스토리 홈

인터뷰

피드

뉴스

조회수 1761

날짜 변환, 과연 그리 간단할까?

안드로이드에서는 입력한 날짜를 변환 및 검증하는 로직을 간단하게 구현하기 위해 SimpleDateFormat 클래스를 종종 활용하게 되는데 이 클래스는 규칙에 관대하다(lenient)는 재미난 특성이 있습니다. java.text.SimpleDateFormat 클래스의 근간이 되는 java.text.DateFormat 클래스의 다음 API 문서를 살펴봅시다.By default, parsing is lenient: If the input is not in the form used by this object’s format method but can still be parsed as a date, then the parse succeeds. Clients may insist on strict adherence to the format by calling setLenient(false).파싱 기본 동작은 관대합니다. 이 객체의 날짜 포맷과 일치하지 않는 입력이 주어지더라도 날짜 형태만 유지한다면 파싱이 성공합니다. 클라이언트 코드에서는 setLenient(false) 메소드를 호출해 파싱 규칙을 여전히 엄격하게 가져갈 수 있습니다.lenient 라는 흔하지 않은 단어 때문에 의미가 잘 와닿지 않습니다만, 캠브릿지 영영사전에 따르면 ‘관대하다’ 라는 뜻이 있다고 하네요.lenient /ˈliː.ni.ənt/ ▶ adjective ▶ Level C2(Mastery Proficiency)A lenient punishment is not severe.Thesaurus: allowing, forgiving, merciful, permissive, tolerant하지만 규칙에 관대하다는 말이 무슨 의미인지 여전히 와 닿지 않습니다. 잠시, 아래의 소스코드를 읽고 그 결과를 한번 예측해 볼까요? parse 메소드는 기본적으로 lenient 하다는 특성에 주의합시다./* * 2017년 13월 32일 이라는 입력에 대해 어떤 결과가 나타날까? * 1. 2017-13-32 * 2. 2018-02-04 * 3. 2017-01-01 * 4. 2018-01-01 * 5. ParseException 이 발생 */ val userDate = "2017-13-32" val date = SimpleDateFormat("yyyy-MM-dd").parse(userDate) val localDate = LocalDateTime.ofInstant(date.toInstant(), ZoneOffset.UTC) println ("사용자의 ISO-8601 Date 입력 결과는 ${localDate.year}년-${localDate.month}월-${localDate.dayOfMonth}일 입니다.") lenient 라는 사전 hint 없이 바로 문제를 낼 경우 사람들이 제일 많이 선택한 결과는 ParseException 이 발생한다 였습니다. 하지만 lenient 한 특성으로 인해 실행 결과는 의외로 두번째, 즉 2018년 2월 4일 입니다. 막상 글로 풀어 쓰려니 별 것 아닌 내용처럼 보입니다만, 필자가 담당하는 서비스에서 이 특성을 제대로 파악하지 못해 특정 사용자의 생년월일을 제대로 인식하지 못한 문제가 있었습니다.또한 우리가 흔히 아는 달력을 쓰지 않는 국가도 있다는 점 까지 고려한다면 날짜 변환이라는 것이 간단한 문제가 아니게 됩니다. 즉, 한국인의 관념 속의 ‘달력’ 이란 Gregorian calendar 를 기반으로 한 ISO-8601 달력 입니다. 그런데 이 달력을 쓰지 않는 문화권도 있습니다(한국도 흔하진 않지만 ‘단기’ 라는 별도의 달력을 쓰기도 합니다). 이런 문제 때문에, 글로벌 서비스를 준비하고 계신다면 날짜 변환 문제를 꼭 점검해 보셔야 합니다.Android 에는 이 문제를 해결해 주는 클래스가 있습니다만 불행히도 API Level 이 26이나 되어 2018년 현재에는 제대로 쓰긴 어렵습니다. 다행히도 이 문제를 보완한 joda-time 라이브러리의 안드로이드 포팅 버전도 있으니 이 라이브러리의 도입을 검토해 보는 것도 좋은 문제 해결 방법이 될 것입니다.#개발 #인사이트 #하이퍼커넥트 #개발자 #안드로이드 #개발후기
조회수 1409

EOS Smart Contract 배포

Smart Contract 배포를 위한 준비 과정은 이전글 확인 부탁드립니다.저번시간과 연계하여 이번 시간엔 스마트 컨트랙트를 배포해 보도록 하겠습니다. 지갑 key와 계정 이름등은 본 포스팅에서 그대로 사용하시면 됩니다.배포할 컨트랙트는 eosio.token 으로 eos 개발환경 세팅 시 존재하는 코드를 컴파일하여 실제 사용하는 계정에 setting 하겠습니다. 먼저 컴파일을 위해 ../eos/contracts/eosio.token 으로 이동 하겠습니다.eos/contracts/eosio.token이동 하면 위와 같은 파일들을 확인 하실 수 있습니다.hpp : cpp 파일에서 사용하는 변수, 상수, 함수를 담는 헤더파일cpp : contract 함수를 구현하는 소스 파일eosiocpp 를 통해 소스코드를 컴파일 해보겠습니다. eosiocpp 는 WASM 및 ABI 컴파일러 로써 블록체인에 업로드 되는 .wasm, .wast, .abi 파일을 생성합니다. 또한 기본 스켈레톤 파일을 제공합니다eosiocppwasm 컴파일wasm 파일은 아래 명령어를 사용하여 컴파일 만들 수 있습니다.$ eosiocpp -o eosio.token.wast eosio.token.cppeosiocpp 명령어를 사용하여 컴파일 하게 되면 .wast 파일과 .wasm 파일을 생성하게 됩니다. 각 확장자는 다음을 의미합니다.wast : 텍스트 파일로써 읽을 수 있는 webAssembly 파일wasm : 컴퓨터가 실제로 이해할 수 있는 webAssembly 파일abi 파일 생성$ eosiocpp -g eosio.token.abi eosio.token.cppabi 파일은 JSON과 Binary 간에 사용자 작업을 변환하는 방법에 대해 설명해주는 파일입니다. 실제로 이 JSON 파일을 통해 블록체인 위에서 개발자와 사용자간 상호작용 하는데 도와주게 됩니다.위 2과정을 통해 abi 파일 과 wast 파일을 생성하게 됩니다.compile 결과Contract 세팅하기아래 명령어를 입력하여 contract 를 set 해줍니다.$ cleos set contract hexlanthenry ../eos/build/contracts/eosio.token account : contract 를 배포할 계정이름contract-dir : 계정에 set 할 contract 가 저장된 directoryset contract 수행 결과만약 해당 계정이 RAM 을 보유하고 있지 않다면 다음과 같은 에러가 나타날 것입니다. 이를 해결하기 위해 RAM 을 구매합니다.RAM을 보유없이 contract$ cleos system buyram hexlanthenry hexlanthenry "100.0000 EOS"payer : EOS 를 지불할 계정receiver : RAM 을 사용할 계정amount : 지불할 EOS의 양 ( eos 1.1 기준 소수점4개 자리와 symbol을 무조건 넣어주어야 정상 동작 합니다)contract 확인계정에 contract가 잘 배포 되었는지 확인해 보겠습니다.$ cleos get code hexlanthenry배포한 contract 가 있을때의 code hash배포한 contract 가 없을때의 code hash또한 abi 를 통해서도 확인할 수 있습니다.$ cleos get abi hexlanthenryget abi위 과정을 통해 해당 계정에 실제로 contract 가 잘 배포 되었는지 확인 할 수 있습니다.다음 시간에는 배포된 contract 를 통하여 토큰을 발행 해보고 token에 대한 balance 체크 및 transfer 하는 과정을 진행해 보도록 하겠습니다.+또한 abi를 분석하여 struct 와 action 을 어떻게 확인 하는지에 대한 자세한 방법은 다른 포스팅에서 다루도록 하겠습니다.감사합니다.#헥슬란트 #HEXLANT #블록체인 #개발자 #개발팀 #기술기업 #기술중심
조회수 3629

Node 서버로 Slack 메신저 자동화하기

Overview백엔드 업무를 하면 데이터 요청과 CS문의를 자주 받습니다. 날짜만 다를 뿐 같은 유형의 문의가 대부분이죠. 결국 반복적인 업무를 효율적으로 처리할 수 있는 방법을 고민했고, 사내 메신저로 사용하는 Slack의 몇 가지 API를 사용하기로 했습니다.1. 알림봇 만들기비즈니스 로직을 만들다 보면 정해진 시간에 맞춰 작업을 해야 하는 경우가 발생합니다. Slack 메신저에 로그온한 상태에서 스케줄러를 이용해 지정한 시간에 Slack 메세지를 전송해보겠습니다.1)Slack API 유저토큰 받기Slack API에 사용할 해당 계정의 토큰을 받아야 합니다. Slack 가입 절차 및 채널 생성은 생략하겠습니다.https://api.slack.com/custom-integrations/legacy-tokens 접속합니다.Legacy tokens 메뉴에서 아래로 스크롤을 내려 토큰 생성버튼을 누릅니다.계정 패스워드를 입력하여 확인하면 토큰을 생성할 수 있습니다.생성된 토큰을 복사하여 저장합니다.2)Node.js를 이용한 알림봇 구현2-1.Node.js 설치Node.js 다운로드 해당 사이트에서 운영체제 환경에 맞는 파일을 다운받아 설치2-2.프로젝트 생성해당 프로젝트 폴더로 이동 후 명령어 실행$ npm init --yes // package.json 파일 생성2-3.Slack 연동2-3-1. slack-node 모듈 설치$ npm install slack-node --save2-3-2. 유저토큰을 이용하여 해당채널에 메세지 전송const Slack = require('slack-node'); // 슬랙 모듈 사용 apiToken = "발급받은 유저토큰"; const slack = new Slack(apiToken); const send = async(message) => { slack.api('chat.postMessage', { username: 'dev-test', // 슬랙에 표시될 봇이름 text:message, channel:'#general' // 전송될 채널 및 유저 }, function(err, response){ console.log(response); }); } send('메세지 내용'); 지정한 채널에 메시지가 발송됩니다. 하지만 이와 같은 방법은 유저 토큰이 공개 코드에 노출되기 때문에 보안이 취약할 수 있습니다. 유저 토큰이 필요 없어도 해당 채널에 URL을 생성하는 WebHooks API를 이용하여 메시지를 전송해보겠습니다.3) Incoming WebHooks APIWebHooks는 유저 토큰 대신 Webhook URL을 생성해 HTTP 통신으로 Slack 메세지를 전송할 수 있습니다. 다양한 메시지 형식을 지원하고 게시할 사용자 이름 및 아이콘 등을 통합적으로 관리할 수 있는 장점을 가지고 있습니다.3-2. Webhook URL 생성하기Slack 해당채널에서 Add an app 클릭검색필터에 WebHooks 검색Incoming WebHooks 추가채널 선택 후 Incoming WebHooks 생성생성된 Webhook URL 복사하여 저장해당채널에 생성되었는지 확인봇이름 및 아이콘등 기본 설정 변경하여 저장curl 사용 예제$ curl -s -d "payload={'text':'메세지 내용'}" "Webhook URL"Webhook URL 사용 중인 모든 메시지는 통합적으로 기본 설정이 변경된 걸 확인할 수 있습니다.다양한 형식의 메세지를 전송해보겠습니다.const Slack = require('slack-node'); // 슬랙 모듈 사용 const webhookUri = "Webhook URL"; // Webhook URL const slack = new Slack(); slack.setWebhook(webhookUri); const send = async(message) => { slack.webhook({ text:"인터넷 검색 포털 사이트", attachments:[ { fallback:"링크주소: ", pretext:"링크주소: ", color:"#00FFFF", fields:[ { title:"알림", value:"해당링크를 클릭하여 검색해 보세요.", short:false } ] } ] }, function(err, response){ console.log(response); }); } 다양한 형태의 메시지를 전송할 수 있습니다.4) Schedule 연동이제 스케줄러를 이용하여 지정한 시간에 메세지를 전송해보겠습니다.4-1. node-schedule 모듈 설치node-schedule는 Node.js 작업 스케줄러 라이브러리입니다.$ npm install node-schedule --savenode-schedule 코드 작성const schedule = require('node-schedule'); // 스케줄러 모듈 사용 // rule-style 사용 var rule = new schedule.RecurrenceRule(); rule.dayOfWeek = new schedule.Range(3,4); rule.hour = 19; rule.minute = 50; schedule.scheduleJob(rule, function(){ console.log('rule 방식'); }); // cron-style 사용 schedule.scheduleJob('50 19 * * *', function(){ console.log('cron-style 방식'); }); 취향에 맞는 스타일로 사용하면 됩니다.5) 지정 시간에 메세지를 전송하는 알림봇을 작성해보겠습니다.const Slack = require('slack-node'); // 슬랙 모듈 사용 const schedule = require('node-schedule'); // 스케줄러 모듈 사용 const webhookUri = "Webhook URL"; // Webhook URL const slack = new Slack(); slack.setWebhook(webhookUri); const send = async(message) => { slack.webhook({ text:message, attachments:[ { fallback:"구글드라이브: ", pretext:"구글드라이브: ", color:"#00FFFF", fields:[ { title:"[알림]", value:"해당링크로 접속하여 작성해 주세요.", short:false } ] } ] }, function(err, response){ console.log(response); }); } schedule.scheduleJob('5 19 * * *', function(){ send('업무보고 보내셨나요?'); }); 업무보고 시간을 미리 알려주는 알림봇2. 대화봇 만들기업무 문서는 주로 구글 독스와 같은 온라인 문서로 관리하고 있습니다. 하지만 매번 구글 드라이브에서 문서를 찾는 건 정말 귀찮은 일입니다. 번거로운 건 딱 질색입니다. Slack API를 이용해 관련된 키워드를 입력하면 링크 주소를 바로 받을 수 있는 대화봇을 만들어 보겠습니다.1) Slack API Bots 토큰 받기Slack API에 사용될 Bots 토큰을 받아야 합니다.https://{App Name}.slack.com/apps 에 접속합니다.Bots 추가Bots Api 토큰을 복사해 저장합니다.설정한 봇이름으로 Apps 영역에 자동으로 추가됩니다.2) 구글독스 대화봇 코드 작성2-1. botkit 모듈 설치$ npm install botkit --save2-2. 코드 작성const botkit = require('botkit'); // 봇 모듈 사용 const Slack = require('slack-node'); // 슬랙 모듈 사용 const controller = botkit.slackbot({ debug: false, log: true }); const botScope = [ 'direct_message', 'direct_mention', 'mention' ]; controller.hears(['업무보고'], botScope, (bot, message) => { bot.reply(message, '업무보고 링크주소'); }); controller.hears(['가이드', 'guide', '튜토리얼'], botScope, (bot, message) => { bot.reply(message, '가이드 링크주소'); }); controller.hears(['api', '명세서'], botScope, (bot, message) => { bot.reply(message, 'api명세서 링크주소'); }); controller.hears(['일정', '일정관리'], botScope, (bot, message) => { bot.reply(message, '일정관리 링크주소'); }); controller.hears(['비품', '비품정리'], botScope, (bot, message) => { bot.reply(message, '비품관리 링크주소'); }); controller.spawn({ token: '발급받은 봇 토큰' }).startRTM(); 지정한 키워드를 입력하면 해당 링크가 수신 됩니다.3) 데이터문의 대화봇 코드 작성데이터 요청 시 결과 데이터를 보내주는 대화봇을 만들어 보겠습니다. 일단 먼저 데이터문의 전용 Bots을 생성합니다.3-1. Python 연동 요청한 데이터는 Mysql 데이터를 조회해서 전송합니다. 그러면 Mysql 을 연동해야겠죠? Node.js에서도 직접 mysql 연결할 수 있지만, 기존 프로젝트가 Python으로 구현되어 있어 Python을 실행해 필요한 데이터를 추출해보겠습니다.3-2. python-shell 모듈 설치Node.js에서 Python 실행가능하도록 모듈을 설치$ npm install python-shell --save3-3. Mysql Sample Table3-4. 회원테이블에 저장된 가입일시 기준으로 몇일전에 가입한 회원을 추출하여 전송하는 코드 작성해 보겠습니다.const botkit = require('botkit'); // 봇 모듈 사용 const Slack = require('slack-node'); // 슬랙 모듈 사용 const ps = require('python-shell'); // 파이썬 쉘 모듈 사용 // 몇일 전 날짜 구하기 function getDaysAgo(dayNo = 0) { let nowDate = new Date(); let tempDate = nowDate.getTime() - (dayNo * 24 * 60 * 60 * 1000); nowDate.setTime(tempDate); let getYear = nowDate.getFullYear(); let getMonth = nowDate.getMonth() + 1; let getDay = nowDate.getDate(); if (getMonth < 10 xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed> 3-5. Python 코드 작성 # -*- coding: utf-8 -*- import sys import pymysql // mysql 접속 db = pymysql.connect('hostname', user='', passwd='', db='', charset='utf8') cursor_db = db.cursor() exe_query = "SELECT MEMBER_NAME FROM MEMBER_INFO WHERE MEMBER_REGIST_DETE >= '{}' ORDER BY MEMBER_NO ASC ".format(sys.argv[1]) cursor_db.execute(exe_query) all_rows = cursor_db.fetchall() for idx, row in enumerate(all_rows): print(row[0])     지정한 며칠 전에 가입한 회원 이름이 전송됩니다.   로그도 정상적으로 출력됩니다. 3. Node.js 프로세스 관리를 위한 pm2 모듈 설치 Node.js 는 비동기 I/O를 지원하며 단일 스레드로 동작하는 서버입니다. 비동기식 방식이지만 처리하는 Event Loop는 단일 스레드로 이루어져 있어 처리 작업이 오래 걸리면 전체 서버에 영향을 줍니다. 그래서 pm2를 이용해 프로세스별로 상태를 관리해야 합니다. 1) pm2 모듈 설치$ npm install pm2 -g2) 자주사용하는 pm2 명령어 pm2 list -> 실행중인 프로세스 확인pm2 start {node 파일} -> 시작pm2 stop {id or App name} -> 중지pm2 delete {id or App name} -> 삭제pm2 show {id or App name} -> 상세정보pm2 restart {id or App name} -> 재시작pm2 kill -> pm2 종료pm2 logs {id} -> id 앱의 로그 확인 3) pm2 실행화면$ pm2 start bot.js   프로세스별로 앱 이름, 버전, 상태, cpu 및 memory 사용량이 표시됩니다.$ pm2 show 0   해당 프로세스의 상세 정보를 확인할 수 있습니다. Conclusion 지금까지 Node.js 로 유용한 Slack 메신져 API를 알아봤습니다. 반복적인 업무를 하나씩 줄이다 보면 분명 일의 능률을 높아집니다. 하지만 무분별한 자동화는 서버의 부하를 증가시키기 때문에 꼭 필요한지 확인하고 선택하길 바랍니다. 오늘은 여기까지 글곽정섭 과장 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만  
조회수 473

iOS 개발자를 구합니다!

“세상 모든 광고영상을 누구나 쉽게 만들 수 있게 한다.”영상광고는 사업의 규모와 업종을 막론하고 모든 분야에서 필수적인 요소로 자리잡고 있습니다. 잘 만든 영상광고가 매출로 이어진다는 사실은 검증되었고, 그 중요성은 나날이 증가하고 있습니다.하지만, 영상제작 전문기술 없이 광고영상을 제작한다는 것은 시간과 비용적인 측면에서 매우 어려운 일입니다. 광고영상을 SNS에 업로드 하고 싶은 마케터나 창업가들은 영상 전문가나 디자이너가 되는 것을 꿈꾸지 않습니다. 단지 자신의 서비스와 제품이 멋지게 홍보될 영상을 원하고 있습니다.더브이플래닛은 전문기술 없이도 누구나 쉽고 빠르게 광고영상을 제작할 수 있는 브이플레이트를 통해 많은 마케터들과 창업가들이 겪는 시간과 비용에 대한 어려움을 해소할 것입니다.“더브이플래닛”에서 영상광고 생태계의 흐름을 바꿀 iOS개발자를 모집합니다.광고영상을 누구나 쉽게 만들 수 있도록 함께 고민하고 시장을 주도해나갈 분을 애타게 찾고 있어요.우리는 한사람 한사람의 소중한 능력들이 맘껏 발휘될 수 있도록 존중과 배려로 서로를 응원하고 있어요. 우리와 함께 소중한 능력을 맘껏 발휘하실 분들의 많은 지원 부탁드려요.
조회수 1672

iOS Graphic Interface 살펴보기 (1/2)

1.intro: 애정하는 iOS, 애증의 Xcode프론트엔드 개발자가 가장 기쁠 땐 언제일까요? 여러 가지가 있죠. 직접 만든 스무스한 애니메이션을 볼 때, 고생해서 작업한 하드코어 고난도 레이아웃이 잘 작동할 때, 작업한 화면을 사람들이 ‘예쁘다ʼ고 말해줄 때 등등. 그러므로 iOS는 모든 프론트엔드 개발자가 동경하는 OS라고 말할 수 있습니다. 대부분의 굵직한 Transition들을 알아서 Animate해주고, 프레임레이트가 복잡한 레이아웃 효과도 부드럽게 표현해주기 때문에 ‘예쁘다ʼ, ‘쾌적하다ʼ는 말이 절로 나오는 OS이기 때문이죠. 물론 그만큼 손도 많이 갑니다. 사실 iOS는 신기한 점이 많습니다. Xcode를 사용하다 보면 Interface Builder에서 ctrl+드래그를 사용하여 Code로 Reference를 가져오는 방법부터 String값으로 찾아가는 Xib/StoryBoard 파일까지.. 다른 플랫폼 및 IDE에서는 겪어보지 못한 새로운 경험들을 만나죠. 덕분에 다년차 개발자의 멘탈도 Xcode-iOS를 만나면 탈탈 털립니다. 시간이 지나면 이 독특하고도 불편한 Xcode를 사랑하고, 저주하는 상황까지 생깁니다.그래서 오늘은 많은 iOS 루키들이 겁내고 괴로워하는 iOS의 Graphic Interface를 살펴보고자 합니다. 맨땅에 헤딩할 때 헬멧이라도 쓰고 있으면 그나마 덜 아프니까요.2.Point, PixelAndroid에서는 다양한 기종의 스크린을 지원하기 위해 자체적으로 dp라는 수치 개념을 만들어 사용합니다. 파편화된 디바이스들을 모두 지원하는 레이아웃을 구성하려고 고안한 효율적인 방법이죠. iOS에도 이와 같은 개념이 있습니다. 바로 포인트(Point)인데요. Xcode의 ImageAsset 파일을 열면 이런 것을 찾을 수 있습니다. 1X, 2X, 3X바로 이 화면에서 볼 수 있는 1x,2x,3x라는 문구가 포인트 개념을 설명하고 있습니다. 포인트는 디바이스의 물리적 픽셀을 2배, 3배로 압축해 사용하는 iOS 만의 독특한 단위입니다. 이 개념이 처음 쓰인 건 iPhone 4, 즉 레티나 디스플레이가 등장하면서부터 인데요, 기존의 iPhone 3Gs와 물리적 화면 크기는 동일한데, 4배의 픽셀 수를 가지는 레티나 디스플레이에 기존의 앱들을 그대로 보여주자니 픽셀 단위로 정의된 기존의 모든 이미지/레이아웃이 절반 크기로 줄어드는 문제가 발생했습니다. 따라서 별도의 작업 없이 디스플레이하기 위한 방법으로 고안된 게 바로 포인트입니다.포인트는 픽셀을 2배, 3배로 압축해 1포인트라는 단위로 규정하고, 그 단위를 Nib(Xib) 에디터 및 개발 과정에서 사용합니다. 앞으로 여러분이 iOS 개발을 하면서 접할 기본 단위는 바로 포인트가 될 겁니다. 2X 혹은 3X는 단어는 픽셀을 2배, 3배로 압축했다는 의미입니다. 개발자의 편의를 위해서 만들어진 개념이 오히려 개발자에게 혼동을 주는 아이러니한 상황이 펼쳐졌습니다. 사실 이 픽셀-포인트의 개념이 처음 등장했을 때는 꽤 편리했을 겁입니다. 당시만 해도 iPhone4와 iPhone3Gs의 해상도를 구분하지 않고 작업할 수 있는 획기적인 방법이었으니까요. 하지만 지금은 iPhone5, iPhone7 Plus, iPhone X 등 다양한 장비들이 등장했습니다. 그래서 iOS 개발자는 포인트를 단지, 픽셀의 또 다른 이름처럼 느낄 뿐입니다. 애플도 자신들이 이렇게 다양한 해상도의 iPhone을 출시하게 될 줄은 몰랐을 겁니다.애플의 해상도 춘추전국시대 / 출처: paintcodeapp3.Storyboard, Nib (Xib)iOS UI 디자인의 꽃이 무엇인지 묻는다면 그것은 단연 Storyboard와 Xib일 것입니다. Storyboard는 기획자들이 사용하는 그것과 유사한 개념입니다. 하나의 큰 틀에 화면 단위로 여러 장의 기획안을 놓고, 그것들의 시퀀스를 한 눈에 알아볼 수 있도록 하는 보드입니다.Storyboard는 Segue와 같은 시퀀스 설정을 직접 할 수 있고, 연결된 하나의 Flow를 시각적으로 펼치기 좋습니다. 프로토타이핑을 위한 적절한 툴인 셈이죠.UIStoryboard 예시 - 브랜디 iOS의 Main StoryboardNib(혹은 Xib, 이하 Xib로 지칭)는 조각조각 단위의 화면이나 재활용을 많이 하는 CollectionViewCell 등의 화면 작업에 적합합니다. 이 점이 Storyboard와는 다르죠. (CollectionViewCell에 대한 자세한 포스팅은 여기를 클릭하세요.)물론 Storyboard에서 할 수 있는 작업은 대부분 Xib로도 가능하지만, 각각의 용도를 다르게 해서 사용하는 경우가 많습니다. 예를 들어, 브랜디 iOS 프로젝트는 Storyboard에선 큰 틀의 화면을 다루고, Xib에서는 CollectionView Cell과 ReusableView, Custom Component등을 다루고 있습니다. UICollectionViewCell.xibStoryboard와 Xib로 인터페이스 작업을 할 때는 파일의 컨텐츠가 너무 비대해지지 않도록 조심해야 합니다. Storyboard가 비대해지면 많은 작업자가 동시에 파일을 수정할 수도 있는데, VCS를 사용하면서 Storyboard나 Xib 파일의 충돌이 발생하면 병합하는 과정이 매우 고통스럽습니다. 그러므로 Storyboard는 서로 충돌하지 않도록 더 큰 그림을 그리고, 해당 Storyboard를 Senior 개발자가 관리할 수 있도록 안전장치를 두도록 합시다. 야 이거 소스 건드린 사람 나와 Storyboard와 Xib는 기본적으로 XML 기반의 파일입니다. 혹시라도 충돌이 발생하면 UI로 확인이 불가능하기 때문에, Xcode에서 해당 Storyboard, Xib 파일을 우클릭한 후 Open As > Source Code 메뉴를 클릭하면 XML 형식으로 브라우징할 수 있습니다. 해당 충돌 부분을 찾아가서 수정하고 다시 확인하면 UI로 볼 수 있습니다.소스코드로 스토리보드 보기4.From Storyboard, to CodeStoryboard와 Xib에서 구현한 컴포넌트들을 ViewController의 SourceCode에서 다룰 일이 분명 생길 겁니다(언제나 그렇죠). 그럴 땐 Outlet이라는 개념을 이용해서 Storyboard 와 SourceCode를 연결하는데요.네, 코드가 아닙니다. 포토샵하는 기분으로 ctrl + 마우스 좌클릭 드래그를 해주시면 됩니 다. 이 기능은 다른 IDE에서 보기 힘든 건데요. 나름 쓸만합니다. 익숙해지면 여러 가지 컴포넌트, 유닛들을 Outlet으로 처리할 수 있습니다. 코딩을 자유롭게 할 수도 있고요. 예를 들어, LayoutConstraint를 Outlet으로 처리하면 해당 Constraint를 코드 시퀀스에 따라 자유자재로 변경할 수 있게 되는 것처럼 말이죠.물론 이보다 선행되어야 할 작업은 Storyboard에서 해당 ViewController가 연결될 ViewController를 지정하고, 해당 ViewController의 파일을 미리 만들어야 합니다.5.Extraction of ViewControllerStoryboard에서 ViewController A를 연결했는데, ViewController B 에서 ChildViewController로 ViewController A 를 사용하고 싶다면 어떻게 할 수 있을까요? (간장공장공장장) 당연한 이야기지만 코드를 통해 구현 가능합니다. 필요한 것은 Storyboard 파일명과, Storyboard에서 미리 지정한 ViewController A 의 Identifier, 두 가지입니다. Storybo/rd에서 ViewController A를 연결했는데, ViewController B 에서 ChildViewController로 ViewController A 를 사용하고 싶다면 어떻게 할 수 있을까요? 당연한 이야기지만 코드를 통해 구현 가능합니다. 필요한 것은 Storybo/rd 파일의 이름과, Storybo/rd에서 미리 지정한 ViewController A 의 Identifier, 두 가지입니다. instantiateViewController From Storyboard/**  현재 화면에 디스플레이중인 UIWindow 객체로부터 UITabBarController를 반환받는 메  소드  - parameter window: UIWindow  - returns: UITabBarController */ fileprivate func tabBarControllerFromStoryboard() -> BRTabBarController {  let storyBoard = UIStoryboard(name: "mainStoryboard", bundle: nil let viewController = storyBoard.instantiateViewController(withIdentifier: "mainTabBarController") return viewController as! BRTabBarController  // 잘못된 viewController를 추출한 경우 nil exception } 비슷한 방법으로 Xib에 작성된 View도 추출할 수 있습니다. Xib파일 하나에 여러 View가 정의되어 있다면, 각각의 View를 필요에 따라서 사용할 수도 있습니다.Extraction From Xiblet nib = UINib(nibName: NSStringFromClass(BRDropdownSelector.self) let components = nib.components(separatedBy: ".").last!, bundle: nil) let view = components.instantiate(withOwner: nil, options: nil).last as! BRDropdownSelector  // 잘못된 view를 추출한 경우 nil exception 6.LayoutConstraints For Flexible UI더 유연한 레이아웃 동작을 원한다면, Static하게 선언된 수치보다는 LayoutConstraint로 제한적 범위 안에서 유동적으로 동작할 수 있도록 View를 주물러 주는 게 좋습니다. 예를 들어, 어떤 두 컴포넌트 사이의 최대 너비를 100으로 지정하되, 컨텐츠 사이즈에 따라 더 작아질 수도 있도록 하려면, LayoutConstraints의 Less than or Equal기능을 사용하는 것처럼 말이죠.Less than or equalLess than or Equal뿐만 아니라 Greater than or Equal도 존재합니다. 상황에 맞게 사용하는 지혜가 필요하죠. LayoutConstraint에는 Multiplier라는 개념도 있습니다. 만약 컴포넌트 A 절반 너비의 컴포넌트 B를 작성하고 싶다면, 그리고 이 조건이 화면 크기와 관계없이 동일하게 적용되기를 원한다면, 컴포넌트 B의 너비를 컴포넌트 A와 동일하게 Constraint로 지정하고, Multiplier를 0.5로 지정하면 됩니다. Multiplier는 단어 그대로 ‘배수ʼ라는 의미입니다.이처럼 화면 해상도에 구애받지 않는 유연한 UI를 작성하고 싶다면 LayoutConstraint 의 사용은 필수입니다. 브랜디 iOS 앱이 다양한 해상도의 iOS 디바이스에서 동일한 비율 로 출력되는 것도 이러한 LayoutConstraint를 사용했기 때문이죠.7.View를 핸들링할 그곳앞서 정리한 방식들을 사용해서 Storyboard, Xib 파일을 훌륭하게 작성했다면, 이제는 ViewController의 소스코드로 돌아올 차례입니다. View Size를 이벤트에 따라 변경하거나, 숨겼던 View를 보여주는 등의 작업들을 할 차례입니다.Storyboard나 Xib에서 작업한 View를 코드 상에서 다룰 일은 많습니다. 99.78% 이상 ViewController에서 View를 다루어야만 하죠. 무조건입니다.viewDidLoad() 에서 View는 대부분의 초기화 작업을 합니다. 그것은 소스코드를 다루는 개발자에게도 마찬가지죠. Storyboard에서 연결한 Outlet들도 이 Function에서부터 nil값이 아니게 됩니다. 따라서 뷰에 필요한 초기화 작업 (Button의 Title 지정, ImageView의 이미지 지정 등) 을 viewDidLoad()에서 모두 하면 됩니다. viewDidLoad()는 그 이름처럼 ViewController가 생성되었을 때 단 한 번 호출됩니다. 다시 거치지 않는 코드이기 때문에 ViewController에서 사용할 변수들을 초기화하는 등의 작업도 이 자리에서 할 수 있습니다. viewDidLoadoverride func viewDidLoad() {      super.viewDidLoad()     /* do 초기화 in 여기 */ } 다만 여기서 아무리 해도 안 되는 작업이 있습니다. View 사이즈를 해상도에 맞게 변경하는 작업 같은 것 말이죠. LayoutConstraint를 통해 지정된 사이즈를 가져올 때, 화면을 꽉 채우도록 Constraint를 지정해도 로그를 찍으면 엉뚱하게 더 적은 값 이나 큰 값이 나올 수도 있습니다. 이런 경우에는 아무리 viewDidLoad()에서 열심히 Constraint의 값을 가져와도 결과가 똑같을 겁니다.개미지옥override func viewDidLoad() {      super.viewDidLoad()     // 백년동안 코딩해도 화면 해상도가 다르게 나와요 } viewWillAppear() 에서는 viewDidLoad()에서 작동하지 않던(?) 코드를 적용할 수 있는 자리입니다. Constraint들로 지정된 사이즈들은 viewWillAppear()에서부터 각 디바이스의 해상도에 맞게 적용됩니다. 여기서부터는 화면 크기에 맞춘 SubView들의 사이징이나 Constarint들로부터 추출한 값이 의미가 있습니다.viewWillAppearoverride func viewWillAppear() {     super.viewWillAppear()     // 이제 아마 화면이 나올 차례인가봐요 } viewDidAppear()는 출력된 화면에 실행할 코드를 작성하는 자리입니다. 화면이 등장한 이후 보여줄 팝업창이나, 튜토리얼을 출력하는 건 여기서 해야 합니다. viewWillAppear()는 예상되는 출력 화면에서 호출되기 때문에, 실제로는 화면이 없는 상황에서도 호출될 수 있습니다. 만약 해당 viewController의 출력이 확실히 완료된 후 에 실행되어야 하는 이벤트라면, 이 Function에서 코드를 작성해야 합니다. viewDidAppearoverride func viewDidAppear() {     super.viewDidAppear()     // 화면 출력이 끝났답니다. 마음껏 코딩하세요! } 네, 지금까지 루키들을 위한 GUI 만들기의 기본 과정은 다 알려드렸습니다. 많은 개념과 기능, 방법론이 존재하지만 일단 이 정도면 알아도 첫 번째 iOS 앱 UI를 만들 준비는 어느 정도 마친 겁니다. 그럼 마지막으로 UI를 구성하면서 유용하게 사용할 수 있는 팁을 알려드리겠습니다. 8.Little Tricks1) Clip it, or not Clip it.ImageView를 다루다 보면 자주 발생합니다. 지정된 ImageView의 사이즈보다 이미지가 크면 이미지가 ImageView의 영역을 빠져나가버리는 건데요. 이것은 Label이나 View에서도 동일합니다. 작성한 컨텐츠가 부모 View보다 큰 경우 부모 View의 프레임을 벗어납니다. 이런 경우, 재부팅하세요. clipsToBounds 값을 true로 지정해주면.. view.clipsToBounds = true 매-직! 이 작업은 코드뿐만 아니라 Storyboard상에서도 가능합니다. Xib에서도 동일합니다. Storyboard에서 클리핑2)Circular View요즘 많이 사용하는 동그라미 모양 프로필 이미지 때문에 고생하는 고심하는 개발자들이 많을 겁니다. iOS에서는 이 작업을 view의 Layer를 편집하는 방식으로 아주 간단하게 처리할 수 있습니다.self.layer.cornerRadius = self.frame.size/2.0 self.layer.masksToBounds = true self.clipsToBounds = true 위의 코드를 사용하면 아래와 같은 이미지를 출력할 수 있습니다.둥글게 클립핑된 최신 트렌드의 ImageView를 간단하게 출력했습니다. 물론 위에서 언급한 clipsToBounds 값을 true로 지정해주는 것도 잊지 마시고요. 이 코드를 응용하면 모서리가 둥근 직사각형 뷰도 만들 수 있습니다. 원하는 곡률을 적용할 수 있죠. view의 Layer를 다루는 방법을 공부한다면 다양한 상황에서 유용하게 사용할 수 있을 겁니다.3)NSAtrributedString 클라이언트가 다양한 형태의 Font, Color의 텍스트를 한 문장에 넣어달라고 한다면 어떻게 작업해야 할까요? 스타일마다 Label 묶음을 만들어서 각각의 단어를 지정해주는 방법이 있습니다. 하지만 텍스트 또는 문장 구성이나 스타일이 서로 다른 묶음으로 변경된다면 어떨까요? 또 다시 새로운 기준으로 Label 묶음을 만들어야 할까요? 이럴 때 사용하기 좋은 녀석이 바로 NSAttributedString입니다. 볼드체, 보통체가 혼합된 텍스트에 색상이 다른 텍스트가 혼재되어 있는 Attributed String이렇게 다양한 형태의 텍스트를 한 문장에 담을 수 있고, 변경되는 내용이 있더라도 코드로 간단하게 수정하면 됩니다. 브랜디 앱에서도 NSAttrributedString을 많이 사용하고 있습니다. 브랜디 iOS 앱의 간지나는 UI 속 요소요소를 차지하고 있는 중요한 녀석이죠. 4)Debug Wirelessly 각종 케이블이 난잡하게 널부러진 책상을 보면 한숨이 나옵니까? 걱정하지 마세요. 이제 하나는 줄일 수 있을 겁니다. Xcode로도 무선 디버깅을 할 수 있기 때문이죠. 먼저 디바이스를 맥에 연결하고, Xcode가 활성화된 상태에서 Window > Devices And Simulators 항목을 클릭합니다. Devices and Simulators그런 다음 출력된 화면에서 원하는 디바이스를 선택하고 Connect via Network를 체크 합니다. (디바이스에 암호가 설정되어 있어야 합니다.) 지구본 모양이 디바이스 오른쪽에 있다면 무선 디버깅이 가능한 상태입니다. 무선디버깅체크9.Outro: 긴 글을 마무리하며아장아장 걸음마 시절이던 첫 개발 프로젝트 작업이 생각납니다. 클라이언트는 끝도 없이 요구를 하는데 구현하는 방법을 몰라 막막했던 적이 많았습니다. 여러 실수를 겪고 나서야 많은 것을 알게 되었죠. 그때를 생각하면 이제 막 iOS 개발을 시작하는 분들께 하나라도 더 도와주고 싶답니다. 지금 막 iOS 개발자가 되었나요? 그렇다면 이 포스팅은 분명 당신의 검색 한 번, 실수 한 번을 줄여줄 수 있을 겁니다.글이정환 과장 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발자 #개발팀 #인사이트 #경험공유 #iOS
조회수 22615

Next.js 튜토리얼 9편: 배포하기

* 이 글은 Next.js의 공식 튜토리얼을 번역한 글입니다.** 오역 및 오탈자가 있을 수 있습니다. 발견하시면 제보해주세요!목차1편: 시작하기 2편: 페이지 이동 3편: 공유 컴포넌트4편: 동적 페이지5편: 라우트 마스킹6편: 서버 사이드7편: 데이터 가져오기8편: 컴포넌트 스타일링9편: 배포하기 - 현재 글개요아래와 같은 궁금증이 생긴 적이 있나요?어떻게 내가 만든 Next.js 애플리케이션을 배포할 수 있나요?아직 배포에 대해 이야기하지 않았지만 배포하는 것은 꽤 간단하고 직관적입니다.Node.js를 동작할 수 있는 곳이라면 어디든 Next.js 애플리케이션을 배포할 수 있습니다. 매우 간단한 ▲ZEIT now로 배포하는 데에도 불구하고 어떤 잠금 장치도 없습니다.설치이번 장에서는 간단한 Next.js 애플리케이션이 필요합니다. 다음의 샘플 애플리케이션을 다운받아주세요:아래의 명령어로 실행시킬 수 있습니다:이제 http://localhost:3000로 이동하여 애플리케이션에 접근할 수 있습니다.Build와 Start처음으로 프로덕션에 우리의 Next.js 애플리케이션을 빌드해야 합니다. 빌드는 최적화된 프로덕션의 코드 세트를 생산합니다.이를 위해 간단히 다음의 npm 스크립트를 추가하세요:그런 다음 하나의 포트에서 Next.js를 시작해야 합니다. 사이드 렌더링을 수행하고 페이지를 제공합니다. (위의 명령으로 빌드됩니다)이를 위해 다음의 npm 스크립트를 추가하세요:이러면 3000 포트에서 우리의 애플리케이션이 시작됩니다.이제 프로덕션에서 애플리케이션을 동작시키 위해 다음의 명령어를 실행할 수 있습니다:두 개의 인스턴스 실행하기애플리케이션의 인스턴스 두 개를 실행시켜 봅시다. 대부분 앱을 수평으로 확장하기 위해 이 작업을 수행합니다. 처음으로 start npm 스크립트를 다음과 같이 변경해봅시다:만약 Winodws라면 next start -p %PORT%로 스크립트를 변경해야 합니다.이제 애플리케이션을 처음으로 빌드해봅시다.npm run build그러면 터미널에서 다음의 명령어로 실행시켜 봅시다:PORT=8000 npm startPORT=9000 npm startWinodws에서는 다른 명령어를 실행시켜야 합니다. 하나의 옵션은 애플리케이션에 cross-env npm 모듈을 설치하는 것입니다.그런 다음 커맨드 라인에서 cross-env PORT=9000 npm start를 동작시켜 주세요.두 개의 포트 모두에서 애플리케이션에 접근할 수 있나요?- 네. http://localhost:8000와 http://localhost:9000 둘 다 접근할 수 있습니다.- http://localhost:8000에서만 접근 가능합니다.- http://localhost:9000에서만 접근 가능합니다.- 둘 다 접근할 수 없습니다.한 번의 빌드로 많은 인스턴스 실행시키기보다시피 애플리케이션을 한 번 빌드해야 합니다. 그런 다음 원하는만큼의 많은 포트들을 시작할 수 있습니다.▲ZEIT now에 배포하기Next.js 애플리케이션을 빌드하고 시작하는 방법을 배웠습니다. npm 스크립트를 사용하여 모든 것을 수행했습니다. 그래서 원하는 배포 서비스를 사용해서 동작하도록 애플리케이션을 설정할 수 있습니다.하지만 ▲ZEIT now를 사용하면 딱 한 번의 과정만 수행하면 됩니다.다음과 같은 npm 스크립트만 추가해주세요:그런 다음 now를 설치해주세요. 설치 후 다음 명령어를 적용해주세요:now기본적으로 애플리케이션의 루트 디렉터리 안에서 "now" 명령어를 실행합니다.여기에서 애플리케이션을 시작하는 포트로 8000 포트를 지정했지만 ZEIT now에 배포할 때 변경하지 않았습니다.그러면 ZEIT now에 배포할 때 애플리케이션에 접근할 수 있는 포트는 어떤 것일까요?- 8000- 443 (혹은 언급되는 포트가 없음)- URL에 언급한 모든 포트- 에러를 표시한다. "443 포트에서만 시작할 수 있습니다"ZEIT는 항상 443 포트를 사용합니다실제로 8000 포트에서 애플리케이션을 시작해도 now에 배포될 때는 443 포트를 사용해서 접근할 수 있습니다. ("https" 웹사이트의 기본 포트)이것은 ▲ZEIT now의 특징입니다. 원하는 포트에서 애플리케이션을 시작해야 합니다. ▲ZEIT now는 항상 443 포트로 매핑합니다.로컬에서 애플리케이션 빌드하기▲ZEIT now는 npm build 스크립트를 발견하고 빌드 인프라 내부에 빌드합니다.하지만 모든 호스팅 제공자가 이와 같은 것을 가지고 있지는 않습니다.이 경우 로컬에서 다음의 명령어를 사용해서 빌드할 수 있습니다:npm run build그런 다음 .next 디렉터리를 사용하여 애플리케이션을 배포하세요.커스텀 서버를 사용하여 애플리케이션 배포하기우리가 막 배포한 애플리케이션은 커스텀 서버 코드를 사용하지 않았습니다. 하지만 만약 사용한 경우에는 어떻게 배포할 수 있을까요?다음의 브랜치로 체크아웃하세요:커스텀 서버를 사용하여 애플리케이션을 실행하기 위해 애플리케이션에 Express를 추가해주세요:npm install --save express애플리케이션 빌드하기이를 위해 next build를 사용하여 애플리케이션을 배포할 수 있습니다. 다음의 npm 스크립트를 추가해주세요:애플리케이션 시작하기프로덕션 애플리케이션임을 알리기 위해 커스텀 서버 코드를 생성해야 합니다.이를 위해 server.js로부터 이 코드를 살펴봅시다.이 부분을 살펴봅시다:그러면 프로덕션으로 이와 같이 애플리케이션을 시작할 수 있습니다.그래서 "npm start" 스크립트는 다음처럼 변경됩니다:마무리Next.js 애플리케이션을 배포하는 것에 대해 거의 다 배웠습니다.문서에서 Next.js 배포하기에 대해 더 배울 수 있습니다.배포에 대한 질문이 있다면 자유롭게 Slack에서 물어보거나 issue를 제출하세요.#트레바리 #개발자 #안드로이드 #앱개발 #Next.js #백엔드 #인사이트 #경험공유
조회수 3037

GitHub 계정으로 Kubernetes 인증하기

초기에는 kube-aws가 만들어준 관리자 인증서를 통해 Kubernetes를 관리했는데 역시나 대내외적으로 여건이 바뀌니 변화가 필요했다. 내부적으로는 개발 인력이 늘고 여러 프로젝트가 동시 진행되니 Staging 환경이 급격히 바뀌는데 계정이 하나이니 누가 무슨 작업을 했는지 확인하기 어렵고 외부적으로는 경쟁사의 보안사고 등에 영향을 받아 보안을 강화할 필요가 생겼다. 하여 보안 관련 작업을 여럿했고 그 중 하나가 바로 GitHub와 Kubernetes를 OAuth로 엮는 일이다.기본적으로는 개발자 각자가 자신의 GitHub 계정으로 인증 토큰을 받고 이를 이용해 Kubernetes API에 접근하는 것이다. 전체적인 흐름은 How I built a Kubernetes cluster so my coworkers could deploy apps faster 등을 참고하면 이해하기 그리 어렵지 않다.1. Admin time should be saved (since they are also our developers)2. New users can generate their own credentials without needing the admin3. User credential is always private for security reasons4. Developers have their own space to experiment5. Project spaces can be accessed and changed by multiple users6. In the future, we may want to enable auditing to track changes다만 저들과 달리 Webhook 토큰 인증 플러그인을 직접 짜지 않고 coreos/dex를 이용했다. Dex를 이용하면 GitHub를 비롯해 다양한 OpenID, OAuth 2.0 인증 서비스와 Kubernetes 클러스터를 엮기 쉽다. 더욱이 kube-aws에 Dex가 통합되어서 설치하기도 쉽다.설치하기구구절절 어떻게 설정하는지 설명할 생각은 없는데 회사와 프로젝트에 따라 세부적인 차이가 꽤나 클 수 있기 때문이다. 그러니 대략적인 작업 순서를 간략히 기술하고 끝내려 한다.우선 kube-aws의 cluster.yaml를 보자.# # Enable dex integration - https://github.com/coreos/dex # # Configure OpenID Connect token authenticator plugin in Kubernetes API server. # # Notice: always use "https" for the "url", otherwise the Kubernetes API server will not start correctly. # # Please set selfSignedCa to false if you plan to expose dex service using a LoadBalancer or Ingress with certificates signed by a trusted CA. # dex: # enabled: true # url: "https://dex.example.com" # clientId: "example-app" # username: "email" # groups: "groups" # selfSignedCa: true # # # Dex connectors configuration. You can add configuration for the desired connectors suported by dex or # # skip this part if you don't plan to use any of them. Here is an example of GitHub connector. # connectors: # - type: github # id: github # name: GitHub # config: # clientId: "your_client_id" # clientSecret: "your_client_secret" # redirectURI: https://dex.example.com/callback # org: your_organization # # Configure static clients and users # staticClients: # - id: 'example-app' # redirectURIs: 'https://127.0.0.1:5555/callback' # name: 'Example App' # secret: 'ZXhhbXBsZS1hcHAtc2VjcmV0' # # staticPasswords: # - email: "[email protected]" # # bcrypt hash of the string "password". You can use bcrypt-tool from CoreOS to generate the passwords. # hash: "$2a$10$2b2cU8CPhOTaGrs1HRQuAueS7JTT5ZHsHSzYiFPm1leZck7Mc8T4W" # username: "admin" # userID: "08a8684b-db88-4b73-90a9-3cd1661f5466"우선 GitHub의 Organization Settings 메뉴로 가서 OAuth Apps에 Dex를 추가한다. 이때 Authorization calllback URL은 https://dex.example.com/callback가 된다.GitHub가 준 Client ID와 Client Secret를 cluster.yaml에 적어넣는다.dex: enabled: true url: "https://dex.example.com" clientId: "example-app" username: "email" groups: "groups" selfSignedCa: false # # # Dex connectors configuration. You can add configuration for the desired connectors suported by dex or # # skip this part if you don't plan to use any of them. Here is an example of GitHub connector. connectors: - type: github id: github name: GitHub config: clientId: "GITHUB_OAUTH_APP_CLIENT_ID" clientSecret: "GITHUB_OAUTH_APP_CLIENT_SECRET" redirectURI: https://dex.example.com/callback org: DailyHotel # # Configure static clients and users staticClients: - id: 'example-app' redirectURIs: 'https://kid.example.com/callback' name: 'Example App' secret: 'ZXhhbXBsZS1hcHAtc2VjcmV0'staticPasswords: - email: "[email protected]" # # bcrypt hash of the string "password". You can use bcrypt-tool from CoreOS to generate the passwords. hash: "$2a$10$2b2cU8CPhOTaGrs1HRQuAueS7JTT5ZHsHSzYiFPm1leZck7Mc8T4W" username: "admin" userID: "08a8684b-db88-4b73-90a9-3cd1661f5466"여기서 dex.example.com은 kube-aws가 띄울 dex Deployment와 연결되는 서비스(ELB)의 도메인주소가 되어야 한다. 그런데 kube-aws는 Dex의 External service를 생성해주지 않으므로 아래와 같이 직접 서비스를 생성해야 한다. GitHub가 이쪽으로 콜백을 보내야 하므로 방화벽을 열어야 하고 회사 도메인 인증서를 붙일 것이므로 `selfSignedCa`값은 `false`로 한다.apiVersion: v1 kind: Service metadata: name: dex namespace: kube-system labels: app: dex component: identity dns: route53 annotations: domainName: dex.example.com service.beta.kubernetes.io/aws-load-balancer-ssl-cert: arn:aws:acm:blahblah service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http service.beta.kubernetes.io/aws-load-balancer-ssl-ports: https spec: ports: # the ports that this service should serve on - name: https port: 443 targetPort: 5556 protocol: TCP selector: app: dex component: identity type: LoadBalancer loadBalancerSourceRanges: - 0.0.0.0/0staticClients / example-app는 Dex에 포함된 예제 프로그램이다. 이를 이용하면 웹 브라우저를 통해 GitHub에 인증하고 토큰을 내려받을 수 있다. DailyHotel/kid 등의 도커 이미지를 사용하면 쉽게 띄울 수 있다. kube-aws는 이 예제 프로그램을 띄우지 않기 때문에 직접 올려야 한다.apiVersion: v1 kind: Service metadata: name: kid namespace: kube-system labels: app: kid dns: route53 annotations: domainName: "kid.example.com" service.beta.kubernetes.io/aws-load-balancer-ssl-cert: arn:aws:acm:blahblah service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http service.beta.kubernetes.io/aws-load-balancer-ssl-ports: https spec: ports: - name: https port: 443 targetPort: 5555 protocol: TCP selector: app: kid type: LoadBalancer loadBalancerSourceRanges: - 사무실IP/32 --- apiVersion: extensions/v1beta1 kind: Deployment metadata: name: kid namespace: kube-system spec: replicas: 1 template: metadata: labels: app: kid spec: containers: - name: kid image: dailyhotel/kid:latest livenessProbe: tcpSocket: port: 5555 timeoutSeconds: 120 ports: - containerPort: 5555 env: - name: CLIENT_ID value: example-app - name: CLIENT_SECRET value: ZXhhbXBsZS1hcHAtc2VjcmV0 - name: ISSUER value: https://dex.example.com - name: LISTEN value: http://0.0.0.0:5555 - name: REDIRECT_URI value: https://kid.example.com/callback이때 example-app의 REDIRECT_URI는 Dex의 REDIRECT_URI와는 다르다는 점에 주목하자. 옵션의 이름이 비슷하기 때문에 헷갈릴 수 있다. 또한 CLIENT_ID와 CLIENT_SECRET은 cluster.yaml 중 GitHub connector 설정이 아닌 staticClients 설정에서 쓴 값이라는 점도 눈여겨볼 필요가 있다.이 정도만 주의하면 dex를 설치하고 설정하는 것은 어렵지 않다. 이제 인증하는 방법을 알아보자.인증하기웹브라우저로 kid에 방문해서 토큰을 받는다. 첫 화면에서 Login 버튼을 누른 후 GitHub 로그인을 하면 토큰이 나온다.GitHub Public profile 메뉴로 가서 Public email 설정을 확인한다. 공개 이메일이 없다면 하나 추가한다. 로그인시 사용자 아이디로 쓰기 위함이다.kubeconfig 파일을 열고 kubeconfig 파일을 열고 MY_PUBLIC_GITHUB_EMAIL에는 GitHub 공개 이메일 주소를 적고 VISIT_KID_EXAMPLE_COM_AND_GET_TOKEN에는 앞서 받은 토큰을 적는다.apiVersion: v1 kind: Config clusters: - cluster: certificate-authority: credentials/ca.pem server: https://MY_KUBE_CLUSTER name: kube-aws-cluster contexts: - context: cluster: kube-aws-cluster namespace: default user: MY_PUBLIC_GITHUB_EMAIL name: kube-aws-context users: - name: MY_PUBLIC_GITHUB_EMAIL user: token: VISIT_KID_EXAMPLE_COM_AND_GET_TOKEN current-context: kube-aws-context인증 파일의 설정이 정확한지 확인하려면 kubectl --kubeconfig=./kubeconfig version을 실행해보자. 아래와 같이 Client/Server의 버전이 둘다 나오면 정상이다.$ kubectl --kubeconfig=./kubeconfig version Client Version: version.Info{Major:"1", Minor:"6", GitVersion:"v1.6.1", GitCommit:"b0b7a323cc5a4a2019b2e9520c21c7830b7f708e", GitTreeState:"clean", BuildDate:"2017-04-03T20:44:38Z", GoVersion:"go1.7.5", Compiler:"gc", Platform:"darwin/amd64"} Server Version: version.Info{Major:"1", Minor:"6", GitVersion:"v1.6.2+coreos.0", GitCommit:"79fee581ce4a35b7791fdd92e0fc97e02ef1d5c0", GitTreeState:"clean", BuildDate:"2017-04-19T23:13:34Z", GoVersion:"go1.7.5", Compiler:"gc", Platform:"linux/amd64"}참고 자료johnw188/dex-exampleKubernetes / Authenticating#데일리 #데일리호텔 #개발 #개발자 #개발팀 #기술스택 #도입후기 #일지 #경험공유 #Kubernetes #Github
조회수 1915

비트윈의 스티커 시스템 구현 이야기

비트윈에는 커플들이 서로에게 감정을 더욱 잘 표현할 수 있도록 스티커를 전송할 수 있는 기능이 있습니다. 이를 위해 스티커 스토어에서 다양한 종류의 스티커를 제공하고 있으며 사용자들은 구매한 스티커를 메시지의 첨부파일 형태로 전송을 할 수 있습니다. 저희가 스티커 시스템을 구현하면서 맞딱드린 문제와 이를 해결한 방법, 그리고 프로젝트를 진행하면서 배운 것들에 대해 소개해 보고자 합니다.스티커 시스템 아키텍처¶비트윈에서 스티커 기능을 제공하기 위해 다양한 구성 요소들이 있습니다. 전체적인 구성은 다음과 같습니다.비트윈 서버: 이전에 소개드렸었던 비트윈의 서버입니다. 비트윈의 채팅, 사진, 기념일 공유 등 제품내의 핵심이 되는 기능을 위해 운영됩니다. 스티커 스토어에서 구매한 스티커는 비트윈 서버를 통해 상대방에게 전송할 수 있습니다.스티커 스토어 서버: 스티커를 구매할 수 있는 스토어를 서비스합니다. 스티커 스토어는 웹페이지로 작성되어 있고 아이폰, 안드로이드 클라이언트와 유기적으로 연동되어 구매 요청 등을 처리합니다. 처음에는 Python과 Flask를 이용하여 구현하려 하였으나 결국엔 서버 개발자들이 좀 더 익숙한 자바로 구현하기로 결정하였습니다. Jetty와 Jersey를 사용하였고, HTML을 랜더링하기 위한 템플릿 엔진으로는 Closure Template을 이용하였습니다. ORM으로는 Hibernate/JPA, 클라이언트와 웹페이지간 연동을 위해서 Cordova를 이용하였습니다. EC2에서 운영하고 있으며 데이터베이스로는 RDS에서 제공하는 MySQL을 사용합니다. 이미 존재하는 솔루션들을 잘 활용하여 최대한 빨리 개발 할 수 있도록 노력을 기울였습니다.스티커 다운로드 서버: 스티커는 비트윈에서 정의한 특수한 포맷의 파일 형태로 제공됩니다. 기본적으로 수 많은 사용자가 같은 스티커 파일을 다운로드 받습니다. 따라서 AWS에서 제공하는 CDN인 CloudFront을 이용하며, 실제 스티커 파일들은 S3에서 호스팅합니다. 그런데 스티커 파일들은 디바이스의 해상도(DPI)에 따라 최적화된 파일들을 내려줘야하는 이슈가 있었습니다. 이를 위해 CloudFront와 S3사이의 파일 전송에 GAE에서 운영중인 간단한 어플리케이션이 관여합니다. 이에 대해서는 뒷편에서 좀 더 자세히 설명하도록 하겠습니다.구현상 문제들과 해결 방법들¶적정 기술에 대해 고민하다¶스티커 스토어 서버를 처음 설계할때 Flask와 SQLAlchemy를 이용하여 구현하고자 하였습니다. 개발팀 내부적으로 웹서버를 만들때 앞으로 Python과 Flask를 이용해야겠다는 생각이 있었기 때문이며, 일반적으로 Java보다는 Python으로 짜는 것이 개발 효율이 더 좋다는 것은 잘 알려진 사실이기도 합니다. 하지만 Java에 익숙한 서버 개발자들이 Python의 일반적인 스타일에 익숙하지 않아 Python다운 코드를 짜기 어려웠고, 오히려 개발하는데 비용이 더 많이 들어갔습니다. 그래서 개발 중에 다시 웹 서버는 자바로 짜게 되었고, 여러가지 스크립트들만 Python으로 짜고 있습니다. 실제 개발에 있어서 적절한 기술의 선택은 실제 프로젝트에 참여하는 개발자들의 능력에 따라 달라져야한다는 것을 알게되었습니다.스티커 파일 용량과 변환 시간을 고려하다¶사용자는 스티커 스토어에서 여러개의 스티커가 하나로 묶인 스티커 묶음을 구매하게 됩니다. 구매 완료시 여러개의 스티커가 하나의 파일로 압축되어 있는 zip파일을 다운로드 받게 됩니다. zip파일내의 각 스티커 파일에는 스티커를 재생하기 위한 스티커의 이미지 프레임들과 메타데이터에 대한 정보들이 담겨 있습니다. 메타데이터는 Thrift를 이용하여 정의하였습니다.스티커 zip파일 안에는 여러개의 스티커 파일이 들어가 있으며, 스티커 파일은 다양한 정보를 포함합니다카카오톡의 스티커의 경우 애니메이션이 있는 것은 배경이 불투명하고 배경이 투명한 경우에는 애니메이션이 없습니다. 하지만 비트윈 스티커는 배경이 투명하고 고해상도의 애니메이션을 보여줄 수 있어야 했습니다. 배경이 투명한 여러 장의 고해상도 이미지를 움직이게 만드는 것은 비교적 어려운 점이 많습니다. 여러 프레임의 이미지들의 배경을 투명하게 하기 위해 PNG를 사용하면 JPEG에 비해 스티커 파일의 크기가 너무 커집니다. 파일 크기가 너무 커지면 당시 3G 환경에서 다운로드가 너무 오래 걸려 사용성이 크게 떨어지기 때문에 무작정 PNG를 사용할 수는 없었습니다. 이에 대한 해결책으로 투명 기능을 제공하면서도 파일 크기도 비교적 작은 WebP를 이용하였습니다. WebP는 구글이 공개한 이미지 포맷으로 화질 저하를 최소화 하면서도 이미지 파일 크기가 작다는 장점이 있습니다. 각 클라이언트에서 스티커를 다운 받을때는 WebP로 다운 받지만, 다운 받은 이후에는 이미지 로딩 속도를 위해 로컬에 PNG로 변환한 스티커 프레임들을 캐싱합니다.그런데 출시 된지 오래된 안드로이드나 iPhone 3Gs와 같이 CPU성능이 좋지 않은 단말에서 WebP 디코딩이 지나치게 오래 걸리는 문제가 있었습니다. 이런 단말들은 공통적으로 해상도가 낮은 디바이스였고, 이 경우에는 특별히 PNG로 스티커 파일을 만들어 내려줬습니다. 이미지의 해상도가 낮기 때문에 파일 크기가 크지 않았고, 다운로드 속도 문제가 없었기 때문입니다.좀 더 나은 주소 포맷을 위해 GAE를 활용하다¶기본적으로 스티커는 여러 사용자가 같은 스티커 파일을 다운받아 사용하기 때문에 CDN을 이용하여 배포하는 것이 좋습니다. CDN을 이용하면 스티커 파일이 전 세계 곳곳에 있는 엣지 서버에 캐싱되어 사용자들이 가장 최적의 경로로 파일을 다운로드 받을 수 있습니다. 그래서 AWS의 S3와 CloudFront를 사용하여 스티커 파일을 배포하려고 했습니다. 또한, 여러 해상도의 디바이스에서 최적의 스티커를 보여줘야 했습니다. 이 때문에 다양한 해상도로 만들어진 스티커 파일들을 S3에 올려야 했는데 클라이어트에서 스티커 파일을 다운로드시 주소 포맷을 어떻게 가져가야 할지가 어려웠습니다. S3에 올리는 경우 파일와 디렉터리 구조 형태로 저장되기 때문에 아래와 같은 방법으로 저장이 가능합니다.http://dl.sticker.vcnc.co.kr/[dpi_of_sticker]/[sticker_id].sticker하지만, 이렇게 주소를 가져가는 경우 클라이언트가 자신의 해상도에 맞는 적절한 스티커의 해상도를 계산하여 요청해야 합니다. 이것은 클라이언트에서 서버에서 제공하는 스티커 해상도 리스트를 알고 있어야 한다는 의미이며, 이러한 정보들은 최대한 클라이언트에 가려 놓는 것이 유지보수에 좋습니다. 클라이언트는 그냥 자신의 디스플레이 해상도를 전달하기만 하고, 서버에서 적절히 계산하여 알맞은 해상도의 스티커 파일을 내려주는 것이 가장 좋습니다. 이를 위해 스티커 다운로드 URL을 아래와 같은 형태로 디자인하고자 하였습니다.http://dl.sticker.vcnc.co.kr/[sticker_id].sticker?density=[dpi_of_device]하지만 S3와 CloudFront 조합으로만 위와 같은 URL 제공은 불가능하며 따로 다운로드 서버를 운영해야 합니다. 그렇다고 EC2에 따로 서버를 운영하는 것은 안정적인 서비스 운영을 위해 신경써야할 포인트들이 늘어나는 것이어서 부담이 너무 컸습니다. 그래서, 아래와 같이 GAE를 사용하기로 하였습니다.GAE는 구글에서 일종의 클라우드 서비스(PaaS)로 구글 인프라에서 웹 어플리케이션을 실행시켜 줍니다. GAE에 클라이언트에서 요청한 URL을 적절한 S3 URL로 변환해주는 어플리케이션을 만들어 올렸습니다. 일종의 Rewrite Engine 역할을 하는 것입니다. 서비스의 안정성은 GAE가 보장해주고, S3와 CloudFront의 안정성은 AWS에서 보장해주기 때문에 크게 신경쓰지 않아도 장애 없는 서비스 운영이 가능합니다. 또한 CloudFront에서 스티커 파일을 최대한 캐싱 하며 따라서 GAE를 통해 새로 요청을 하는 경우는 거의 없기 때문에 GAE 사용 비용은 거의 발생하지 않습니다. GAE에는 클라이언트에서 보내주는 해상도를 보고 적당한 해상도의 스티커 파일을 내려주는 아주 간단한 어플리케이션만 작성하면 되기 때문에 개발 비용도 거의 들지 않았습니다.토큰을 이용해 보안 문제를 해결하다¶실제 스티커를 구매한 사용자만 스티커를 사용할 수 있어야 합니다. 스티커 토큰을 이용해 실제 구매한 사용자만 스티커를 전송할 수 있도록 구현하였습니다. 사용자가 스티커 스토어에서 스티커를 구매하게 되면 각 스티커에 대한 토큰을 얻을 수 있습니다. 스티커 토큰은 다음과 같이 구성됩니다.토큰 버전, 스티커 아이디, 사용자 아이디, 유효기간, 서버의 서명서버의 서명은 앞의 네 가지 정보를 바탕으로 만들어지며 서버의 서명과 서명을 만드는 비밀키는 충분히 길어서 실제 비밀키를 알지 못하면 서명을 위조할 수 없습니다. 사용자가 자신이 가지고 있는 스티커 토큰과 그에 해당하는 스티커를 비트윈 서버로 보내게 되면, 비트윈 서버에서는 서명이 유효한지 아닌지를 검사합니다. 서명이 유효하다면 스티커를 전송이 성공하며, 만약 토큰이 유효하지 않다면 스티커의 전송을 허가하지 않습니다.못다 한 이야기¶비트윈 개발팀에게 스티커 기능은 개발하면서 우여곡절이 참 많았던 프로젝트 중에 하나 입니다. 여러 가지 시도를 하면서 실패도 많이 했었고 덕분에 배운 것도 참 많았습니다. 기술적으로 크게 틀리지 않다면, 빠른 개발을 위해서 가장 익숙한 것으로 개발하는 것이 가장 좋은 선택이라는 알게 되어 스티커 스토어를 Python 대신 Java로 구현하게 되었습니다. 현재 비트윈 개발팀에서 일부 웹사이트와 스크립트 작성 용도로 Python을 사용하고 있지만 Python을 잘하는 개발자가 있다면 다양한 프로젝트들를 Python으로 진행할 수 있다고 생각합니다. 팀내에 경험을 공유할 수 있는 사람이 있다면 피드백을 통해 좋은 코드를 빠른 시간안에 짤 수 있고 뛰어난 개발자는 언어와 상관없이 컴퓨터에 대한 깊이 있는 지식을 가지고 있을 것이기 때문입니다.네 그렇습니다. 결론은 Python 개발자를 모신다는 것입니다.저희는 언제나 타다 및 비트윈 서비스를 함께 만들며 기술적인 문제를 함께 풀어나갈 능력있는 개발자를 모시고 있습니다. 언제든 부담없이 [email protected]로 이메일을 주시기 바랍니다!
조회수 2358

Activation Function

Activation Function(활성함수)인공신경망을 공부하다보면 활성함수(activation function)라는 것을 만나게 됩니다. 대부분의 분들은 처음 공부를 시작할 때, 저와 마찬가지로 활성함수는 그냥 이런 거구나 하신 뒤에 넘어가고 있을 거라 생각합니다. 하지만 딥러닝을 좀더 공부하다보면 어떤 활성함수를 사용했는지, 혹은 사용하지 않았는지로 인해 다양한 문제가 발생하곤 합니다. 특히 요즘 핫한 deep neural network 에서는 활성함수가 어떤 것인가에 따라서 vanishing gradient 문제로 인해 학습의 정도가 달라지기도 합니다. 이러한 이유에서 이번 포스팅에서는 활성함수를 자세히 이해해보도록 하겠습니다.인공신경망이 사람의 신경구조를 모방하여 만들어졌다는 사실은 다들 알고 계실겁니다. 인공신경망의 가장 기본 개념은 단일 퍼셉트론에서 출발했습니다. 관련된 포스팅에서도 설명했지만 퍼셉트론은 여러 개의 신호가 들어오면 이를 조합하여 다음으로 신호를 보낼지 말지를 결정합니다(0 또는 1). 이것을 발전시킨 feed forward multiple layer neural network는 하나의 단일 뉴런에 여러 신호가 들어오면, 다음 뉴런에 보낼 신호의 강도를 결정하게 됩니다. 즉, 단일 퍼셉트론이 multi layer perceptron으로 발전해나가는 과정에서, 뉴런은 신호의 전달유무가 아닌 전달 강도를 정하게 되었습니다. 이때 전달하는 신호의 세기를 정하는 방법이 활성함수입니다.많은 분들은 대표적인 활성함수로 sigmoid를 떠올리실 것입니다. 활성함수의 개념을 잡기에는 이만큼 좋은 함수가 없기 때문입니다. 그럼 우선 활성함수의 가장 기본적인 개념을 sigmoid를 통해 알아보도록 하죠. 그 전에 여러분의 이해를 돕기 위해 로지스틱 회귀분석에 대해 먼저 알아보겠습니다.로지스틱 회귀분석(logistic regression)로지스틱 회귀분석은 generalized linear model입니다. 정확히 말하자면 generalized linear model이라는 큰 개념의 여러 케이스 중 하나라고 볼 수 있겠네요. 로지스틱 회귀분석의 목적은 독립변수의 선형결합으로 종속변수인 ‘어떠한 사건이 발생할 확률’을 알고자 하는 것입니다. 어렵죠..? 쉬운 예시를 하나 들어보겠습니다.우리는 어떠한 연구를 통해 1일 흡연량과 폐암 발생 여부의 관계를 알고싶습니다. 이때 가장 쉬운 방법은 1일 흡연량{x}과 폐암 발생확률{p(y)}이 선형 관련성이 있다고 보고, 선형 회귀 분석(linear regression)을 시행하는 것입니다. 그 결과, p(y)=0.02x+0.1<math>p(y)=0.02x+0.1</math> 이라는 식이 도출되었다고 생각해보죠. 이 식은 담배를 전혀 안 피우는 사람은 10%의 확률로 폐암에 걸리고, 하루에 담배를 1개비씩 더 피울 때마다 폐암에 걸릴 확률이 2% 증가한다는 의미입니다. 표면적으로 보았을 때는 꽤나 합리적으로 보입니다. 하지만 과연 이 식을 실제 예측에 활용해도 전혀 문제가 없을까요? 예상하셨겠지만, 그렇지 않습니다.담배는 한 갑에 20개비가 들어있고, 3갑이면 60개비가 들어있습니다. 따라서 하루에 담배를 3갑 피우는 사람은 0.02∗60+0.1=1.3<math>0.02∗60+0.1=1.3</math>, 즉 130%의 확률로 폐암에 걸린다는 결론이 도출됩니다. 이는 확률의 공리에 어긋나는 결론입니다. 따라서 과거의 수학자들은 선형이라는 이해 및 계산이 쉬운 방법을 그대로 유지하면서 확률의 공리에 어긋나지 않는 방법을 찾고자하였고, 다양한 방법들 중 가장 보편적으로 사용하게 된 방법이 로지스틱 함수를 연결함수로 사용한 로지스틱 회귀분석입니다.로지스틱 함수는 아래와 같이 생겼습니다.g(x)=ex1+ex<math>g(x)=ex1+ex</math>이것을 연결함수로 적용한 generalized linear model, 즉 logistic regression의 수식은 아래와 같은 형태가 됩니다.P(y|x)=eβx1+eβx<math>P(y|x)=eβx1+eβx</math>위 식을 이용하면 비로소 선형이라는 직관적인 성질을 띄면서, 결과값의 범위가 0~1로 제한되어 확률값의 예측에 사용할 수 있는 회귀식이 도출됩니다. 이 때, 위에 사용한 로지스틱 함수가 바로 우리가 활성함수로 사용하는 sigmoid function입니다. 따라서 sigmoid를 활성함수로 사용할 경우, 필연적으로 로지스틱 회귀분석과 관련이 있을 것이라고 예상할 수 있습니다. 둘 간의 관련성을 아래 그림을 통해 알아보겠습니다.여러분의 이해를 돕고자 hidden layer가 없는 가장 단순한 형태의 feed forward neural network 형태를 그려보았습니다. 위 그림을 수식으로 나타내볼까요?P(Y|X)=exp(∑2i=0wixi)1+exp(∑2i=0wixi)=11+exp(−∑2i=0wixi)<math>P(Y|X)=exp(∑i=02wixi)1+exp(∑i=02wixi)=11+exp(−∑i=02wixi)</math>즉, 위처럼 sigmoid를 활성함수로 사용한 간단한 neural network는 logistic regression과 일치합니다. 물론 계수(weight) 추정 방법은 통계학에서 기존에 행하던 방법과는 차이가 있지만, 결과적으론 비슷한 값이 추정될 것입니다. 우리는 이 그림을 통해 아래와 같은 직관을 얻을 수 있습니다.input과 weight를 곱해서 더하는 과정은 linear combination(선형 결합)이다.인공신경망의 학습은 각 뉴런에 곱해지는 ‘weight’라는 모수(parameter)를 추정(estimate)하는 과정이다.이제 눈치 채셨나요? Sigmoid를 활성함수로 사용하는 multi layer perceptron neural network의 hidden layer의 각 뉴런은 로지스틱 회귀분석을 하는 것과 정확히 일치합니다. 따라서 학습 과정에서 각 layer의 weight라는 모수를 학습을 통해 추정하는 것입니다.mlp 적용그럼 이제 위에서 배운 로지스틱 회귀분석을 mlp에 적용해보겠습니다. 우리는 단층 퍼셉트론 에서 아래와 같은 그림을 보았습니다.위처럼 선형으로 깔끔하게 분류가 가능한 문제는 활성함수가 계단함수인 단층 퍼셉트론으로도 충분히 해결할 수 있습니다. 하지만 아래와 같은 경우는 문제가 달라집니다.이러한 분류 문제는 선형으로는 불가능하며, 비선형적인 분류를 하여야 합니다. 이처럼 우리가 원하는 비선형의 분류를 하기 위하여 크게 두 가지가 필요합니다.1개 이상의 hidden layer(2개 이상의 뉴런을 포함하여야 함)비선형의 활성함수먼저 비선형의 활성함수가 필요한 이유부터 간단하게 생각해보겠습니다. 만약 활성함수가 비선형이 아니라면, 각 뉴런의 결과값은 선형결합의 선형결합이 됩니다. 따라서 아무리 multiple layer를 쌓는다고 하여도, 결과적으로 출력값은 입력값들의 선형결합이 됩니다. 즉, 층을 여러 개 쌓는 의미가 퇴색되는 것입니다.다음으로 hidden layer와 뉴런의 갯수에 대한 정의가 왜 필요한지 생각해보겠습니다. 위에서 언급하였듯이 logistic regression은 generalized linear model입니다. 여기서 ‘linear model’에 주목해주세요. 즉, logistic regression도 결국은 선형 모델이라는 것입니다. 왜일까요? Logistic regression을 이항분류 문제(결과의 범주가 0 또는 1)에 적용하여, 결과값이 특정값 이상이면 1로 분류한다고 생각해보겠습니다. 이것은 결국 기존의 단일 퍼셉트론에서 활성함수로 sigmoid를 사용한 뒤, 다시 계단함수를 적용한 것과 같습니다. 비록 우리가 sigmoid라는 비선형의 활성함수를 사용했지만, 로지스틱 함수의 지수를 풀어내면 결국 선형 결합의 결과값에 대한 분류이므로 우리가 원하는 비선형의 분류를 할 수 없습니다. 따라서 위와같은 문제를 해결하기 위하여, 비선형의 활성함수를 쓰되, 다수의 뉴런을 갖는 hidden layer를 사용하는 것입니다. 이 때, hidden layer의 뉴런 갯수가 늘어날 수록 좀더 비선형으로 데이터에 적합한 분류가 가능해지지만 overfitting 문제가 발생하게 됩니다. 따라서 hidden layer의 뉴런 갯수를 과제마다 적절히 지정해주는 것이 중요합니다.activation function의 종류마지막으로 activation function의 종류 및 특징에 대해 정리해보겠습니다.1. Sigmoid functionBy Qef (talk) - Created from scratch with gnuplot, Public Domain, Link<특징>수식 : σ(wx+b)=ewx+b1+ewx+b<math>σ(wx+b)=ewx+b1+ewx+b</math>범위 : (0,1)시그모이드 함수는 완전히 값을 전달하지 않거나(0) 혹은 완전히 전달한다(1)는 특성 때문에 실제 인체의 뉴런과 유사하다고 생각되어 널리 사용되었으나, 현재는 점차 사용하지 않는 추세입니다. 그 이유는 아래와 같습니다.Vanishing Gradient :sigmoid 함수는 뉴런의 활성화 값이 0 또는 1에 매우 가깝다면(saturate), 해당 편미분 값이 0에 매우 가까워지는 특성이 있습니다. 인공신경망의 back propagation에서 가장 일반적으로 사용되는 gradient descent의 경우 chain rule을 이용하는데, 이 과정에서 0에 매우 작은 값이 계속 곱해진다면 그 값은 0으로 점점 더 수렴합니다. 즉, 학습의 결과가 back propagation 과정에서 전달되지 못하고 이에 따라 weight 값의 조정이 되지 않습니다. 이것은 학습의 과정뿐만 아니라, 초기 weight 값을 임의로 줄 때에도 문제가 됩니다. f=σ(wx+b)<math>f=σ(wx+b)</math> 를 통해 확인해보죠. 만약 w의 값이 매우 커서 σ(wx+b)<math>σ(wx+b)</math>의 값이 1에 매우 가까워 진다면, weight값은 초기 값에서 크게 변하지 않고 학습이 되지 않을 것입니다. 그럼 우리의 신경망 모델의 정확성도 감소하겠죠. 이것이 vanishing gradient problem입니다.중심값이 0이 아니다 :Sigmoid function의 결과값은 그 중점이 0이 아니며, 모두 양수입니다. 이 경우 모수를 추정하는 학습이 어렵다는 단점이 있습니다. 하지만 이것은 다른 방식으로 모델 내에서 극복이 가능하기 때문에 vanishing gradient 에 비해 큰 문제는 아닙니다.2. tanh function<특징>수식 : tanh(x)=e2x−1e2x+1<math>tanh(x)=e2x−1e2x+1</math>범위 : (-1,1)tanh(hyperbolic tangent) function은 sigmoid 처럼 비선형 함수이지만 결과값의 범위가 -1부터 1이기 때문에 sigmoid와 달리 중심값이 0입니다. 따라서 sigmoid보다 optimazation이 빠르다는 장점이 있고, 항상 선호됩니다. 하지만 여전히 vanishing gradient 문제가 발생하기 때문에 대안이 등장하게 됩니다.3. Relu(Rectified Linear Unit)<특징>수식 : y=max(0,x)<math>y=max(0,x)</math>범위 : (0,∞<math>∞</math>)Relu는 위 그림처럼 선형그래프를 한 번 꺾은 형태입니다. 이 간단한 함수는 오랫동안 인공신경망의 발목을 잡던 vanishing gradient 문제를 해결했습니다. 하지만 여전히 장점과 단점이 존재합니다.장점기존의 sigmoid, tanh에 비해 converge되는 속도가 빠릅니다. 이것은 그래프의 형태가 선형이고, saturate problem이 발생하지 않기 때문으로 보여집니다.x값이 0을 기준으로 선형발현/미발현 이라는 간단한 형태이기 때문에 상대적으로 연산량이 많은 exponential을 사용하지 않아, 컴퓨터의 연산에 대한 부담을 줄여줍니다.단점“dying Relu problem”이 발생합니다. 만일 학습 과정에서 weight가 특정 뉴런이 activate되지 않도록 바뀐다면, 해당 뉴런을 지나는 gradient도 0이 됩니다. 따라서 training 과정에서 해당 뉴런이 한 번도 발현하지 않게 될 수도 있습니다. 심한 경우에는 네트워크 전체 뉴런의 40%가 죽어있는 경우도 발생한다고 합니다(출처 : http://cs231n.github.io/neural-networks-1/). 이것을 막기 위해서는 learning rate를 크지 않게 조절하는 것이 중요합니다. 또 다른 해결 방안으로는 leaky relu와 같은 activation function을 사용할 수도 있습니다.정리이번 포스팅을 통해 우리는 activation function이 무엇이고, 왜 필요한 것인지 알아보았습니다. 또한 어떠한 activation을 어떻게 사용해야하는지도 배웠습니다. 제가 위에 소개한 것 이외에도 다양한 activation function이 있으므로, 한 번쯤 찾아보며 공부해보시면 좋겠습니다.
조회수 1675

HBase 설정 최적화하기 - VCNC Engineering Blog

커플 필수 앱 비트윈은 여러 종류의 오픈 소스를 기반으로 이루어져 있습니다. 그 중 하나는 HBase라는 NoSQL 데이터베이스입니다. VCNC에서는 HBase를 비트윈 서비스의 메인 데이터베이스로써 사용하고 있으며, 또한 데이터 분석을 위한 DW 서버로도 사용하고 있습니다.그동안 두 개의 HBase Cluster 모두 최적화를 위해서 여러 가지 설정을 테스트했고 노하우를 공유해 보고자 합니다. 아랫은 저희가 HBase를 실제로 저희 서비스에 적용하여 운영하면서 최적화한 시스템 구성과 설정들을 정리한 것입니다. HBase를 OLTP/OLAP 목적으로 사용하고자 하는 분들에게 도움이 되었으면 좋겠습니다. 아래 구성을 최적화하기 위해서 했던 오랜 기간의 삽질기는 언젠가 따로 포스팅 하도록 하겠습니다.HBaseHBase는 Google이 2006년에 발표한 BigTable이라는 NoSQL 데이터베이스의 아키텍처를 그대로 따르고 있습니다. HBase는 뛰어난 Horizontal Scalability를 가지는 Distributed DB로써, Column-oriented store model을 가지고 있습니다. 사용량이 늘어남에 따라서 Regionserver만 추가해주면 자연스럽게 Scale-out이 되는 구조를 가지고 있습니다. 또한, Hadoop 특유의 Sequential read/write를 최대한 활용해서 Random access를 줄임으로 Disk를 효율적으로 사용한다는 점을 특징으로 합니다. 이 때문에 HBase는 보통의 RDBMS와는 다르게 Disk IO가 병목이 되기보다는 CPU나 RAM 용량이 병목이 되는 경우가 많습니다.HBase는 많은 회사가 데이터 분석을 하는 데 활용하고 있으며, NHN Line과 Facebook messenger 등의 메신저 서비스에서 Storage로 사용하고 있습니다.시스템 구성저희는 Cloudera에서 제공하는 HBase 0.92.1-cdh4.1.2 release를 사용하고 있으며, Storage layer로 Hadoop 2.0.0-cdh4.1.2를 사용하고 있습니다. 또한, Between의 데이터베이스로 사용하기 위해서 여러 대의 AWS EC2의 m2.4xlarge 인스턴스에 HDFS Datanode / HBase Regionserver를 deploy 하였습니다. 이는 m2.4xlarge의 큰 메모리(68.4GB)를 최대한 활용해서 Disk IO를 회피하고 많은 Cache hit이 나게 하기 위함입니다.또한 Highly-Available를 위해서 Quorum Journaling node를 활용한 Active-standby namenode를 구성했으며, Zookeeper Cluster와 HBase Master도 여러 대로 구성하여 Datastore layer에서 SPOF를 전부 제거하였습니다. HA cluster를 구성하는 과정도 후에 포스팅 하도록 하겠습니다.HDFS 최적화 설정dfs.datanode.handler.countHDFS에서 외부 요청을 처리하는 데 사용할 Thread의 개수를 정하기 위한 설정입니다. 기본값은 3인데 저희는 100으로 해 놓고 사용하고 있습니다.dfs.replicationHDFS 레벨에서 각각의 데이터가 몇 개의 독립된 인스턴스에 복사될 것 인가를 나타내는 값입니다. 저희는 이 값을 기본값인 3으로 해 놓고 있습니다. 이 값을 높이면 Redundancy가 높아져서 데이터 손실에 대해서 더 안전해지지만, Write 속도가 떨어지게 됩니다.dfs.datanode.max.transfer.threads하나의 Datanode에서 동시에 서비스 가능한 block 개수 제한을 나타냅니다.과거에는 dfs.datanode.max.xcievers라는 이름의 설정이었습니다.기본값은 256인데, 저희는 4096으로 바꿨습니다.ipc.server.tcpnodelay / ipc.client.tcpnodelaytcpnodelay 설정입니다. tcp no delay 설정은 TCP/IP network에서 작은 크기의 패킷들을 모아서 보냄으로써 TCP 패킷의 overhead를 절약하고자 하는 Nagle's algorithm을 끄는 것을 의미합니다. 기본으로 두 값이 모두 false로 설정되어 있어 Nagle's algorithm이 활성화되어 있습니다. Latency가 중요한 OLTP 용도로 HBase를 사용하시면 true로 바꿔서 tcpnodelay 설정을 켜는 것이 유리합니다.HBase 최적화 설정hbase.regionserver.handler.countRegionserver에서 외부로부터 오는 요청을 처리하기 위해서 사용할 Thread의 개수를 정의하기 위한 설정입니다. 기본값은 10인데 보통 너무 작은 값입니다. HBase 설정 사이트에서는 너무 큰 값이면 좋지 않다고 얘기하고 있지만, 테스트 결과 m2.4xlarge (26ECU) 에서 200개 Thread까지는 성능 하락이 없는 것으로 나타났습니다. (더 큰 값에 관해서 확인해 보지는 않았습니다.)저희는 이 값을 10에서 100으로 올린 후에 약 2배의 Throughput 향상을 얻을 수 있었습니다.hfile.block.cache.sizeHBase 의 block 들을 cache 하는데 전체 Heap 영역의 얼마를 할당한 것인지를 나타냅니다. 저희 서비스는 Read가 Write보다 훨씬 많아서 (Write가 전체의 약 3%) Cache hit ratio가 전체 성능에 큰 영향을 미칩니다.HBase 에서는 5분에 한 번 log 파일에 LruBlockCache (HBase 의 Read Cache) 가 얼마 만큼의 메모리를 사용하고 있고, Cache hit ratio가 얼마인지 표시를 해줍니다. 이 값을 참조하셔서 최적화에 사용하실 수 있습니다.저희는 이 값을 0.5로 설정해 놓고 사용하고 있습니다. (50%)hbase.regionserver.global.memstore.lowerLimit / hbase.regionserver.global.memstore.upperLimit이 두 개의 설정은 HBase에서 Write 한 값들을 메모리에 캐쉬하고 있는 memstore가 Heap 영역의 얼마만큼을 할당받을지를 나타냅니다. 이 값이 너무 작으면 메모리에 들고 있을 수 있는 Write의 양이 한정되기 때문에 디스크로 잦은 flush가 일어나게 됩니다. 반대로 너무 크면 GC에 문제가 있을 수 있으며 Read Cache로 할당할 수 있는 메모리를 낭비하는 것이기 때문에 좋지 않습니다.lowerLimit와 upperLimit의 두 가지 설정이 있는데, 두 개의 설정이 약간 다른 뜻입니다.만약 memstore 크기의 합이 lowerLimit에 도달하게 되면, Regionserver에서는 memstore들에 대해서 'soft'하게 flush 명령을 내리게 됩니다. 크기가 큰 memstore 부터 디스크에 쓰이게 되며, 이 작업이 일어나는 동안 새로운 Write가 memstore에 쓰일 수 있습니다.하지만 memstore 크기의 합이 upperLimit에 도달하게 되면, Regionserver는 memstore들에 대한 추가적인 Write를 막는 'hard'한 flush 명령을 내리게 됩니다. 즉, 해당 Regionserver이 잠시 동안 Write 요청을 거부하게 되는 것입니다. 보통 lowerLimit에 도달하면 memstore의 크기가 줄어들기 때문에 upperLimit까지 도달하는 경우는 잘 없지만, write-heavy 환경에서 Regionserver가 OOM으로 죽는 경우를 방지하기 위해서 hard limit가 존재하는 것으로 보입니다.hfile.block.cache.size와 hbase.regionserver.global.memstore.upperLimit의 합이 0.8 (80%)를 넘을 수 없게 되어 있습니다. 이는 아마 read cache 와 memstore의 크기의 합이 전체 Heap 영역 중 대부분을 차지해 버리면 HBase의 다른 구성 요소들이 충분한 메모리를 할당받을 수 없기 때문인 듯합니다.저희는 이 두 개의 설정 값을 각각 0.2, 0.3으로 해 놓았습니다. (20%, 30%)ipc.client.tcpnodelay / ipc.server.tcpnodelay / hbase.ipc.client.tcpnodelayHDFS의 tcpnodelay 와 비슷한 설정입니다. 기본값은 전부 false입니다.이 설정을 true로 하기 전에는 Get/Put 99%, 99.9% Latency가 40ms 와 80ms 근처에 모이는 현상을 발견할 수 있었습니다. 전체 요청의 매우 작은 부분이었지만, 평균 Get Latency가 1~2ms 내외이기 때문에 99%, 99.9% tail이 평균 Latency에 큰 영향을 미쳤습니다.이 설정을 전부 true로 바꾼 후에 평균 Latency가 절반으로 하락했습니다.Heap memory / GC 설정저희는 m2.4xlarge가 제공하는 메모리 (68.4GB)의 상당 부분을 HBase의 Read/Write cache에 할당하였습니다. 이는 보통 사용하는 Java Heap 공간보다 훨씬 큰 크기이며 심각한 Stop-the-world GC 문제를 일으킬 수 있기 때문에, 저희는 이 문제를 피하고자 여러 가지 설정을 실험하였습니다.STW GC time을 줄이기 위해서 Concurrent-Mark-and-sweep GC를 사용했습니다.HBase 0.92에서부터 기본값으로 설정된 Memstore-Local Allocation Buffer (MSLAB) 을 사용했습니다. hbase.hregion.memstore.mslab.enabled = true #(default)hbase-env.sh 파일을 다음과 같이 설정했습니다. HBASE_HEAPSIZE = 61440 #(60GB) HBASE_OPTS = "-XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps"GC log를 Python script로 Parsing해서 STW GC 시간을 관찰하고 있습니다. 지금까지 0.2초 이상의 STW GC는 한 번도 발생하지 않았습니다.그 밖에 도움이 될 만한 설정들hbase.hregion.majorcompactionHBase는 하나의 Region에 대해서 여러 개의 StoreFile을 가질 수 있습니다. 그리고 주기적으로 성능 향상을 위해서 이 파일들을 모아서 하나의 더 큰 파일로 합치는 과정을 진행하게 됩니다. 그리고 이 과정은 많은 CPU usage와 Disk IO를 동반합니다. 그리고 이때 반응 속도가 다소 떨어지게 됩니다. 따라서 반응 속도가 중요한 경우에는, 이 Major compaction을 off-peak 시간대를 정해서 manual 하게 진행하시는 것이 좋습니다.저희는 사용자의 수가 상대적으로 적은 새벽 시간대에 crontab 이 실행시키는 script가 돌면서 전체 Region에 대해서 하나하나 Major Compaction이 진행되도록 하였습니다.기본값은 86,400,000 (ms)로 되어 있는데, 이 값을 0으로 바꾸시면 주기적인 Major Compaction이 돌지 않게 할 수 있습니다.hbase.hregion.max.filesizeHBase는 하나의 Region이 크기가 특정 값 이상이 되면 자동으로 2개의 Region으로 split을 시킵니다. Region의 개수가 많지 않을 때는 큰 문제가 없지만, 계속해서 데이터가 쌓이게 되면 필요 이상으로 Region 수가 많아지는 문제를 나을 수 있습니다. Region 수가 너무 많아지면 지나친 Disk IO가 생기는 문제를 비롯한 여러 가지 안 좋은 점이 있을 수 있기 때문에, split 역시 manual 하게 하는 것이 좋습니다. 그렇다고 Table의 Region 수가 너무 적으면 Write 속도가 떨어지거나 Hot Region 문제가 생길 수 있기 때문에 좋지 않습니다.HBase 0.92.1 에서는 기본값이 1073741824(1GB)로 되어 있는데, 저희는 이 값을 10737418240(10GB)로 늘인 후에 manual 하게 split을 하여 Region의 개수를 조정하고 있습니다.hbase.hregion.memstore.block.multipliermemstore의 전체 크기가 multiplier * flush size보다 크면 추가적인 Write를 막고 flush가 끝날때까지 해당 memstore는 block 됩니다.기본값은 2인데, 저희는 8로 늘려놓고 사용하고 있습니다.dfs.datanode.balance.bandwidthPerSec부수적인 설정이지만, HDFS의 Datanode간의 load balancing이 일어나는 속도를 제한하는 설정입니다. 기본값은 1MB/sec로 되어 있지만, 계속해서 Datanode를 추가하거나 제거하는 경우에는 기본값으로는 너무 느릴 때가 있습니다. 저희는 10MB/sec 정도로 늘려서 사용하고 있습니다.dfs.namenode.heartbeat.recheck-intervalHDFS namenode에만 해당되는 설정입니다.Datanode가 응답이 없는 경우에 얼마 후에 Hadoop cluster로부터 제거할 것인지를 나타내는 값입니다.실제로 응답이 없는 Datanode가 떨어져 나가기까지는 10번의 heartbeat가 연속해서 실패하고 2번의 recheck역시 실패해야 합니다. Heartbeat interval이 기본값인 3초라고 하면, 30초 + 2 * recheck-interval 후에 문제가 있는 Datanode가 제거되는 것입니다.기본값이 5분으로 되어 있는데, fail-over가 늦어지기 때문에 사용하기에는 너무 큰 값입니다. 저희는 문제가 있는 Datanode가 1분 후에 떨어져 나갈 수 있도록 이 값을 15,000 (ms) 으로 잡았습니다.Read short-circuitRegionServer가 로컬 Datanode로부터 block을 읽어올 때 Datanode를 통하지 않고 Disk로부터 바로 읽어올 수 있게 하는 설정입니다.데이터의 양이 많아서 Cache hit이 낮아 데이터 대부분을 디스크에서 읽어와야 할 때 효율적입니다. Cache hit에 실패하는 Read의 Throughput이 대략 2배로 좋아지는 것을 확인할 수 있습니다. OLAP용 HBase에는 매우 중요한 설정이 될 수 있습니다.하지만 HBase 0.92.1-cdh4.0.1까지는 일부 Region이 checksum에 실패하면서 Major compaction이 되지 않는 버그가 있었습니다. 현재 이 문제가 해결되었는지 확실하지 않기 때문에 확인되기 전에는 쓰는 것을 추천하지는 않습니다.설정하는 방법은 다음과 같습니다. dfs.client.read.shortcircuit = true #(hdfs-site.xml) dfs.block.local-path-access.user = hbase #(hdfs-site.xml) dfs.datanode.data.dir.perm = 775 #(hdfs-site.xml) dfs.client.read.shortcircuit = true #(hbase-site.xml)Bloom filterBloom filter의 작동방식에 대해 시각적으로 잘 표현된 데모 페이지HBase는 Log-structured-merge tree를 사용하는데, 하나의 Region에 대해서 여러 개의 파일에 서로 다른 version의 값들이 저장되어 있을 수 있습니다. Bloom filter는 이때 모든 파일을 디스크에서 읽어들이지 않고 원하는 값이 저장된 파일만 읽어들일 수 있게 함으로써 Read 속도를 빠르게 만들 수 있습니다.Table 단위로 Bloom filter를 설정해줄 수 있습니다.ROW와 ROWCOL의 두 가지 옵션이 있는데, 전자는 Row key로만 filter를 만드는 것이고, 후자는 Row+Column key로 filter를 만드는 것입니다. Table Schema에 따라 더 적합한 설정이 다를 수 있습니다.저희는 데이터 대부분이 메모리에 Cache 되고 하나의 Region에 대해서 여러 개의 StoreFile이 생기기 전에 compaction을 통해서 하나의 큰 파일로 합치는 작업을 진행하기 때문에, 해당 설정을 사용하지 않고 있습니다.결론지금까지 저희가 비트윈을 운영하면서 얻은 경험을 토대로 HBase 최적화 설정법을 정리하였습니다. 하지만 위의 구성은 어디까지나 비트윈 서비스에 최적화되어 있는 설정이며, HBase의 사용 목적에 따라서 달라질 수 있음을 말씀드리고 싶습니다. 그래서 단순히 설정값을 나열하기보다는 해당 설정이 어떤 기능을 하는 것인지 저희가 아는 한도 내에서 설명드리려고 하였습니다. 위의 글에서 궁금한 점이나 잘못된 부분이 있으면 언제든지 답글로 달아주시길 바랍니다. 감사합니다.
조회수 3036

JANDI CONNECT 개발기

지난 1월 말, 새해를 맞아 잔디에 새로운 기능이 업데이트되었습니다. 바로 잔디 커넥트에 관한 내용인데요, 협업에서 많이 쓰이는 몇 가지 외부 서비스를 잔디와 쉽게 연동해서 더욱 효율적인 업무 커뮤니케이션을 할 수 있게 되었습니다. 많은 고객분들이 이번 업데이트를 기다려주신 만큼, 저희 개발팀 또한 기대에 보답하고자 지난 몇 주의 스프린트 동안 열심히 준비했습니다. 이번 글에서는 커넥트 동작 방식을 설명하고 그 개발 과정에서 저희가 겪은 시행착오를 비롯한 여러 값진 경험들을 공유하고자 합니다.Integration? Webhook!연동: [기계] 기계나 장치 따위에서, 한 부분이 움직이면 다른 부분도 함께 잇따라 움직임.앞서 말한 대로 잔디 커넥트는 여러 웹 서비스들과 잔디를 연동할 수 있는 기능입니다. 서로 다른 웹 서비스를 연동하기 위해선 한 서비스 내에서 특정 이벤트가 발생 했을 때 다른 서비스로 해당 이벤트를 알려주는 연결 고리가 필요합니다. 이때 해당 연결 고리 역할을 위해 대표적으로 사용되는 기법이 웹훅(WebHook) 입니다. 웹훅은 user-defined HTTP callbacks, reverse APIs 등으로 불리는데, 간단히 설명하자면 웹 서비스에서 공개한 API가 아닌 사용자가 직접 지정한 주소(URL)로 특정 이벤트가 발생 시 HTTP Request를 보내주는 기법입니다. 예를 들어,새로운 일정이 등록된 경우(Google Calender)요청한 Pull Request가 Merge된 경우(GitHub)카드에 새로운 코멘트가 작성된 경우(Trello)이러한 이벤트가 발생했을 때 사용자가 매번 이벤트가 발생했는지 확인하지 않아도 서비스가 먼저 알려줄 수 있도록 일종의 알림을 등록하는 것이죠. 잔디 커넥트는 이와 같은 특징을 이용해서 각각의 웹 서비스에서 제공하는 웹훅을 잔디의 메시지 형태로 전달하는 기능입니다.일반적으로 웹훅은 이벤트에 대한 알림을 외부로 전달하는 것을 말합니다. 이 부분에서 중요한 것은 전달 방향인데, 서비스 내부에서 외부로 전달하기 때문에 이를 Outgoing Webhook으로 부르기도 합니다1. 같은 맥락에서 반대로 생각해보면 외부에서 서비스 내부로 특정 데이터를 전달하는 경우이니 Incoming Webhook이 됩니다. 앞서 웹훅을 reverse API라고 했는데 이를 다시 뒤집으니 결국 서비스 내부로 통신하는 제한적인 API와 같은 역할을 합니다. 굳이 용어를 구분한 이유는 API와 달리 접근하려는 서비스의 별도 인증 절차를 거치지 않고도 사용자가 생성한 웹훅의 URL을 인증 토큰으로 사용하며 약속된 Request Body 포맷만 알고 있다면 자유롭게 사용할 수 있기 때문입니다.개념 설명이 다소 길어졌지만, 이번 잔디 커넥트 기능에 대해 용어나 개념이 낯설다는 피드백이 생각보다 많았기 때문에 이번 글을 통해 더 많은 분들이 웹훅을 이해하는 데 도움이 될 수 있으면 좋겠습니다.구현에 앞서서비스를 운영한지 1년 정도 지난 시점에서 저희 내부적으로는 백엔드의 기술 스택 변경 및 각 서비스 분리에 대한 갈증이 있었습니다. 하지만 이미 서비스를 운영 중이기 때문에 안정성이 최우선시 되는 만큼 꽤 부담스러운 숙제로 미뤄둘 수밖에 없었고요. 때마침 커넥트 기능은 숙제를 시험해볼 만한 좋은 기회임에는 분명했지만, 새로운 기술 스택을 바로 서비스에 적용하기엔 오히려 개발 효율이 떨어질 것이라는 판단하에 일단 서비스 분리에만 집중하기로 했습니다.기본적으로 API와 DB를 기존 서버와 분리하고 웹훅 데이터를 저장하기 위한 큐와 해당 데이터를 처리하는 배치 서버 또한 모두 기존 서비스와 분리해서 최대한 결합도를 제거했습니다. 이런 설계 덕분에 추후 사업 전략이나 각 국가의 특성에 맞춰 커넥트 기능을 어렵지 않게 포함하거나 제외할 수 있게 되었습니다. 전반적인 저희 잔디 백엔드 아키텍쳐에 대해서는 아직 한 번도 소개 해드린 적이 없으니 다음에 따로 주제로 선정해 집중적으로 다뤄보도록 하겠습니다.동작 방식잔디 커넥트가 동작하는 방식은 기본적으로 다음과 같습니다.Incoming Webhook URL 생성 - 외부 서비스 웹훅 등록 - 웹훅 수신 - 메시지 작성 연동 대상 서비스마다 조금씩 차이가 있지만, 기본적으로 모두 위와 같은 방식으로 동작하기 때문에 단계마다 나누어 설명하겠습니다.1. Webhook URL 생성Webhook URL은 https://wh.jandi.com/connect-api/webhook/{teamId}/{webhook-token}와 같은 형태로 생성됩니다. hostname을 별도로 설정함으로써 기존 API 서버와의 분리는 물론이고, nginx의 Limiting the Request Rate 설정을 이용해서 호출되는 웹훅 요청 수를 효과적으로 제한할 수 있었습니다. webhook-token은 중복을 피하면서 각 웹훅에 대한 유효성을 검증할 수 있도록 여러 키를 조합한 md5 hash 값을 이용했습니다.이렇게 생성된 URL은 Incoming Webhook 뿐만 아니라 Google Calendar 등의 서비스에 등록하는 콜백 URL로 사용합니다.2. 외부 서비스 웹훅 등록웹훅을 등록하는 방법은 서비스에 따라 API를 이용하거나 수동으로 직접 등록할 수 있습니다. 사용자가 직접 웹훅을 등록하는 방법은 웹훅 URL만 생성해서 전달하면 등록 과정의 추가 처리가 필요 없어서 간단하지만, 서비스마다 등록하는 방법이 조금씩 다르고 다소 복잡하게 느껴지는 문제가 있습니다. 반대로 각 서비스에서 제공하는 API를 이용해 웹훅을 등록하면 사용자의 부담을 많이 줄일 수 있지만, 그만큼 내부적으로 처리해야 할 작업이 많아집니다. 그래서 구현 초기에 꽤 많은 시간을 투자할 수밖에 없었고 그 과정에서 아래와 같은 어려움을 겪었습니다.웹훅 관련 API를 사용하려면 먼저 인증을 받아야 하는데 서비스마다 제공하는 인증 방식이 조금씩 달라서 이를 통합하는 모델을 만들기가 쉽지 않았습니다. 요약하자면 기본적으로 accessToken을 사용하지만, 인증 방식에 따라 부가적으로 필요한 데이터가 서로 조금씩 다른것이죠. 가령, 구글캘린더는 만료 일시와 토큰 갱신을 위한 refreshToken 값을 별도로 갖고 있어야 합니다. 또 한가지 놓치기 쉬운 부분은 인증 폐기(revoked) 관련한 데이터 처리인데 저희가 경험한 바로는 인증이 폐기되었을 때 별도로 웹훅 알림을 주지 않기 때문에 반드시 인증의 유효성을 확인하는 추가 로직이 필요합니다.대부분의 사무실이 그렇듯이 저희 또한 공유기를 이용해 내부 네트워크를 구성하고 있습니다. 게다가 백엔드 파트는 개개인의 로컬 가상 서버에 동일한 환경을 설정해놓고 개발을 하므로2보통 경우엔 외부(public network)에서 들어오는 요청을 받을 수 없습니다. 그렇다고 매번 외부 네트워크에 있는 서버에 배포 후 테스트하기가 어려우니, 저희는 각 로컬 서버마다 고유 포트 번호를 나눠 갖고 WAN이 물린 공유기의 포트 포워딩을 알맞게 설정한 뒤에 네트워크 터널링 유틸리티인 ngrok을 이용해 내부와 연결되는 public 주소를 생성해서 외부 서비스와 문제없이 통신할 수 있었습니다.3. 웹훅 수신웹훅을 통해 들어오는 Request는 일단 정상 응답을 하는 게 좋습니다. 서비스마다 최초 웹훅 등록 시 유효한 URL인지 확인하는 테스트 요청을 하는데 이때 정상 응답을 하지 못하면 아예 등록조차 처리되지 않습니다. 또한, 정상적으로 등록된 이후 특정 이벤트에 해당하는 웹훅 요청에 대한 응답에도 주의할 필요가 있는데, 만약 에러 응답이 반복되면 일정 시간 동안 각 서비스에서 아예 해당 웹훅을 발송하지 않도록 제한이 걸려 더 이상 테스트를 진행할 수 없는 경우도 있었습니다.따라서 일단 웹훅 요청이 들어오면 teamId와 webhook-token 값으로 올바른 웹훅인지 검증한 후 서비스별 큐에 Request header와 body를 포함한 데이터를 전달한 뒤 바로 응답하고, 큐에 쌓인 데이터는 커넥트 종류별로 배치 서버가 돌면서 처리하게 됩니다. SQS를 사용함으로써 늘어나는 데이터에 대한 안정성을 확보하고 각각의 배치 서버를 독립적으로 분리해서 구현함으로써 자연스레 확장성(scalability)도 보장할 수 있게 되었습니다.4. 메시지 작성웹훅 데이터를 잔디의 메시지로 변환하는 역할은 배치 서버가 담당합니다. 서비스별로 데이터 포맷이 다르므로 해당 데이터를 파싱 및 처리하는 Worker 또한 각각 구현했습니다. 사실 커넥트 기능에서 가장 핵심적인 역할을 하는 부분인 만큼 가장 많은 공수가 드는 작업이였던 것 같습니다.서비스마다 정해놓은 웹훅 이벤트와 잔디 커넥트에서 제공하고자 하는 알림이 서로 완전히 일치하지 않아서 이를 서로 연결하는 작업연동 서비스의 문서가 잘 정리되어 있지 않아서 일일이 필요한 동작을 취하고 그에 따라 들어오는 데이터를 정리하는 작업잔디 계정 언어에 따라 메시지 L10N3을 적용하는 작업커넥트 메시지를 전달하기 위해 기존 멤버와 다른 커넥트 봇을 구현하는 작업등 요약하기 어려울 정도로 크고 작은 이슈들이 많았습니다. 그 내용이 너무 다양해서 모두 상세히 기록하긴 어렵지만, 개중에 도움이 될만한 내용을 추려서 아래 따로 정리했으니 관심 있으신 분들은 참고하시면 좋을 것 같습니다.서비스별 집중 탐구커넥트 구현 일정을 최대한 앞당기기 위해 저희는 개발자들끼리 각각의 커넥트 종류 별로 전담해서 작업하는 전략을 취했습니다. 제가 대표로 글을 작성하기는 하지만 보다 정확하고 구체적인 정보를 전달하는 것이 좋겠다는 생각에 개발을 담당하신 분들과의 짧은 인터뷰 형식을 빌려 공유하겠습니다.- Google CalendarQ. 기술적으로 난이도가 높았던 작업을 소개해달라.전반적으로 어려운 작업이 있었다기보단, 캘린더 특성상 세세하게 처리할 부분들이 많아 설계와 구현이 어쩔 수 없이 복잡해졌다. 가장 골치 아팠던 작업은 일정 알림을 타임존(Time Zone)에 따라 각각 알맞은 시간에 전달하는 작업인데, “잔디 계정의 타임존”, “구글 캘린더의 타임존”, “개별 일정의 타임존” 이렇게 3가지를 모두 고려해서 경우마다 기준이 되는 타임존을 결정하는게 엄청 까다로웠다. 심지어 구현 후 테스트를 하는 과정에서도 출력된 시간이 올바로 표시된 것인지조차 헷갈려서 디버깅하는데 한참 고생할 수 밖에 없었다.웹훅을 등록하고 관리하는 부분도 꽤 복잡했는데, 구글 답게(?) 웹훅에도 만료 기간이 존재한다는 것이 포인트다. 때문에 만료되기 전에 반드시 재등록 및 과거 웹훅 삭제 작업을 하는데, 효과적으로 처리하기 위해 “웹훅을 받을 때마다 만료 기간을 확인”, “등록된 일정이 많지 않아 웹훅을 받지 못하는 경우도 있으니 별도의 배치서버가 하루 단위로 확인” 이렇게 두 가지 로직을 넣어서 자동으로 웹훅을 유지하도록 구현했다.또한, 다른 연동 서비스와 달리 구글은 웹훅 콜백으로 들어오는 요청에 해당 이벤트에 대한 데이터를 직접 담아주지 않기 때문에 key를 가지고 한 번 더 API 호출을 통해 필요한 데이터를 가져와야 한다는 점도 주의해야 한다. 요청해야 할 API 문서는 비교적 잘 정리된 편이지만, 같은 요청에 대해서도 인자를 어떻게 보내는지에 따라 그 응답이 제각각이기 때문에 응답 값에 대해 무조건 신뢰하고 처리해서는 안 된다. 당연히 존재할 것으로 생각한 필드 값에 빈 배열이 들어와서 일정 관련된 데이터를 일부 날리고 나서야 깨달았다.. -_-Q. 가장 처리해야 할 이슈가 많았다고 알고 있는데, 그중에서도 기억에 남는 이슈가 있을 것 같다.너무 많은 이슈를 동시에 처리하다 보니 특별히 기억에 남는 이슈는 없다. 다만 아직도 왜 그랬는지 확실한 이유는 알 수 없지만, 언젠가 한 번 구글에서 웹훅을 아예 전달해주지 않았던 경우가 있었다. 과도한 요청으로 limit이 걸린 것도 아니었는데, 갑자기 웹훅이 안들어오니깐 우리로서는 어떻게 풀어볼 방법이 없었다. 그러다 나중에 확인해보니 대략 12시간쯤 지나고 나서 그동안 밀려있던 웹훅 데이터가 한 번에 밀려서 들어와 있더라. 다행히 그 이후로 지금까지 한 번도 재현되지 않는걸 보니, 혹 동일한 증상을 겪는다면 당황하지 말고 기다려 보시라.반복 일정을 다루는 것도 꽤 골치 아픈 이슈인데, 왜냐하면 일정이 있을 때 마다 웹훅 알림을 주지 않고 처음 등록된 시점에서 한 번만 정보를 알려주기 때문에 등록된 시점 이후의 일정은 내부적으로 계속 등록해줘야 한다. 기본적으로 구글 캘린더는 RFC-55454 표준을 따르지만, 실제 전달되는 데이터 중 일부는 표준과 조금 다른 부분이 있었다. 특히 반복 일정(recurrence) 관련 데이터 포맷이 조금 다르므로 캘린더 데이터를 파싱하기 위해 만약 외부 library를 사용한다면 별도의 예외처리가 필요하다. 더욱 더 까다로운 건 사실 등록된 반복 일정이 수정되거나 삭제되는 경우인데, 이때 “특정 일정만 삭제”, “지금 시점 이후의 일정 모두 수정” 등 워낙 케이스도 많고 각각을 테스트 하는 것도 쉽지 않기 때문에 작업 시간이 꽤 오래 걸렸다. (심지어 아직 확인하지 못한 드문 케이스에서는 잠재된 버그가 있을 수도…)Q. 그 밖의 도움이 될만한 노하우나 꿀팁이 있다면?구글 캘린더 API는 Webhook 보단 Push Notification 키워드를 많이 사용한다. 푸시 노티라는 게 좀 다른 카테고리에서 많이 쓰이는 용어이기도 하다 보니 코드 리뷰 등의 커뮤니케이션을 할 때 혼동이 좀 있었던 것 같다.물론 서비스 요구사항마다 다르겠지만, 잔디 같은 경우엔 요구사항에 맞춰 계속 설계를 변경 및 개선하다 보니 결과적으로 너무 복잡해져 효율이 떨어지는 코드를 작성할 수밖에 없었다. 처음부터 연동을 생각하기보다는 아예 캘린더 자체 기능을 베이스로 설계하고 데이터만 구글에서 가져온다 생각했다면 개발 생산성이 더욱 좋았을 것 같다.- TrelloQ. 기능을 구현하면서 느낀 아쉬웠던 점과 좋았던 점을 짚어달라.트렐로 공식 API 문서가 더 명확했다면 좀 더 개발이 수월했을 것이다. 문서가 RESTful하게 end-point path는 간결하게 잘 정돈되어 있지만, 각 요청 parameter에 대한 설명이나 response 데이터 등이 명확하게 정리되지 않아서 적합한 API를 찾거나 불명확함을 걷어내기 위한 테스트를 하다 보니 전반적으로 시간이 길어지고 비효율적이었던것 같다.그에 반해 트렐로에서 웹훅 이벤트를 발생시키기 위한 유저 액션들이 비교적 간단하고, 그에 따른 콜백 리퀘스트 또한 누락 없이 빠르게 잘 들어와서 그나마 쉽게 테스트를 할 수 있었다.Q. 기능 구현을 위해선 반드시 알아야 할 웹훅 이벤트 종류 및 데이터에 대한 문서는 정리가 전혀 안 되어있다고 하던데 정말인가?그렇다. 처음엔 좀 당황했지만, 그래도 방법이 없으니 일일이 경우마다 테스트해보면서 직접 정리를 하려고 했다. 하지만 각 웹훅마다 큰 구분만 있고 세세한 데이터는 너무 다양해서 깔끔하게 정리하기가 어려워 따로 공유를 위한 문서를 만들지는 못했다. 예를 들자면 트렐로에서 updateCard 라는 action type의 웹훅 데이터를 보내주는데, 그 데이터만 보고 “Card Archive”, “Description 수정/삭제”, “Due date 등록/수정”, “카드 이동” 등의 여러 가지 서로 다른 이벤트를 구분해야 한다. 근데 그 구분하는 방법이 특정 flag가 있는 게 아니라서 각 data를 모아놓고 역으로 분리하다 보니 코드를 깔끔하게 작성하기가 어려움은 물론, 추후 트렐로 측 데이터의 변동이 있을 때의 품질을 보장할 수 없는 리스크를 안고 구현할 수밖에 없었다.Q. 그 밖의 도움이 될만한 노하우나 꿀팁이 있다면?만약 트렐로와 어떤 형태로든 연동하려고 한다면, 설계 전에 모든 API에 대해 꼼꼼히 살펴보고 웹훅 이벤트 또한 직접 테스트해서 일단 전체적으로 리스트업을 정리하는 게 보다 생산성에 도움이 될 것이다. 트렐로를 잘 알고 있더라도 서비스 내부에서 “보드”, “리스트”, “카드”가 어떤 상관관계를 가지는지 미리 정리해보는 것도 좋다.사소하지만 좀 특이했던 점은 웹훅을 처음 등록할 때 해당 URL로 확인 요청을 한번 하는데, 이때 요청은 HTTP method가 POST가 아닌 HEAD로 들어온다. 그래서 반드시 동일한 URL의 HEAD 요청에 대해서도 정상 응답을 할 수 있도록 구현해야 한다.마무리잔디 커넥트를 구현하면서 특히 서비스 품질과 개발 속도 간의 밸런스에 대한 고민을 많이 했습니다. 초반에 서비스 종류별로 작업을 분리하고 각각의 방식으로 설계한 뒤 나중에 정리하는 전략이다 보니 공통으로 가져갈 수 있는 DB 모델이나 서비스 로직이 많아서 이를 통합하기 위해 반복 작업을 할 수밖에 없었는데 이 부분이 저희 내부적으로 느낀 가장 아쉬운 부분이 아니었나 생각합니다. 기능 중 많은 부분이 외부 서비스에 의존적이다 보니 생각하지도 못한 크고 작은 이슈들이 발생해서 일정 산출에도 꽤 어려움을 겪었습니다.커넥트 기능을 출시한 이후로 꽤 시간이 지났음에도 불구하고 이슈 백로그(Backlog)를 보니 아직도 개선할 부분이 많이 남아있는 듯 합니다. 그렇지만 이번에 기반이 되는 작업을 최대한 튼튼히 하기 위한 많은 시행착오를 거쳤기에, 추후 연동되는 커넥트 종류를 늘려나가는 시점5에 보다 효과적으로 개발할 수 있을 것이라 기대하면서 이번 글을 마치겠습니다.Slack API 문서 참고 ↩vagrant의 box로 서로의 로컬 개발 환경을 동일하게 유지하고 있습니다. 참고로, 현재 저희 서버 환경은 Local - Dev - Staging - Production으로 구성되어 단계별로 상황에 알맞게 배포하고 있습니다. ↩Localization의 약어. 잔디는 아시아 시장에 최적화된 서비스를 제공하고자 한국어, 일본어, 중국어 간체자(중국), 번체자(대만/홍콩), 영어 총 5가지 언어를 지원합니다. ↩아이캘린더(iCalendar)로 불리는 인터넷 캘린더의 데이터 포맷에 관한 표준. IETF 문서참고 ↩구체적인 시점은 말씀드리기 어렵지만, 더욱 좋은 사용성을 제공하고자 유저분들의 설문조사를 진행하고 있으니 많은 참여 부탁드립니다. ↩#토스랩 #잔디 #JANDI #개발후기 #일지 #인사이트
조회수 2888

iOS 개발을 위한 11가지 노하우

Overview기고 제안을 받자마자 iOS 개발을 시작했을 때가 떠올랐습니다. 신대륙을 마주한 것 같았던 그때의 기분을 아직도 잊지 못하기 때문입니다. 당시까지만 해도 Android 개발만 했기 때문에 iOS는 그야말로 미지의 영역이었습니다. 게다가 개발을 시작하려고 조심스럽게 첫 발을 내딛은 순간, 입이 떡 벌어질 수밖에 없었죠.“이렇게 느린 IDE가 있다니…““개발자 프로그램이 뭐 이렇게 비싸?”XCodeXCode는 그동안 접했던 IDE 중에서도 가장 최악이었고, 개발자 프로그램 등록은 13만 원 상당의 비용을 지불해야 했습니다. 가장 중요한 건 맥 컴퓨터(Macintosh)를 보유해야만 했죠. 처음 개발을 시작하려니 넘어야 할 산이 매우 많았습니다. 맞습니다. 팜므파탈의 대명사 마타하리(Mata Hari)처럼 iOS 개발은 밀당과도 같습니다. 분명 매력적인 일이지만 XCode와 개발자 프로그램 등록은 빙산의 일각이기 때문입니다. iOS는 곳곳에 구덩이를 파고 초보 개발자들을 집어삼킬 준비를 하고있습니다. (예를 들면 리소스를 묶어놓은 R.java 파일 같은 레퍼런스가 없습니다. 흑.)그래서 준비했습니다. 수많은 초보 개발자들이 iOS의 구덩이를 피해갈 수 있는 팁을 말이죠.iOS의 구덩이를 피하는 11가지 방법1.비싼 맥(Macintosh)을 사세요.iOS 개발자에게 MacOS는 필수입니다. XCode가 MacOS만 지원하기 때문입니다. 오픈 소스로 공개된 Swift에는 제약이 없지만 XCode는 MacOS에서만 동작하는 제약이 있습니다. 따라서 맥은 iOS 개발자에게 가장 필요한 준비물입니다. 게다가 하드웨어 리소스를 많이 사용하는 XCode 탓에 더 크고, 더 비싸고, 더 아름다운 맥을 구매하셔야 합니다. Macbook이나 Macbook Air 모두 추천하지 않습니다. 15형 Macbook Pro 모델을 비롯해, Mac Pro나 iMac Pro 등의 고급 모델을 사용하면.. 개발이 잘 됩니다.2.돈을 내세요.iOS를 개발하려면 가장 먼저 Apple Developer Portal에서 연 129,000원의 개발자 프로그램에 등록해야 합니다. XCode를 사용해서 코드만 볼 것이라면 문제가 되지 않지만, 디바이스에 앱을 설치하고, 테스트하며, AppStore에 배포할 거라면 반드시 구매해야 합니다. 이 계정은 앞서 말한 것처럼 1년이 지나면 다시 구매해야 합니다. 만약 기업 개발자로 등록하려면 Enterprise Program이 따로 준비되어 있습니다. 기업을 위해 특화된 In-House 배포 등의 이점이 있습니다. 구매해야할 것이 꽤 많죠? 이제 익숙해져야 합니다.3.XCode를 설치하세요.XCode는 Mac App Store에서 설치할 수 있습니다. 용량이 크기 때문에 설치하기 전에 하드디스크 저장공간부터 확인하는 것이 좋습니다. 처음 실행하면 추가 컴포넌트를 다운로드하는 과정이 실행되고, 그 이후에 XCode를 사용할 수 있습니다. XCode와 관련된 자세한 내용은 아래에서 자세하게 다루겠습니다.4.어려운 것에 대비하세요.1)인증서‘들’XCode 설치 이후에도 몇 가지를 발급 받고, 셋업해야 합니다. 방 탈출 게임처럼 한 단계 한 단계 거치는 과정이 필요합니다. 첫 번째로 인증서‘들’을 발급받아야 합니다. 애플을 대신해 앱을 설치하고, 배포할 수 있는 권한을 위임 받는 과정입니다. 이 인증서들은 Apple Developer Portal의 ‘Certificates, IDS & Profiles’ 항목에서 발급 받을 수 있으며, MacOS의 키체인 앱을 이용해 개인 키를 생성하는 방식으로도 방식으로 발급 받을 수 있습니다. 2)디바이스 등록디바이스-iOS-에 개발한 앱을 설치하려면 애플 개발자 계정에 개발용 디바이스를 등록해야 합니다. 이 과정은 XCode에 신규 디바이스를 연결하고, 빌드 및 배포를 할 때 XCode가 알아서 합니다. 만약 디바이스를 보유하고 있지 않은 상황이라면 해당 디바이스의 UUID를 받아서 개발자 포털에 직접 등록할 수도 있습니다. 3)Bundle IDBundle ID는, 앱의 고유한 ID입니다. iOS가 앱을 식별할 때 사용하는 식별자이며, 보통 ‘com.companyname.appname’ 의 형식으로 회사나 개인의 도메인을 거꾸로 쓰는 것이 보편적입니다. 하지만 Bundle ID는 어디까지나 개발자가 결정하는 영역이므로 인스턴스 이름 지정하듯이 자신만의 고유한 방법을 사용해서 Bundle ID를 지정해도 문제가 없습니다. 4)Provisioning ProfileProvisioning Profile은 디바이스 정보와 앱 정보, 인증서 정보를 매핑해주는 Profile입니다. 최신 XCode에서는 이 Provisioning Profile을 자동으로 관리해주기 때문에 따로 신경쓰지 않아도 좋습니다.5.개발자 포럼에 질문하거나, StackOverflow에 질문하거나!질문하는 사람은 아름답습니다. 궁금하거나, 잘 안 풀리는 코드는 개발자 포럼에서 질문할 수 있습니다. 대신 영어 실력이 좋아야 합니다.크게 기대는 하지 않는 것이 좋습니다. 등록된 discussion에 대한 답글들이 ‘나도 같은 상황이다’, ‘나도 궁금한 점이다’ 등의 다른 개발자들의 답변 정도가 일반적이기 때문이죠.그들의 답변...저는 개발자 포럼보다 StackOverflow를 더 선호합니다. 참여하는 개발자 규모가 다르기 때문에 보다 양질의 정보를 빠르게 찾을 수 있습니다. (하지만 허위 정보도 존재합니다.) Vote 시스템으로 신뢰 높은 정보를 필터링할 수 있으나, 어떤 정보를 선택할지는 당신의 몫입니다.6. iTunesConnect와 친하게 지내세요.앱을 개발했다면, iTunesConnect를 통해 앱을 전 세계의 사용자들에게 배포할 수 있습니다. iTunesConnect는 iOS용으로 개발된 바이너리를 배포하는 등 앱 배포/테스트와 관련된 전반적인 사항들을 관리할 수 있는 포털입니다. AppStore에서 앱을 판매하려면 이 iTunesConnect를 통해 애플과 계약을 해야만 가능합니다. 출시할 앱을 등록하기도 하고, 앱의 사용자들이 어떤 경향을 보이는지 Trend Analysis를 확인할 수도 있습니다.iTunesConnectiTunesConnect에는 다양한 메뉴들이 있고, 앱을 배포하고 관리하는데 필요한 여러 툴이 있으므로 개발 중에 시선을 환기하고자 한다면 iTunesConnect를 한 바퀴 둘러보는 것도 좋습니다. 언젠가는 다 사용하게 될 테니까요.7.앱 개발을 마쳐도 XCode를 사용하세요.앱을 개발하고 iTunesConnect에 업로드하려면, XCode를 통해 간접적으로 바이너리를 업로드하게 됩니다. 서드파티 앱을 사용할 수도 있지만, 제가 주로 많이 사용하는 방식은 XCode입니다. 소스코드가 준비되었다면, XCode 메뉴의 Product > Archive 메뉴를 선택해 XCode가 배포용 앱을 빌드합니다. 빌드가 완료되면, 자동으로 Organizer 창이 열리면서 앱을 업로드할 수 있게 되죠. 이 때 미리 구매한 개발자 계정의 인증서가 준비되어 있어야 합니다. 모든 준비가 완료되고 아카이빙이 완료되면, Organizer의 Archives 탭에서 우측단의 ‘Upload to App Store…’ 버튼으로 바이너리 업로드를 진행할 수 있습니다.8.배포 전에 시험비행을 해봅시다.앱을 개발했다면, 테스트플라이트(TestFlight)를 통해 실제로 앱을 배포하기 전 ‘시험비행’을 할 수 있습니다. iTunesConnect에 관련 테스터들을 등록하고, 등록된 사용자들을 대상으로 미리 앱을 테스트할 수 있도록 요청하는 것이죠. 이 테스트플라이트에 배포된 바이너리를 그대로 AppStore에 배포하게 되므로, 테스트용으로 유용합니다.TestFlight테스트플라이트는 원래 iOS 배포 관리 솔루션을 제공하는 업체였지만 지금은 애플이 인수해 iTunesConnect에서 관리하도록 제공하고 있습니다.9.앱이 죽는다면 Organizer로 확인하세요.iOS는 충돌보고 Crash Report를 Organizer를 통해 오류를 확인합니다. 앱을 설치한 사용자가 동의하면 XCode는 iOS가 앱을 실행하면서 발생한 Crash Report를 애플에 자동으로 업로드합니다. 업로드된 Crash Report들은 XCode의 Organizer를 통해 다운로드하고, 확인할 수 있습니다. Organizer는 XCode > Window > Organizer 항목에서 실행하세요.Organizer와 Crash ReportCrash Report는 Organizer의 상단 Crashes 탭에서 확인이 가능합니다. 또 현재 보고 있는 Crash Report의 어느 부분에서 오류가 발생했는지 알고 싶다면 우측단의 ‘Open in Porject…’ 버튼을 눌러보면 됩니다.10.내 친구 XCode최근 XCode는 메이저 업데이트를 통해 사용성과 퍼포먼스를 향상시켰습니다. 하지만 이만큼 무겁고 느린 통합개발툴 IDE는 이클립스(Eclipse) 이후에 처음입니다. 안드로이드의 경우 IntelliJ 기반의 Android Studio로 쾌적한 개발환경을 제공하고 있는 반면, XCode의 업데이트는 퍼포먼스나 사용성 개선보다는 Swift의 메이저 버전 반영에 더 급급한 느낌입니다. (업데이트 때마다 속지만 ‘혹시 이번에는..’하고 또 속아 넘어갑니다.) XCode 사용을 위한 네 가지 팁을 소개합니다.1)XCode는 모노로그입니다.XCode는 로그를 따로 ‘예쁘게’ 볼 수 없습니다. 검은 화면에 흰 로그가 정리되지 않은 상태로 마구마구 출력됩니다. 개발자들에게는 쥐약같은 상황이죠. 이런 불편한 로그 출력 방식 때문에 저는 별도의 GlobalLogger 모듈을 작성해서 다음과 같은 스타일로 로그를 출력하도록 하고 있습니다.$$ BrandiLogger Error Log ##MESSAGE: Initial Parameter is not exist. ##LOCATION: BRLogPringer.swift @Line: 122 2)iOS개발자를 위한 휴식시간, 빌드 타임XCode의 빌드 타임은 개발자에겐 기나긴 휴식 시간입니다. 소스가 비대해질수록 퍼포먼스는 떨어지며, 담배 한 대를 태우고, 화장실에서 손을 씻고 들어와도 빌드가 절반도 안 된 상황을 마주할 겁니다. 빌드 타임을 줄이고자 구글링을 하면 몇 가지 팁을 발견할 수 있는데, 특히 빌드 타임을 가장 많이 단축할 수 있는 방법이 있습니다.짜잔! 공개합니다!먼저, 프로젝트 셋팅의 ‘Build Settings’ 항목에서 ‘Optimization Level’을 검색합니다. ‘Swift Compiler - Code Generation’ 항목을 찾을 수 있는데요. 여기서 Optimization Level의 Debug 항목을 ‘None’으로 설정하면, 빌드시간이 엄청나게 줄어든 것을 확인할 수 있습니다. Brandi iOS 버전의 소스코드는 원래 컴파일에 7분 이상이 소요되었지만, Optimization Level을 변경한 후 1분 내외로 단축되었습니다. Optimization Setting을 변경할 때는 꼭 Debug 항목만 변경하고, Release 버전은 기존 설정을 유지하는 것이 좋습니다. 그래야 빌드 과정에서의 버그를 막을 수 있기 때문이죠. 만약 이 설정으로 개발하던 도중 소스가 충돌되면 Command+Shift+K 단축키를 눌러 소스를 한 번 클린하고, 재빌드하세요. 충돌이 사라지는 경우가 많습니다. 빠른 빌드를 위해 종종 감수해야 하는 부분이기도 합니다. 3)Derived Data빌드가 자꾸 안되고 꼬일 때는 Derived Data 폴더를 삭제 해 보세요. Derived Data 폴더는 XCode > File > Project Settings(Workspace Settings) 항목에서 ‘Derived Data’ 항목 아래의 폴더 경로에서 접근할 수 있습니다. Derived Data 접근 경로Derived Data 폴더를 삭제하면 거짓말처럼 빌드 오류가 사라지는 기적을 만날 수 있습니다. 4)CocoaPods‘바퀴를 두 번 발명할 필요는 없다’는 격언이 있습니다. 이것을 개발에 적용하면 ‘잘 만들어진 라이브러리를 사용하라’ 정도가 되겠습니다. 개발자의 개발 시간을 현저하게 단축시키는 오픈소스 라이브러리. 이것들을 간편하게 사용하는 방식이 iOS에도 존재하는데, 바로 CocoaPods입니다. 프로젝트 Root 폴더에 Podfile을 생성하고, 원하는 오픈소스 라이브러리들을 명시한 후에 ‘pod install’ 명령어를 입력해주면….CocoaPods오픈소스 라이브러리가 설치되었습니다. 귀찮은 소스 다운로드와 임포트 과정을 거치지 않아도 됩니다. CocoaPods 설치와 사용에 관한 글은 구글링으로 쉽게 찾을 수 있습니다. 꼭 사용하길 권합니다.Mac App Store에서의 XCode 평점XCode는 느리고 불편합니다. 숨겨진 편의기능도 많지만 고질적인 빌드 문제와 사용성 문제를 마주하면 높은 평점을 줄 수가 없습니다. 그런데, 저만 그렇게 생각하진 않더라고요.(위 스크린샷 참조) XCode의 사용법은 기회가 되면 따로 정리하겠습니다.11.어떤 경우에도 대응할 수 있는 화면 구성을 원한다면, AutoLayoutiOS를 사용하면서, 금융권이나 쇼핑 앱들을 사용하다 보면 이런 상황이 발생합니다. 금융권 앱. 화면에 꽉 차지 않는 레이아웃 혹은 비정상적으로 커진 글씨본래 iOS는 단일 디바이스를 지향하는 플랫폼이었습니다. 아이폰 시리즈도 해상도가 변하지 않았기 때문에, 디바이스 종류가 많은 안드로이드처럼 다양한 스크린 사이즈를 지원할 필요가 없었습니다. 하지만 이제는 iPhone SE, iPhone 8, iPhone 8 Plus의 해상도에 iPhone X의 해상도까지 더해지면서 그야말로 ‘해상도 춘추전국시대’가 되었습니다.이런 다양한 해상도를 모두 지원하는 레이아웃을 구성하려면, iOS에서는 AutoLayout을 사용해야 합니다. AutoLayout은 Xib Editor에서 AutoLayout을 활성화하는 방식으로 사용할 수 있습니다. 거기에 한 가지 덧붙이면 Layout Constraints라는 개념도 있습니다. 레이아웃에 조건을 주는 방식입니다. 예를 들어 ‘어떤 해상도에서든 이 컴포넌트는 왼쪽 끝으로부터 10Point의 여백을 가지도록 한다’ 라는 식이죠. AutoLayout, Layout Constraint이 Layout Constraint를 이용하면 짧은 시간 안에 다양한 해상도를 지원하는 레이아웃을 쉽게 만들 수 있습니다. 가히 AutoLayout의 꽃입니다.ConclusionXCode/iOS 개발과 관련된 팁은 대부분 구글링으로 찾을 수 있습니다. 다룰 내용이 많지만 초보 iOS개발자들이 당황할 수 있는 내용을 중심으로 글을 썼습니다. 소소한 이야기지만, 분명 도움을 받을 수 있을 겁니다.글이정환 과장 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #iOS #개발기 #업무환경 #인사이트 #경험공유 

기업문화 엿볼 때, 더팀스

로그인

/