 대부분의 APM 제품은 분석적인 요소가 강한 외산 제품이 출시되어 사용되고 있었고 사용자들은 사후 분석 요소가 강한 APM의 UI/UX에 아쉬움을 느꼈다.APM은 문제가 발생한 시점에 이를 직관적으로 인지하고, 분석하여 문제 해결에 실질적인 도움을 주고 이를 통해 얼마나 빠른 장애 대응을 할 수 있냐가 가장 중요한 관건이다. 제니퍼는 제품에 이런 기능의 의미와 가치에 대한 중요한 요소를 놓치지 않았다. 핵심적인 기능을 하나 추가하거나 화면의 적절한 유기적 배치, 심지어 그래프 색감을 선택하는 디자인적 고려에서 조차도, 요건이나 형식 맞추기에 급급하지 않았다. 해당 기능의 본질적인 의미와 가치와 쓰임새를 찾아 담기 위해 노력했다. 제니퍼 출시 이후, 국내 고객은 사후 분석에 치중한 해외 제품을 쓰지 않고 있다. APM 경쟁 업체들 또한 UI/UX에 많은 고민을 하고 있으며, 제품에 이를 반영하고 있다. 그리고 그 중요성은 점점 더 커지고 있다.  사용자의 폭이 넓어지고 관리해야 하는 시스템이 많아지면서 좀 더 쉽고 빠르게 혹은 직관적으로 문제를 파악하고 해결할 수 있는 UI/UX 제품을 선호하게 된 것이다.  이는 사용자에게 좋은 경험을 주는 것이 제품의 경쟁력을 가질 수 있는 중요한 요소임을 반증하는 것이 아닐까 한다. 제니퍼 개발 이야기 _ 2편 <제니퍼 제품 UI/UX 특징>

기업문화 엿볼 때, 더팀스

로그인

/