스토리 홈

인터뷰

피드

뉴스

조회수 1769

Amazon SageMaker는 처음이지?

Overview브랜디 랩스를 사랑해주시는 여러분, 안녕하세요. 개발자 오-연주입니다. 지난 4월, Brandi Back-end 개발자 분들과 코엑스에서 열렸던 AWS Summit(04.18 - 04.19)에 다녀왔습니다!여러 세션을 듣는 와중에 우연히 AI machine learning 를 쉽게 도와주는 Cloud Machine learning Flatform인 Amazon SageMaker에 대해 들었습니다. 듣던 중 머닝러닝에서 학습을 시켜 그 데이터로 ‘Brandi 서비스와 연관지으면 어떨까’ 라는 생각을 했는데요. 그래서 오늘은 많은 분들의 관심사인 머신러닝 학습관련 Amazon Amazon SageMaker에 대한 글을 쓰려고 합니다.sage는 마법사, 현자라는 의미입니다.sageMaker를 create하자!“자, 퐈이팅 넘치게 신나게 sagemaker를 create해볼까요!” 했는데…Seoul Region이 없다!현재 지원되는 리전은 아직 네 군데입니다. 저는 제일 있어 보이는 미국 동부의 버지니아를 선택하겠습니다.1] EU (Iceland) 2] US West (Oregon) 3] USEast (N. Virginia) 4] US East (Ohio)SageMaker를 create하기 전에는 학습할 데이터와 학습 모델을 저장할 S3 Bucket이 필요합니다.1. Default 값으로 S3를 만드세요.중요한 점은, bucket 이름이 “sagemaker-” 로 시작되어야 한다는 것입니다. 그래야 나중에 notebook instance가 어느 곳에 데이터를 저장할지 알 수 있습니다.Next, Create bucket 버튼을 누르다 보니, S3 Bucket이 생성되었습니다.2. Create notebook instance 버튼을 눌러 SageMaker를 만들어 봅시다!원하는 이름을 지어줍니다. 저는 machineLearningTest 라고 지었어요. IAM role 선택하는 부분에서 None을 눌러 Default 값으로 sageMaker를 만듭니다.인고의 Pending 시간3. Pending이 끝나고 “open” action을 선택하면 Jupyter가 열립니다.Jupyter(Jupyter Notebook)는 오픈 소스로 라이브 코드, 등식, 코드에 대한 시각화를 위해 사용됩니다. 또한 description을 위한 텍스트 문서(마크다운 등)를 지원하는 웹 어플리케이션입니다. 이렇게 하면 코드에 대한 문서화가 가능합니다. 이 글에서는 Jupyter Notebook을 통해 데이터를 학습하고, 그 데이터를 테스트하겠습니다. 제가 진행한 전체 코드 스크립트(entire script)는 이 글의 마지막 부분에 기술있으니 참고해 주세요.자, 이제 드디어 머신러닝 학습을 시킬 차례입니다. 머신러닝 학습에 꼭 필요한 키워드 두 가지를 뽑아봤는데요. - Dataset: 정제된 데이터와 그 데이터에 대한 label을 정리해 놓은 데이터 모음      - Machine learning Algorithm: 기계학습 알고리즘 우리는 MNIST 데이터셋을 k-means 알고리즘으로 학습시킬 겁니다.1)MNIST Dataset기계학습 알고리즘을 사용할 때 가장 기본적으로 테스트하는 데이터셋으로 MNIST 데이터셋이 있습니다. 이것은 사람이 0부터 9까지 숫자 중 하나를 손글씨로 쓴 이미지 데이터와, 해당 이미지에 대한 레이블(0 - 9)이 6만 개 들어있는 학습 데이터셋입니다. 각 이미지는 가로와 세로가 각각 28 픽셀로서, 각 픽셀은 0부터 255 사이의 숫자가 있습니다. 다시 말해, 하나의 이미지는 28 x 28 = 784개의 숫자로 이루어진 데이터입니다. 하나의 이미지를 나타내는 데이터의 array > length가 784라고 표현할 수 있겠네요.MNIST dataset2)k-means지금 만든 SageMaker 학습 알고리즘은 AWS 튜토리얼에서 제시한 K-means를 사용할 예정입니다. k-means는 label 없이, 즉 정답을 모르는 상태로 학습을 하는 비지도 학습 (unsupervised learning) 알고리즘 중 가장 쉽고 많이 쓰입니다. 정답을 모르니, ‘비슷한 애들끼리 뭉쳐봐’ 라고 하고, 알고리즘은 비슷한 친구들끼리 뭉쳐 놓습니다. k-means에서 k는 ‘k개 덩어리로 뭉쳐주세요’라고 제시하는 숫자입니다. 우리는 0부터 9까지 비슷한 친구들끼리 모이게 하고 싶으니 k=10을 쓸 겁니다.지금부터 해야 할 TO DO!1. MNIST 데이터셋을 다운로드받고, 우리가 학습시키기 좋도록 정제하기(preprocessing)2. Amazon SageMaker를 통하여 데이터 학습시키기(training job)3. Amazon SageMaker를 통하여 학습된 데이터를 배포하기(Deploy the model)4. 배포된 모델에 요청을 보내 테스트 데이터에 대한 예측값을 받아오기(inference)4. Jupyter 노트북 인스턴스 생성하기Jupyter에 New Notebook(conda_python3)을 선택해 새로운 노트북을 생성합니다.5. 학습시키기 위한 기본 셋팅드디어 코딩 시작입니다! (의욕활활) 초기 설정해두었던 IAM role, S3 Bucket, MNIST 다운로드, 다운받은 데이터 등을 확인하세요. 글보다 코드로 주석을 보는 게 가독성이 더 좋습니다. 아래 노트북을 통해 마크다운, 주석처리를 통해 description을 해두었으니 참고 바랍니다.외부에서 MNIST 다운로드가 쉽도록 한 url로 MNIST를 다운받는데 성공했습니다. MNIST 데이터셋 내용물 중 하나를 jupyter notebook에 그려서 제대로 다운 받았는지 show_digit() 함수를 작성해 확인하겠습니다.서른 번째 데이터는 누군가 3을 손글씨로 쓴 이미지입니다.6. 머신러닝 학습하기이 세션에서는 기계학습 알고리즘 설정, 학습할 데이터 경로를 지정하겠습니다. 그 후 MNIST 학습 데이터를 S3 버킷에 옮겨 저장합니다.kmeans.fit() 함수를 호출해 직접 학습을 시켜볼까요? 학습 과정은 상당히 오래 걸린다고 했는데 다행히 4분 만에 학습이 끝났습니다.여기서 잠깐! 여기서 k = 10에 대해서 조금 더 알아보도록 할게요. cluster란 한 지점에 점을 찍고 데이터 분석을 한 뒤, 비슷한 데이터들의 군집을 만들어 주는 것입니다. k-means가 진행되면서 각 cluster의 중심이 서로가 잘 뭉치는 방향으로 이동합니다. 직접 그려봤어요(부끄).7. 학습된 모델을 배포하기학습을 시키면 테스트를 하거나 사용할 수 있어야겠죠? 학습된 모델을 배포해 주세요.8. 배포된 모델 테스트 진행하기배포된 모델에 valid_set 데이터로 검증 데이터를 진행합니다..predict() 함수를 호출하면 새로운 이미지가 어떤 cluster에 속했는지 예측 결과를 알려줍니다. 가장 가까운 cluster가 0번이라고 예측 결과를 반환했네요. 또한 cluster 중심과의 거리는 5.85라고 알려줍니다. 여기서 중요한 점은 cluster 번호와 실제 숫자는 일치하지 않는다는 겁니다. 알고리즘은 임의로 cluster 중심에 번호를 매기는데, 꼭 0번 클러스터가 숫자 ’0’을 뭉쳐놓은 건 아니에요!9. 데이터 예측해보기더 많은 데이터를 예측해볼까요? valid set에 있는 100개 데이터를 예측해봅시다! 각 cluster에 가까운 데이터들이 쭉 선정되었습니다. 정확하지는 않지만 비슷한 숫자 모양들이 서로 군집되어 나타납니다. 0과 2같은 숫자들은 잘 표현되지만, 알고리즘이 9랑 4를 헷갈리거나 5와 3을 헷갈리는 듯 하네요.FASHION MNIST로 SageMaker 머신러닝 학습 및 예측해보기자, 이제 몸도 풀었으니 제가 하고 싶었던 패션 관련 머신러닝 학습 및 예측을 진행해볼게요. 마침 옷 그림으로 MNIST와 매우 비슷한 데이터를 만들어 놓은 fashion-MNIST라는 데이터셋을 발견했어요!1. 패션 관련 MNIST 다운로드 받기패션 MNIST 데이터셋을 우선 다운받아 볼게요! 다운로드는 여기에서 받을 수 있습니다. 총 네 개의 파일을 다운로드 받으세요.- train-images-idx3-ubyte.gz : train set 이미지  - train-labels-idx1-ubyte.gz : train set 레이블  - t10k-images-idx3-ubyte.gz : test set 이미지  - t10k-labels-idx1-ubyte.gz : test set 레이블  다운로드 받은 패션 Mnist의 label은 아래와 같이 되어 있습니다. 숫자 0부터 9 대신에 각 이미지가 어떤 이미지인지 텍스트로 표현되어 있어요.LabelDescription0T-shirt/top1Trouser2Pullover3Dress4Coat5Sandal6Shirt7Sneaker8Bag9Ankle boot2. Fashion-MNIST 데이터셋을 이전에 사용했던 mnist.pkl.gz 와 같은 형태로 변환해주는 스크립트 작성해주기위에서 연습할 때는 mnist.pkl.gz 한 개 파일만 사용했는데요!?! 그래서 다운로드 받은 네 개의 파일을 똑같은 형식의 파일 하나로 만들어주는 파이썬 스크립트를 작성해 fashion-mnist.pkl.gz 파일로 만들었어요.import gzip import pickle import numpy as np # MNIST 데이터셋은 train, test 셋이 각각 image, label로 나누어 저장되어있는 4개의 파일로 구성 test_image_path = 't10k-images-idx3-ubyte.gz' test_label_path = 't10k-labels-idx1-ubyte.gz' train_label_path = 'train-labels-idx1-ubyte.gz' train_image_path = 'train-images-idx3-ubyte.gz' out_file_name = 'fashion-mnist.pkl.gz' # train label / images 추출 with gzip.open(train_label_path, 'rb') as train_label_f:     train_label = np.frombuffer(             train_label_f.read(), dtype=np.uint8, offset=8).astype(np.int64)   with gzip.open(train_image_path, 'rb') as train_image_f:     train_imgs = np.frombuffer(             train_image_f.read(), dtype=np.uint8, offset=16).reshape(-1, 784).astype(np.float32)   # test label / images 추출 with gzip.open(test_label_path, 'rb') as test_label_f:     test_label = np.frombuffer(test_label_f.read(), dtype=np.uint8, offset=8).astype(np.int64)   with gzip.open(test_image_path, 'rb') as test_image_f:     test_imgs = np.frombuffer(             test_image_f.read(), dtype=np.uint8, offset=16).reshape(-1, 784).astype(np.float32)   # 기존 60000개 training set에서 50000개는 train set으로 사용하고, 10000개는 valid set으로 활용 train_label, valid_label = train_label[:50000], train_label[50000:]  train_imgs, valid_imgs = train_imgs[:50000], train_imgs[50000:]   # train set, validati on set, test set을 튜플 자료형으로 저장 out_data = ((train_imgs, train_label),             (valid_imgs, valid_label),             (test_imgs, test_label))   # pickle file로 dataset 데이터 포맷 맞춰주기 with gzip.open(out_file_name, 'wb') as out_f:     pickle.dump(out_data, out_f) 이 과정을 통해 나온 결과물, fashion-mnist.pkl.gz 를 Jupyter Notebook이 있는 경로에 업로드합니다.fashion-mnist.pkl.gz가 업로드 되었습니다!3. 머신러닝 학습하기아까 사용했던 활용했던 숫자 MNIST 스크립트를 그대로 사용하겠습니다. show_digit()을 이름만 바꾼 show_fashion()으로 데이터를 살펴보니 드레스가 보입니다.조금 전에 했던 숫자 MNIST와 똑같은 과정을 SageMaker를 이용해, 학습 → 테스트 → 예측해보니 아래와 같은 예측 결과를 얻을 수 있었습니다. 신발은 신발끼리, 바지는 바지끼리, 가방은 가방끼리 분류된 게 너무나 신기합니다. (아까 진행한 숫자보다 더 학습이 잘 된 것 같은건 기분 탓일까요…?)머신러닝이라고 겁내지 않아도 됩니다! 유저들에게 더 좋은 서비스 제공할 수 있으니까요. 지금까지 브랜디 개발2팀의 단아한 개발자 오연ㅈ….참사를 막아주세요.앗, 잠시만요!! 중요한 것을 놓칠 뻔 했네요.저처럼 테스트를 하면 그냥 지나치지 마세요. 자동 결제로 출금되는 뼈 아픈 경험을 할 수도 있습니다. 반드시 이용했던 서비스들을 stop 하거나 terminate 해주세요. (Clean-up단계) 자세한 내용은 여기를 클릭하세요.지금까지 Brandi 개발 2팀, 단아한 개발자 오연주였습니다!# entire script (숫자 Mnist) # 오호 드디어 coding start! # 이제부터 Brandi의 단아한 개발자, 저를 따라오시면 됩니다 :) # 노트북 Block을 실행하는 방법은 Shift + Enter 입니다 from sagemaker import get_execution_role role = get_execution_role()  # 초기에 설정해 뒀던 IAM role 가져오기 bucket = 'sagemaker-julie-test' # 초기 단계에 만들었던 S3 Bucket 이름 적기 %%time import pickle, gzip, numpy, urllib.request, json   # 여기서 잠깐, 생소한 라이브러리 설명을 드릴게요! # pickle: python식 데이터 압축 포맷 # numpy: 수치 계산을 하기 위한 python package # Load the dataset urllib.request.urlretrieve("http://deeplearning.net/data/mnist/mnist.pkl.gz", "mnist.pkl.gz") with gzip.open('mnist.pkl.gz', 'rb') as f:     train_set, valid_set, test_set = pickle.load(f, encoding="latin1")     # matplotlib로 그리는 그림이 jupyter 노트북에 바로 보여줄 수 있도록 설정 %matplotlib inline import matplotlib.pyplot as plt # 도표나 그림을 그릴 수 있게 해주는 라이브러리 plt.rcParams["figure.figsize"] = (2, 10) # 그림의 크기 지정 def show_digit(img, caption='', subplot=None):     if subplot is None:         _,(subplot) = plt.subplots(1,1)         imgr = img.reshape((28, 28))     subplot.axis('off')     subplot.imshow(imgr, cmap='gray')     plt.title(caption)   # train_set의 그림과[0] 데이터 이름[1]을 예시로 보여준다 show_digit(train_set[0][30], 'This is a {}'.format(train_set[1][30]))   # 학습을 하기 위해 학습 알고리즘 및 데이터 경로 설정! from sagemaker import KMeans data_location = 's3://{}/kmeans_highlevel_example/data'.format(bucket) output_location = 's3://{}/kmeans_example/output'.format(bucket)   print('training data will be uploaded to: {}'.format(data_location)) print('training artifacts will be uploaded to: {}'.format(output_location))   kmeans = KMeans(role=role,                 train_instance_count=2,  # 장비 2대를 사용하여 학습하겠어요!                 train_instance_type='ml.c4.8xlarge',                 output_path=output_location,                 k=10,  # 아래 그림을 참고해 주세요!                 data_location=data_location) %%time   # 학습 시작! kmeans.fit(kmeans.record_set(train_set[0]))   %%time # 모델을 만든 후 사용하기 위하여 배포하기 kmeans_predictor = kmeans.deploy(initial_instance_count=1,                                 instance_type='ml.m4.xlarge')                                  # valid_set에 30번째 sample을 테스트 해보기 result = kmeans_predictor.predict(valid_set[0][30:31])  print(result)   %%time   # vaild_set에 있는 0번부터 99번까지의 데이터로 cluster를 예측 해보자 result = kmeans_predictor.predict(valid_set[0][0:100])   # 예측 결과에 대한 cluster 정보를 수집 clusters = [r.label['closest_cluster'].float32_tensor.values[0] for r in result]   # 각 cluster별 예측된 이미지 출력 for cluster in range(10):     print('\n\n\nCluster {}:'.format(int(cluster)))     digits = [ img for l, img in zip(clusters, valid_set[0]) if int(l) == cluster ]     height = ((len(digits)-1)//5)+1     width = 5     plt.rcParams["figure.figsize"] = (width,height)     _, subplots = plt.subplots(height, width)     subplots = numpy.ndarray.flatten(subplots)     for subplot, image in zip(subplots, digits):         show_digit(image, subplot=subplot)     for subplot in subplots[len(digits):]:         subplot.axis('off')     plt.show() 출처Getting Started - Amazon SageMaker CodeOnWeb - 머신러닝 초보를 위한 MNIST fashion-mnist 글오연주 사원 | R&D 개발2팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 1719

날짜 변환, 과연 그리 간단할까?

안드로이드에서는 입력한 날짜를 변환 및 검증하는 로직을 간단하게 구현하기 위해 SimpleDateFormat 클래스를 종종 활용하게 되는데 이 클래스는 규칙에 관대하다(lenient)는 재미난 특성이 있습니다. java.text.SimpleDateFormat 클래스의 근간이 되는 java.text.DateFormat 클래스의 다음 API 문서를 살펴봅시다.By default, parsing is lenient: If the input is not in the form used by this object’s format method but can still be parsed as a date, then the parse succeeds. Clients may insist on strict adherence to the format by calling setLenient(false).파싱 기본 동작은 관대합니다. 이 객체의 날짜 포맷과 일치하지 않는 입력이 주어지더라도 날짜 형태만 유지한다면 파싱이 성공합니다. 클라이언트 코드에서는 setLenient(false) 메소드를 호출해 파싱 규칙을 여전히 엄격하게 가져갈 수 있습니다.lenient 라는 흔하지 않은 단어 때문에 의미가 잘 와닿지 않습니다만, 캠브릿지 영영사전에 따르면 ‘관대하다’ 라는 뜻이 있다고 하네요.lenient /ˈliː.ni.ənt/ ▶ adjective ▶ Level C2(Mastery Proficiency)A lenient punishment is not severe.Thesaurus: allowing, forgiving, merciful, permissive, tolerant하지만 규칙에 관대하다는 말이 무슨 의미인지 여전히 와 닿지 않습니다. 잠시, 아래의 소스코드를 읽고 그 결과를 한번 예측해 볼까요? parse 메소드는 기본적으로 lenient 하다는 특성에 주의합시다./* * 2017년 13월 32일 이라는 입력에 대해 어떤 결과가 나타날까? * 1. 2017-13-32 * 2. 2018-02-04 * 3. 2017-01-01 * 4. 2018-01-01 * 5. ParseException 이 발생 */ val userDate = "2017-13-32" val date = SimpleDateFormat("yyyy-MM-dd").parse(userDate) val localDate = LocalDateTime.ofInstant(date.toInstant(), ZoneOffset.UTC) println ("사용자의 ISO-8601 Date 입력 결과는 ${localDate.year}년-${localDate.month}월-${localDate.dayOfMonth}일 입니다.") lenient 라는 사전 hint 없이 바로 문제를 낼 경우 사람들이 제일 많이 선택한 결과는 ParseException 이 발생한다 였습니다. 하지만 lenient 한 특성으로 인해 실행 결과는 의외로 두번째, 즉 2018년 2월 4일 입니다. 막상 글로 풀어 쓰려니 별 것 아닌 내용처럼 보입니다만, 필자가 담당하는 서비스에서 이 특성을 제대로 파악하지 못해 특정 사용자의 생년월일을 제대로 인식하지 못한 문제가 있었습니다.또한 우리가 흔히 아는 달력을 쓰지 않는 국가도 있다는 점 까지 고려한다면 날짜 변환이라는 것이 간단한 문제가 아니게 됩니다. 즉, 한국인의 관념 속의 ‘달력’ 이란 Gregorian calendar 를 기반으로 한 ISO-8601 달력 입니다. 그런데 이 달력을 쓰지 않는 문화권도 있습니다(한국도 흔하진 않지만 ‘단기’ 라는 별도의 달력을 쓰기도 합니다). 이런 문제 때문에, 글로벌 서비스를 준비하고 계신다면 날짜 변환 문제를 꼭 점검해 보셔야 합니다.Android 에는 이 문제를 해결해 주는 클래스가 있습니다만 불행히도 API Level 이 26이나 되어 2018년 현재에는 제대로 쓰긴 어렵습니다. 다행히도 이 문제를 보완한 joda-time 라이브러리의 안드로이드 포팅 버전도 있으니 이 라이브러리의 도입을 검토해 보는 것도 좋은 문제 해결 방법이 될 것입니다.#개발 #인사이트 #하이퍼커넥트 #개발자 #안드로이드 #개발후기
조회수 1427

경험 부족한 스타트업의 devops 도입기 2편

출처 : 구글 이미지 검색그 동안 테스트코드작성, 코드리뷰를 집중적으로 수행했는데요. 아직은 엔지니어 모두가 걸음마 단계여서 실무리듬에 코드리뷰와 TDD를 끼워넣진 않았습니다. 대신 각자 리서치를 수행하고 매주 수요일 SW 세미나에서 lesson&learn 공유하는 식으로 devops를 공부했습니다.회고2주를 되돌아보고 느낌점을 한 문장으로 요약하면 다음과 같습니다.기술부채의 이자율은 고정 값이 아니다. 시간이 흐를수록 점점 더 높아진다.코드리뷰부터 말씀드리겠습니다. android와 iOS의 경우 앱 개발기간 3개월 동안 커밋한 어떠한 코드도 리뷰하지 않은 상황이었습니다. devops를 계기로 두 프로젝트 간의 코드리뷰를 드디어 시작했는데요. 방대한 코드를 빠르게 이해하기 위해 코드리뷰에 앞서 시각화된 자료를 준비해 아키텍쳐리뷰부터 수행하였습니다. 아니나 다를까 두 클라이언트의 유저스토리가 완벽하게 똑같음에도 불구하고 클래스 설계며 구현상의 코드며 개발 상의 내용이 완전히 갈라져 있음을 목도했습니다.출처 : 구글 이미지 검색iOS, android 환경적 차이로인해 어쩔 수 없이 코드의 다름이 나타나는 경우도 있었지만 대다수의 차이는 코드리뷰를 하지 않아서였습니다. 코드리뷰를 진행하면서 조금 신기했던 사실은 아주 간단한 요구사항(기능)도 개발자 개성에따라 구현법이 각양각생이라는 점입니다. 한 가지 문제에도 다양한 해결법이 존재하는만큼 각 구현법 마다 강점과 약점이 존재하기 때문에 코드리뷰의 필요성이 생각보다 더 크다는 점을 깨달았습니다. 앞으로 클라이언트에는 고도화된 유저스토리가 계속 추가될 예정인데 두 클라이언트간 갈라진 구현상의 설계는 분명히 피처 딜리버리에 병목지점으로 작용될 것입니다. 두 갈래로 나뉜 클라이언트를 어떻게 설계적으로 통합시켜 나갈지 지속적으로 고민해봐야 겠습니다. 또한 더 이상 차이가 벌어지지 않도록 지금부터 추가되는 피쳐들이라도 코드리뷰를 수행하는 환경에서 개발되도록 해야할 의무감도 느꼈습니다.테스트 코드도 마찬가지로 기술부채가 생각보다 많이 쌓였음을 깨달았습니다. 스위처의 클라이언트의 기술적 난이도는 낮은 편입니다. 그런데 그럼에도 불구하고 기존 코드에 테스트코드를 입혀 SUT로 만드는 일은 여간 까다로운 일이 아니었습니다. 기존 코드는 비즈니스로직과 I/O(DB,Network, BLE), UI 코드간의 커플링이 높아서 막상 어느것 하나 테스트코드를 입히기 쉽지 않았습니다. 테스트코드를 작성하기 위해서는 논리단위의 클래스들을 떼어내는 리팩토링이 병행되어야만 했습니다. 테스트코드 없이 작성한 코드는 시간이 지날 수록 테스트코드가 비집고 들어갈 틈 또한 점점 없애는듯 합니다. 그래도 이러한 현상들은 몸소 체험하면서 확신을 갖게된 사실도 있었습니다.테스트코드가 존재함으로서 SUT의 설계는 옳은방향으로 향한다.기존 코드에 테스트코드를 입히려고 이리저리 애쓰다보면 무관한 기능들이 뭉쳐있는 비대한 클래스는 발견하게 됩니다. 테스트코드를 입히기 까다로운 이 거대한 클래스를 쪼개야할 필요성을 느끼게 되는데요. 이 시점에서 개발자는 테스트코드가 있기 전에 절대 하지 않던 리팩토링 고민을 하게 됩니다. 치열하게 고민하는 과정에서 리팩토링에 실패하면 제대로된 테스트코드를 작성하기가 불가능해집니다. 즉, 테스트코드를 작성 했다면 분명히 설계상의 리팩토링이 일어 났을 확률이 높습니다.스위처 어플리케이션의 내 주변의 스위처 목록 페이지를 예를 들어보겠습니다. 해당 스크린에서는 유저가 여러개의 스위처를 확인하기 때문에 몇 가지 비즈니스 룰에 의해 스위처들의 정렬 순서가 결정됩니다. 그래서 유저는 여러개의 스위처가 검색되어도 내가 가장 사용할 확률이 높은 스위처를 최상단에서 만나는데요. 그 정렬 역할을 맡은 클래스가 switcher sorting(이름이 잘 기억안나네요..) 입니다.저희 안드로이드 개발자는 이 클래스를 첫 SUT로 만들기로 결정했고 일 주일간 테스트코드를 작성하려고 노력했습니다. 그러나, 생각보다 쉽지 않았습니다. SW세미나때 코드를 리뷰하면서 발견한 사실인데 swithcer sorting는 단순히 비즈니스룰에 사용되는 정보 뿐만 아니라 꽤나 무거운 무거운 switcher 클래스도 의존하고 있었습니다. 정작 sorting 우선순위를 결정하는데 필요한 정보는 switcher 클래스가 갖고있는 정보들 중 극히 일부분이었는데 말이죠. 이렇게 큰 클래스 때문에 테스트 코드를 짜려면 안드로이드 라이브러리인 BluetoothDevice와 Context 인스턴스를 공급하는 목업 클래스가 필요한 상황이 벌어질 수도 있었습니다. 더 큰 문제는 비대한 클래스로 인해서 test의 fixture를 구성하는데 수십 줄의 코드가 필요 했다는 사실입니다. 자연스럽게 테스크코드를 작성하면서 리팩토링의 필요성을 느끼게 되었습니다. 가까운 미래에 스위처 개발자가 성공적으로 switcher sorting 클래스를 SUT로 만들었다면 이 클래스의 설계 또한 분명 리팩토링을 거쳐 더 좋은 방향으로 거듭 났을 것 입니다.앞으로 2주간 할 일어떠한 일이든 균형이 중요하다고 생각합니다. 마냥 기술부채를 털어낸답시고 리서치와 공부만 하고 있을 수는 없습니다. 동아리가 아닌 회사이기 때문에 시장의 니즈에 맞춰서 분명히 다시 피쳐를 개발하는 속도를 높이는 가속 패달을 밟아야 할 시점이 올 것입니다.출처 : 구글 이미지 검색너무 이르지도 않게 그렇다고 너무 느리지도 않게 적절한 시점에 고객이 불만을 터뜨리지 않을 정도의 SW 안정성을 보장하는 최소한의 devops 수준을 달성해야합니다. 어느정도까지가 devops를 도입해야 오버엔지니어링이 아닌 기술부채를 탕감하면서 동시에 I/O 초중기 목표를 달성할 수 있는지 치열하게 고민하고 부딪혀보며 기민하게 대응해야 겠습니다.앞으로의 2주간 할 일은 다음 질문 두 가지에 대한 대답을 하면서 자연스럽게 도출될 것 같습니다.테스트코드 작성을 위한 TDD를 어떻게하면 엔지니어가 효과적으로 학습할 수 있을 것인가?코드리뷰를 스프린트 일과에 어떻게 자연스럽게 안착시킬 것인가?#스위쳐 #Switcher #개발 #개발팀 #문제해결 #인사이트 #DevOPS #데브옵스
조회수 1079

비트윈의 HBase 스키마 해부

비트윈에서는 HBase를 메인 데이터베이스로 이용하고 있습니다. 유저 및 커플에 대한 정보와 커플들이 주고받은 메시지, 업로드한 사진 정보, 메모, 기념일, 캘린더 등 서비스에서 만들어지는 다양한 데이터를 HBase에 저장합니다. HBase는 일반적인 NoSQL과 마찬가지로 스키마를 미리 정의하지 않습니다. 대신 주어진 API를 이용해 데이터를 넣기만 하면 그대로 저장되는 성질을 가지고 있습니다. 이런 점은 데이터의 구조가 바뀔 때 별다른 스키마 변경이 필요 없다는 등의 장점으로 설명되곤 하지만, 개발을 쉽게 하기 위해서는 데이터를 저장하는데 어느 정도의 규칙이 필요합니다. 이 글에서는 비트윈이 데이터를 어떤 구조로 HBase에 저장하고 있는지에 대해서 이야기해 보고자 합니다.비트윈에서 HBase에 데이터를 저장하는 방법¶Thrift를 이용해 데이터 저장: Apache Thrift는 자체적으로 정의된 문법을 통해 데이터 구조를 정의하고 이를 직렬화/역직렬화 시킬 수 있는 기능을 제공합니다. 비트윈에서는 서버와 클라이언트가 통신하기 위해 Thrift를 이용할 뿐만 아니라 HBase에 저장할 데이터를 정의하고 데이터 저장 시 직렬화를 위해 Thrift를 이용합니다.하나의 Row에 여러 Column을 트리 형태로 저장: HBase는 Column-Oriented NoSQL로 분류되며 하나의 Row에 많은 수의 Column을 저장할 수 있습니다. 비트윈에서는 Column Qualifier를 잘 정의하여 한 Row에 여러 Column을 논리적으로 트리 형태로 저장하고 있습니다.추상화된 라이브러리를 통해 데이터에 접근: 비트윈에서는 HBase 클라이언트 라이브러리를 직접 사용하는 것이 아니라 이를 래핑한 Datastore라는 라이브러리를 구현하여 이를 이용해 HBase의 데이터에 접근합니다. GAE의 Datastore와 인터페이스가 유사하며 실제 저장된 데이터들을 부모-자식 관계로 접근할 수 있게 해줍니다.트랜잭션을 걸고 데이터에 접근: HBase는 일반적인 NoSQL과 마찬가지로 트랜잭션을 제공하지 않지만 비트윈에서는 자체적으로 제작한 트랜잭션 라이브러리인 Haeinsa를 이용하여 Multi-Row ACID 트랜잭션을 걸고 있습니다. Haeinsa 덕분에 성능 하락 없이도 데이터 무결성을 유지하고 있습니다.Secondary Index를 직접 구현: HBase에서는 데이터를 Row Key와 Column Qualifier를 사전식 순서(lexicographical order)로 정렬하여 저장하며 정렬 순서대로 Scan을 하거나 바로 임의 접근할 수 있습니다. 하지만 비트윈의 어떤 데이터들은 하나의 Key로 정렬되는 것으로는 충분하지 않고 Secondary Index가 필요한 경우가 있는데, HBase는 이런 기능을 제공하지 않고 있습니다. 비트윈에서는 Datastore 라이브러리에 구현한 Trigger을 이용하여 매우 간단한 형태의 Secondary Index를 만들었습니다.비트윈 HBase 데이터 구조 해부¶페이스북의 메시징 시스템에 관해 소개된 글이나, GAE의 Datastore에 저장되는 구조를 설명한 글을 통해 HBase에 어떤 구조로 데이터를 저장할지 아이디어를 얻을 수 있습니다. 비트윈에서는 이 글과는 약간 다른 방법으로 HBase에 데이터를 저장합니다. 이에 대해 자세히 알아보겠습니다.전반적인 구조¶비트윈에서는 데이터를 종류별로 테이블에 나누어 저장하고 있습니다. 커플과 관련된 정보는 커플 테이블에, 유저에 대한 정보는 유저 테이블에 나누어 저장합니다.각 객체와 관련된 정보는 각각의 HBase 테이블에 저장됩니다.또한, 관련된 데이터를 하나의 Row에 모아 저장합니다. 특정 커플과 관련된 사진, 메모, 사진과 메모에 달린 댓글, 기념일 등의 데이터는 해당 커플과 관련된 하나의 Row에 저장됩니다. Haeinsa를 위한 Lock Column Family를 제외하면, 데이터를 저장하기 위한 용도로는 단 하나의 Column Family만 만들어 사용하고 있습니다.각 객체의 정보와 자식 객체들은 같은 Row에 저장됩니다.또한, 데이터는 기본적으로 하나의 Column Family에 저장됩니다.이렇게 한 테이블에 같은 종류의 데이터를 모아 저장하게 되면 Region Split하는 것이 쉬워집니다. HBase는 특정 테이블을 연속된 Row들의 집합인 Region으로 나누고 이 Region들을 여러 Region 서버에 할당하는 방식으로 부하를 분산합니다. 테이블을 Region으로 나눌 때 각 Region이 받는 부하를 고려해야 하므로 각 Row가 받는 부하가 전체적으로 공평해야 Region Split 정책을 세우기가 쉽습니다. 비트윈의 경우 커플과 관련된 데이터인 사진이나 메모를 올리는 것보다는 유저와 관련된 데이터인 메시지를 추가하는 트래픽이 훨씬 많은데, 한 테이블에 커플 Row와 유저 Row가 섞여 있다면 각 Row가 받는 부하가 천차만별이 되어 Region Split 정책을 세우기가 복잡해집니다. RegionSplitPolicy를 구현하여 Region Split 정책을 잘 정의한다면 가능은 하지만 좀 더 쉬운 방법을 택했습니다.또한, 한 Row에 관련된 정보를 모아서 저장하면 성능상 이점이 있습니다. 기본적으로 한 커플에 대한 데이터들은 하나의 클라이언트 요청을 처리하는 동안 함께 접근되는 경우가 많습니다. HBase는 같은 Row에 대한 연산을 묶어 한 번에 실행시킬 수 있으므로 이 점을 잘 이용하면 성능상 이득을 얻을 수 있습니다. 비트윈의 데이터 구조처럼 특정 Row에 수많은 Column이 저장되고 같은 Row의 Column들에 함께 접근하는 경우가 많도록 설계되어 있다면 성능 향상을 기대할 수 있습니다. 특히 Haeinsa는 한 트랜잭션에 같은 Row에 대한 연산은 커밋시 한 번의 RPC로 묶어 처리하므로 RPC에 드는 비용을 최소화합니다. 실제 비트윈에서 가장 많이 일어나는 연산인 메시지 추가 연산은 그냥 HBase API를 이용하여 구현하는 것보다 Haeinsa Transaction API를 이용해 구현하는 것이 오히려 성능이 좋습니다.Column Qualifier의 구조¶비트윈은 커플들이 올린 사진 정보들을 저장하며, 또 사진들에 달리는 댓글 정보들도 저장합니다. 한 커플을 Root라고 생각하고 커플 밑에 달린 사진들을 커플의 자식 데이터, 또 사진 밑에 달린 댓글들을 사진의 자식 데이터라고 생각한다면, 비트윈의 데이터들을 논리적으로 트리 형태로 생각할 수 있습니다. 비트윈 개발팀은 Column Qualifier를 잘 정의하여 실제로 HBase에 저장할 때에도 데이터가 트리 형태로 저장되도록 설계하였습니다. 이렇게 트리 형태로 저장하기 위한 Key구조에 대해 자세히 알아보겠습니다.Column Qualifier를 설계할 때 성능을 위해 몇 가지 사항들을 고려해야 합니다. HBase에서는 한 Row에 여러 Column이 들어갈 수 있으며 Column들은 Column Qualifier로 정렬되어 저장됩니다. ColumnRangeFilter를 이용하면 Column에 대해 정렬 순서로 Scan연산이 가능합니다. 이 때 원하는 데이터를 순서대로 읽어야 하는 경우가 있는데 이를 위해 Scan시, 최대한 Sequential Read를 할 수 있도록 설계해야 합니다. 또한, HBase에서 데이터를 읽어올 때, 실제로 데이터를 읽어오는 단위인 Block에 대해 캐시를 하는데 이를 Block Cache라고 합니다. 실제로 같이 접근하는 경우가 빈번한 데이터들이 최대한 근접한 곳에 저장되도록 설계해야 Block Cache의 도움을 받을 수 있습니다.비트윈에서는 특정 커플의 사진이나 이벤트를 가져오는 등의 특정 타입으로 자식 데이터를 Scan해야하는 경우가 많습니다. 따라서 특정 타입의 데이터를 연속하게 저장하여 최대한 Sequential Read가 일어나도록 해야 합니다. 이 때문에 Column Qualifier가 가리키는 데이터의 타입을 맨 앞에 배치하여 같은 타입의 자식 데이터들끼리 연속하여 저장되도록 하였습니다. 만약 가리키는 데이터의 타입과 아이디가 Parent 정보 이후에 붙게 되면 사진 사이사이에 각 사진의 댓글 데이터가 끼어 저장됩니다. 이렇게 되면 사진들에 대한 데이터를 Scan시, 중간중간 저장된 댓글 데이터들 때문에 완벽한 Sequential Read가 일어나지 않게 되어 비효율적입니다.이렇게 특정 타입의 자식들을 연속하게 모아 저장하는 묶음을 컬렉션이라고 합니다. 컬렉션에는 컬렉션에 저장된 자식들의 개수나 새로운 자식을 추가할 때 발급할 아이디 등을 저장하는 Metadata가 있습니다. 이 Metadata도 특정 Column에 저장되므로 Metadata를 위한 Column Qualifier가 존재합니다. 이를 위해 Column Qualifier에는 Column Qualifier가 자칭하는 데이터가 Metadata인지 표현하는 필드가 있는데, 특이하게도 메타데이터임을 나타내는 값이 1이 아니라 0입니다. 이는 Metadata가 컬렉션의 맨 앞쪽에 위치하도록 하기 위함입니다. 컬렉션을 읽을 때 보통 맨 앞에서부터 읽는 경우가 많고, 동시에 Metadata에도 접근하는 경우가 많은데, 이 데이터가 인접하게 저장되어 있도록 하여 Block Cache 적중이 최대한 일어나도록 한 것입니다.Datastore 인터페이스¶비트윈에서는 이와 같은 데이터 구조에 접근하기 위해 Datastore라는 라이브러리를 구현하여 이를 이용하고 있습니다. HBase API를 그대로 이용하는 것보다 좀 더 쉽게 데이터에 접근할 수 있습니다. GAE의 Datastore와 같은 이름인데, 실제 인터페이스도 매우 유사합니다. 이 라이브러리의 인터페이스에 대해 간단히 알아보겠습니다.Key는 Datastore에서 HBase에 저장된 특정 데이터를 지칭하기 위한 클래스입니다. 논리적으로 트리 형태로 저장된 데이터 구조를 위해 부모 자식 관계를 이용하여 만들어 집니다.Key parentKey = new Key(MType.T_RELATIONSHIP, relId);Key photoKey = new Key(parentKey, MType.T_PHOTO, photoId); // 특정 커플 밑에 달린 사진에 대한 키Datastore는 Key를 이용해 Row Key와 Column Qualifier를 만들어 낼 수 있습니다. Datastore는 이 정보를 바탕으로 HBase에 새로운 데이터를 저장하거나 저장된 데이터에 접근할 수 있는 메서드를 제공합니다. 아래 코드에서 MUser 클래스는 Thrift로 정의하여 자동 생성된 클래스이며, Datastore에서는 이 객체를 직렬화 하여 HBase에 저장합니다.MUser user = new MUser();user.setNickname("Alice");user.setGender(Gender.FEMALE);user.setStatus("Hello World!"); Key userKey = new Key(MType.T_USER, userId);getDatastore().put(userKey, user);user = getDatastore().get(userKey);getDatastore().delete(userKey);또한, Datastore는 Key를 범위로 하여 Scan연산이 할 수 있도록 인터페이스를 제공합니다. Java에서 제공하는 Try-with-resource문을 이용하여 ResultScanner를 반드시 닫을 수 있도록 하고 있습니다. 내부적으로 일단 특정 크기만큼 배치로 가져오고 더 필요한 경우 더 가져오는 식으로 구현되어 있습니다.try (CloseableIterable> entries = getDatastore().subSibling(fromKey, fromInclusive, toKey, toInclusive)) { for (KeyValue entry : entries) { // do something }}Secondary Index 구현 방법¶HBase는 데이터를 Row Key나 Column Qualifier로 정렬하여 저장합니다. 이 순서로만 Sequential Read를 할 수 있으며 Key값을 통해 특정 데이터를 바로 임의 접근할 수 있습니다. 비트윈에서는 특정 달에 해당하는 이벤트들을 읽어오거나 특정 날짜의 사진들의 리스트를 조회하는 등 id 순서가 아니라 특정 값을 가지는 데이터를 순서대로 접근해야 하는 경우가 있습니다. 이럴 때에도 효율적으로 데이터에 접근하기 위해서는 id로 정렬된 것 외에 특정 값으로 데이터를 정렬할 수 있어야 합니다. 하지만 HBase에서는 이와 같은 Secondary Index 같은 기능을 제공하지 않습니다. 비트윈 개발팀은 이에 굴하지 않고 Secondary Index를 간단한 방법으로 구현하여 사용하고 있습니다.구현을 간단히 하기 위해 Secondary Index를 다른 데이터들과 마찬가지로 특정 타입의 데이터로 취급하여 구현하였습니다. 따라서 Index에 대해서도 Column Qualifier가 발급되며, 이때, Index에 해당하는 id를 잘 정의하여 원하는 순서의 Index를 만듭니다. 이런 식으로 원하는 순서로 데이터를 정렬하여 저장할 수 있으며 이 인덱스를 통해 특정 필드의 값의 순서대로 데이터를 조회하거나 특정 값을 가지는 데이터에 바로 임의 접근할 수 있습니다. 또한, Index에 실제 데이터를 그대로 복사하여 저장하여 Clustered Index처럼 동작하도록 하거나, Reference만 저장하여 Non-Clustered Index와 같이 동작하게 할 수도 있습니다. Datastore 라이브러리에는 특정 데이터가 추가, 삭제, 수정할 때 특정 코드를 실행할 수 있도록 Trigger 기능이 구현되어 있는데, 이를 통해 Index를 업데이트합니다. 데이터의 변경하는 연산과 Index를 업데이트하는 연산이 하나의 Haeinsa 트랜잭션을 통해 원자적으로 일어나므로 데이터의 무결성이 보장됩니다.못다 한 이야기¶각 테이블의 특정 Row의 Column들에 대한 Column Qualifier외에도 Row에 대한 Row Key를 정의 해야 합니다. 비트윈에서는 각 Row가 표현하는 Root객체에 대한 아이디를 그대로 Row Key로 이용합니다. 새로운 Root객체가 추가될 때 발급되는 아이디는 랜덤하게 생성하여 객체가 여러 Region 서버에 잘 분산될 수 있도록 하였습니다. 만약 Row Key를 연속하게 발급한다면 특정 Region 서버로 연산이 몰리게 되어 성능 확장에 어려움이 생길 수 있습니다.데이터를 저장할 때 Thrift를 이용하고 있는데, Thrift 때문에 생기는 문제가 있습니다. 비트윈에서 서버를 업데이트할 때 서비스 중지 시간을 최소화하기 위해 롤링 업데이트를 합니다. Thrift 객체에 새로운 필드가 생기는 경우, 롤링 업데이트 중간에는 일부 서버에만 새로운 Thift가 적용되어 있을 수 있습니다. 업데이트된 서버가 새로운 필드에 값을 넣어 저장했는데, 아직 업데이트가 안 된 서버가 이 데이터를 읽은 후 데이터를 다시 저장한다면 새로운 필드에 저장된 값이 사라지게 됩니다. Google Protocol Buffer의 경우, 다시 직렬화 할 때 정의되지 않은 필드도 처리해주기 때문에 문제가 없지만, Thrift의 경우에는 그렇지 않습니다. 비트윈에서는 새로운 Thrift를 적용한 과거 버전의 서버를 먼저 배포한 후, 업데이트된 서버를 다시 롤링 업데이트를 하는 식으로 이 문제를 해결하고 있습니다.저희는 언제나 타다 및 비트윈 서비스를 함께 만들며 기술적인 문제를 함께 풀어나갈 능력있는 개발자를 모시고 있습니다. 언제든 부담없이 [email protected]로 이메일을 주시기 바랍니다!
조회수 2847

Eclipse 디버거 사용법

꽤 많은 분들이 디버거의 존재 자체를 모르고 있거나 혹은 디버거가 있다는 사실은 알아도 그 효용성에 의문을 제기하곤 합니다. 왜냐하면, 우리에겐 Log 클래스나 혹은 printf같은 훌륭한(?) 디버깅 도구가 있다고 생각하기 때문이죠. 물론 이렇게 필요한 변수를 찍어보면서 어떤 곳에서 버그가 있는지를 알아보는 일이 잘못된 일은 아닙니다만 복잡한 여러 상황이 맞물려 재현되는 버그는 이러한 고전적인(?) 방법을 써서 알아보기가 매우 어렵습니다.원인을 정확히 그리고 빨리 파악하려면 디버거의 사용법을 숙지하고 사용하는 것이 가장 좋습니다. 대부분의 개발 환경에서 디버거를 제공하는데 다행히 이클립스에서도 쓸만한 디버거를 내장하고 있습니다.오늘 포스팅에서는 이클립스 디버거 사용법에 대해 다루어 볼까 합니다.이클립스 디버거 뷰이클립스는 디버거 뷰를 제공하여 디버거를 사용할 수 있도록 합니다. 디버거 뷰는 어디에서 확인할 수 있을까요? 바로 우측 상단에 Debug 뷰에 들어가면 그곳에서 확인할 수 있습니다.디버깅의 시작그렇다면 어떻게 디버깅을 활성화한 상태로 프로그램을 실행할 수 있을까요? 상단 메뉴의 Run에서 프로그램을 실행할 때 Debug를 이용하여 프로그램을 실행하면 디버거가 작동하게 됩니다.브레이크 포인트 설정과 뷰보통 디버깅을 할 때 가장 먼저 하는 일이 브레이크 포인트를 잡는 일입니다. 브레이크 포인트를 에러가 일어나는 라인이나 혹은 의심이 가는 변수를 추적할 수 있는 라인쯤에 잡아놓고 프로그램을 디버깅하면 해당 라인을 실행할 때 디버거가 작동하게 되고 그곳에서 프로그램을 라인 별로 진행해가며 관찰을 진행할 수 있게 됩니다.브레이크 포인트 설정은 매우 간단합니다. 편집기 왼쪽에 파란 부분(마커 바)을 더블 클릭하게 되면 파란 원이 생기는데 이 원이 브레이크 포인트입니다. 혹은 오른 클릭하여 Toggle break point를 누르면 됩니다. 설정 후 다시 더블 클릭하게 되면 브레이크 포인트가 사라지게 됩니다.또한, 디버그의 브레이크 포인트 뷰에서 지금까지 걸어놓은 모든 브레이크 포인트들의 위치를 확인할 수 있고 활성화/비활성화, 삭제도 할 수 있습니다. 여러 브레이크 포인트가 걸려있을 때에는 이 탭에서 확인하고 관리하는 것이 더 편합니다.또한, 디버깅을 진행하고 있는 도중에도 다른 의심이 가는 라인에 브레이크 포인트를 걸 수 있습니다.스텝 단위 진행지정한 브레이크 포인트에 다다르면 동시에 디버거가 작동하게 되고 그 라인부터 스텝 단위의 진행을 할 수 있게 됩니다.이제 이 뷰의 버튼들을 이용하여 현재 상황을 진행하거나 되돌릴 수 있습니다. 자주 사용하는 버튼의 사용법을 알아보면Resume : 다음 브레이크 포인트를 만날때까지 진행합니다.Suspend : 현재 작동하고 있는 쓰레드를 멈춥니다.Terminate : 프로그램을 종료합니다.Step Into : 메서드가 존재할 경우 그 안으로 들어가 메서드 진행 상황을 볼 수 있도록 합니다.Step Over : 다음 라인으로 이동합니다. 메서드가 있어도 그냥 무시하고 다음 라인으로 이동합니다.Step Return : 현 메서드에서 바로 리턴합니다.Drop to Frame : 메서드를 처음부터 다시 실행합니다.등이 있습니다.실제로 디버깅 화면에서 버튼들을 눌러보면 쉽게 그 쓰임새를 아실 수 있습니다.변수의 상태 확인을 쉽게 해주는 변수 뷰디버깅을 진행하는 도중 변수의 값이나 객체의 상태를 알고 싶은 상황이 생기게 됩니다. 현재 의심이 가는 변수 이외에도 이 변수에 영향을 끼칠 다른 변수들이나 객체들의 상황을 실시간으로 검사할 필요가 있을 때 변수 뷰를 이용하면 도움을 얻을 수 있습니다.이곳에서 변수나 객체의 상태를 확인하고 변수의 상황에 대해서 저장할 수 있습니다. 변수나 객체의 상황을 모두 저장해서 클립보드에 붙이고 싶은 일이 생기면 해당 변수를 오른클릭 후 Copy Variables를 선택합니다.편집 창으로 돌아가 변수에서 Command + shift + i를 누르게 되면(혹은 오른 클릭 후 Inspect를 선택) Inspector 창이 뜨게 됩니다. 이 창에서 다시 한번 Command + shift + i를 누르면 해당 변수를 Expression 뷰로 보내게 되고 이곳에서 지속해서 변수의 상태를 관찰할 수 있게 됩니다.Expression 뷰 이용Expression 뷰에서는 변수 이름을 입력하거나 수행해보고 싶은 명령어를 직접 입력하여 그 결과 값을 관찰할 수 있습니다. 결과 값을 관찰할 뿐만 아니라 Expression에 써놓은 변수들은 명시적으로 지우지 않는 이상 계속해서 관찰을 수행하기 때문에 변해가는 상황을 지속해서 관찰할 일이 있는 변수나 명령문을 등록해놓기에 좋습니다.Display 뷰 이용디스플레이 뷰에서는 현 문맥에서 사용할 수 있는 명령어를 실행하거나 변수의 값을 조작하는 일을 수행하기에 적합한 환경을 제공합니다. Expression에서도 비슷한 기능을 제공하지만, 디스플레이 뷰를 이용하는 것이 더 편합니다. 메모장과 같이 쉽게 쓰고 지울 수 있기 때문입니다.또한, 원본 코드의 수정 없이 편하게 현재의 맥락을 변화시킬 수 있는 것이 가장 큰 장점이라고 볼 수 있습니다.필요한 명령어들을 적어놓은 후 실행하고 싶은 부분만 드래그하여 수행하거나 혹은 값을 리턴받을 수 있습니다. 지금은 boolean변수 하나의 값을 바꿔보기도 하고 조건 값에 따라 무언가를 리턴 받도록도 해놓은 상황을 스크린 샷으로 담아보았습니다.값을 반환받고 싶을 때는 두 번째 버튼을, 단순히 실행만 할 때에는 세 번째 버튼을 누르면 됩니다.두 번째 버튼을 눌러 값을 반환받는 상황입니다.단순히 실행만 하려면 세 번째 버튼을 누릅니다.브레이크 포인트에 조건 걸기브레이크 포인트에 조건을 거는 것이 굉장히 유용할 때가 있습니다. 특히 반복문안에 들어가 있는 코드들을 디버깅할 때 유용하지요. 반복문의 경우 모든 상황을 검사한다기보다는 특정 조건에서 값이 어떻게 들어가는지를 분석하는 경우가 더 많은데 이러한 상황을 검사하기 위해서 브레이크 포인트에 조건을 걸어야 합니다.브레이크 포인트를 거는 과정까지는 똑같습니다. 브레이크 포인트를 건 후 그 포인트에서 오른 클릭을 하면 Breakpoint properties 옵션이 있는 것을 확인할 수 있습니다. 이 옵션에서 조건문을 설정하여 디버거의 활성화 조건을 설정할 수 있습니다.먼저 Conditional을 활성화하여 어떤 조건에서 디버깅 화면으로 전환할지를 쓰면 되는데 이 창에 조건식을 쓰면 됩니다.또 hit count를 이용하여 조건을 걸 수도 있습니다. hit count에 값을 적용하면 해당 라인에 브레이크 포인트가 hit count만큼 잡힌 이후 디버깅 화면으로 전환하게 됩니다. hit count옵션은 반복문에서 한 100번쯤 이후에 디버깅을 시작하고 싶거나 하는 일이 생길 때 유용하게 쓸 수 있습니다.#스포카 #개발 #개발자 #꿀팁 #조언 #인사이트 #디버거 #디버깅 #디버그 #Eclipse

기업문화 엿볼 때, 더팀스

로그인

/