스토리 홈

인터뷰

피드

뉴스

조회수 4906

웹서버 로그 수집과 모니터링 설정

우리는 고객이 무엇에 관심 있어 하고 무엇에 관심 없어하는지, 어떤 것을 보았을 때 클릭해 들어가고 어떤 것을 보았을 때 사이트에서 이탈하는지 궁금해 합니다. 이러한 정보를 얻기 위해 봐야 할 것은 역시 웹서버의 접속 로그입니다.처음에는 매일 생성되는 로그 파일을 일일이 파싱해서 원하는 정보를 DB에 쌓는 방법을 이용했지만, 이러한 방식은 한계가 있었습니다. 저장할 수 있는 데이터의 양에 심각한 제한이 있었고, 따라서 처음에 얻고자 했던 데이터 이상의 것을 새로 추출할 수도 없었습니다.그래서 지금은 웹서버 로그를 하둡(Hadoop) 클러스터에 쌓고 있습니다. Google Analytics 같은 외부 분석툴을 사용하기도 하지만, 아무래도 데이터를 우리 손에 직접 들고 있는 것이 더 유연한 분석을 제공할 수 있지요. 클러스터에서 로그를 분석하려면 가장 먼저 로그 수집 시스템을 만들어야 합니다.이번 포스팅에서는 이 로그 수집 시스템이 어떻게 만들어져 있는지, 그리고 그보다 더 중요한 시스템의 모니터링을 어떻게 하고 있는지 설명하려고 합니다.Flume 에이전트 설정하기Apache FlumeApache Flume은 로그와 같은 데이터의 흐름(streaming)을 제어할 수 있게 해주는 도구입니다. 단순하면서도 확장성 높은 구조로 되어 있기 때문에 많은 시스템에서 채택하는 도구가 되었고, 리디북스에서도 Flume 을 사용하게 되었습니다.Flume 의 기본 구조는 단순합니다.기본적인 에이전트 구성 (이미지 출처: Apache Flume 홈페이지)에이전트(agent)는 Source, Channel, Sink 로 이루어진 자바 프로세스이다.소스(source)는 외부에서 이벤트를 입력받아 채널(channel)로 전달하고, 채널은 이벤트를 저장하고 있다가 싱크(sink)로 전달한다. 싱크는 이벤트를 외부로 출력한다.한 에이전트의 Sink와 다른 에이전트의 Source가 같은 타입이면, 에이전트 간에 이벤트를 전달할 수 있다.굉장히 간단하지만 강력한 모델입니다. Flume 은 Avro, Thrift, Exec, HDFS, Kafka 등 다양한 라이브러리를 적용한 소스와 싱크를 미리 제공하고 있기 때문에, 사용자는 자기 입맛에 맞게 이를 조합해서 시스템을 구성할 수 있습니다.예를 들면 아래와 같습니다.좀 더 복잡한 에이전트 구성 (이미지 출처: Apache Flume 홈페이지)초기 에이전트 구성: Avro를 통해 클러스터에 로그 전송저희가 맨 처음 설정한 Flume 에이전트의 구성은 다음과 같습니다.초기 에이전트 구성각 웹서버ExecSource: exec 명령으로 실행된 프로세스의 표준 출력을 이벤트로 입력받음. (tail -F <로그파일>)MemoryChannel: 메모리상의 큐(queue)로 구현된 채널AvroSink: 클러스터에 상의 에이전트가 실행하는 Avro RPC 서버로 이벤트를 전송하둡 클러스터AvroSource: 웹서버의 에이전트가 Avro RPC 로 보내는 이벤트를 수신MemoryChannelHDFSSink: HDFS 상의 지정된 경로의 파일에 이벤트 내용을 출력각 웹서버에는 에이전트가 하나씩 실행되어서, 로그 파일에 새로 추가되는 로그를 클러스터에 전송합니다. 클러스터 상의 에이전트는 단 한 개 존재하는데, 웹서버로부터 전송받은 로그를 HDFS(Hadoop File System) 에 파일로 출력하는 역할을 합니다. 웹서버 에이전트와 클러스터 에이전트 간의 통신은 Avro RPC 로 하게 하였습니다. Flume 에서 기본적으로 AvroSource 와 AvroSink 를 구현하여 제공해 주는 것을 이용했습니다.사실은 클러스터 상의 에이전트가 Avro 서비스를 통해 데이터를 모아 주지 않고, 웹서버 상의 에이전트가 HDFSSink 를 이용해서 직접 클러스터에 파일을 쓰게 하더라도 대부분의 경우는 상관없습니다. 하지만 리디북스의 경우는 그렇게 할 수 없었는데, 왜냐하면 웹서버와 하둡 클러스터가 서로 다른 네트워크 상에 있기 때문입니다.리디북스의 웹서버는 국내 IDC에 존재하지만 하둡 클러스터는 Miscrosoft Azure 클라우드 내의 가상머신으로 실행되고 있습니다. 따라서 하둡의 네임노드(namenode)가 인식하는 각 노드의 사설 IP 주소를 웹서버들이 쉽게 접근할 수 없습니다. 이를 우회하는 다양한 방법을 시도해 보았지만 최종적으로는 Avro 서비스를 중간에 두어 해결하였습니다.모니터링 알람 설정하기JSON 리포팅 사용다음은 에이전트 프로세스를 모니터링하는 문제가 있었습니다. 예기치 않은 에러로 에이전트가 종료되어서 로그가 수집되지 않고 있는데 며칠 동안 모르고 있어서는 안되겠지요.Flume 에서는 모니터링 인터페이스도 여러가지를 제공하고 있는데, 그 중 가장 이용하기 간편한 것은 HTTP 를 통한 JSON reporting 이었습니다. 에이전트 자체가 HTTP 서비스로 작동해서, 특정 포트로 요청을 보내면 에이전트의 상태를 JSON 으로 정리하여 응답을 주게 되어 있습니다. 에이전트 실행시에 옵션 몇 개만 추가하면 바로 설정할 수 있기 때문에 매우 간단합니다.Health 페이지를 이용한 모니터링그런데 이 리포팅이 제대로 나오지 않으면 어떻게 알림을 받을 수 있을까요? 각 서버마다 JSON 리포팅을 요청해서 응답이 제대로 오지 않으면 이메일을 보내는 스크립트를 만들어서 cron 으로 5분마다 실행하는 방법도 있습니다. 하지만 이 스크립트가 제대로 동작하지 않거나, 이게 실행되는 서버가 다운되면?결국 스스로를 믿지 못하고 택한 방법은 외부 서비스 Pingdom을 이용하는 것이었습니다. 단, 외부 서비스가 각각의 웹서버에 직접 접근하여 리포팅을 요청하는 방식은 보안상 문제가 될 수 있어서 아래와 같이 보완하였습니다.웹 서비스 상에 health 페이지 구현. 이 페이지는 각 웹서버의 에이전트의 JSON reporting 포트로 요청을 보내서, 결과를 종합해서 다시 JSON 으로 보여줌.모든 에이전트가 정상적으로 리포트를 보내면 {“status”: “OKAY”} 를, 아니면 {“status”: “ERROR”} 를 보여줌.이 health 페이지의 내용을 모니터링하도록 Pingdom 설정. {“status”: “OKAY”} 가 응답에 없으면 알람 메일이 오도록 함.{ "status": "OKAY", "metrics": { "192.168.0.101": { "SOURCE.log_src": { ... }, "SINK.avro_sink": { "BatchCompleteCount": 562110, "ConnectionFailedCount": 294, "EventDrainAttemptCount": 56246850, "ConnectionCreatedCount": 31, "Type": "SINK", "BatchEmptyCount": 16, "ConnectionClosedCount": 30, "EventDrainSuccessCount": 56243927, "StopTime": 0, "StartTime": 1459135471379, "BatchUnderflowCount": 610 }, "CHANNEL.mem_channel": { ... } }, "192.168.0.102": { ... } } }Health 페이지의 Json내용JSON 리포팅의 문제이렇게 설정해 놓고, 며칠간 로그가 HDFS 상에 잘 수집되는 것을 확인하고 만족해 했습니다. 그런데 며칠간 신경을 쓰지 않은 사이, 다시 에이전트를 확인해 보니 모든 웹서버 에이전트가 죽어 있었습니다. HDFS에 로그도 쌓이지 않았구요.확인해 보니, MemoryChannel 의 설정 문제였습니다. byteCapacity 값을 실수로 너무 작게 설정해서, 채널 큐가 메모리 부족으로 터져나간 것이죠. 해당 문제는 byteCapacity 값을 늘려서 간단하게 해결했습니다.문제는 알람이 오지 않았다는 것이었습니다. 문제를 재현해 본 결과, 채널이 터져서 에이전트 실행이 중단되어도, 에이전트 프로세스는 죽지 않고 ExecSource 에서 실행한 자식 프로세스(tail -F)만 죽어 있었습니다. 이렇게 되면 JSON 리포팅도 정상적으로 나오기 때문에, 결국 JSON 리포팅으로는 이런 유형의 에러를 잡지 못한다는 결론이 나왔습니다.클러스터에 모니터링 설정하기결국 웹서버상에서 모니터링하는것 보다는 데이터를 최종 전달받는 하둡 클러스터 상에서 모니터링하는 것이 안정적이라 판단하였습니다. 다행히도, 하둡 클러스터에서 사용할 수 있는 꽤나 좋은 모니터링 도구가 이미 있었습니다.CDH 의 알람 트리거리디북스에서는 기본 하둡 패키지가 아닌, Cloudera에서 제공하는 하둡 배포판인 Cloudera CDH를 사용하고 있습니다. CDH는 클러스터 상에서 사용되는 서비스마다 각종 테스트를 자동으로 실행하여, 테스트가 통과되지 않을 때마다 메일로 알람을 보내줍니다. 그리고 웬만한 필수 테스트는 기본적으로 설정되어 있지만, 사용자가 커스텀 서비스를 직접 제작할 수도 있습니다. CDH가 각 에이전트의 소스, 채널, 싱크마다 초당 전송한 이벤트 개수 등의 측정치(metric)을 모두 기록하고 있기 때문에, 이 값들이 일정 수준 이상/이하가 될 때마다 알람이 트리거되도록 설정할 수 있습니다.CDH의 알람 트리거 편집 화면웹서버마다 알람 설정하기그런데 이것으로 끝이 아닙니다. 클러스터 에이전트는 각 서버에서의 트래픽이 모두 모이는 곳이기 때문에, 여기에서 모니터링을 하는 것은 웹서버 상에서 모니터링하는 것보다 기준이 애매해집니다.10대의 웹서버 중에 한 대만 문제가 생겼을 경우, 클러스터 에이전트가 받는 트래픽은 0으로 줄어드는 것이 아니라 90%로 줄어듭니다. 알람을 트리거하는 역치(threshold)를 평소 트래픽의 90%로 잡아야 한다는 것이지요. 그런데 트래픽이라는 것이 원래 날짜와 시간에 따라 달라지기 때문에, 이 역치값을 고정된 값으로 정할 수가 없습니다. 트래픽이 높은 때를 기준으로 하면, 트래픽이 낮아지는 새벽 시간마다 가짜 알람(false alarm)이 오게 되겠지요. 그렇다고 트래픽이 낮은 때를 기준으로 하면, 트래픽이 높은 때 웹서버 에이전트가 죽더라도 새벽이 될 때까지 알 수 없습니다.결국 클러스터 단에서도 각 웹서버마다 트래픽을 구분해 주어야 한다는 결론이 나옵니다. 다행히 한 에이전트가 여러 개의 채널과 싱크를 가질 수 있고, 이벤트 헤더의 내용에 따라 소스가 어느 채널로 이벤트를 보낼지 결정해 주는 채널 셀렉터 (Channel Selector)라는 것이 있습니다.웹서버 에이전트의 소스에서는 각 이벤트 헤더에 자기 호스트명을 달아 준다. (Interceptor 는 각 이벤트에 원하는 헤더를 달아주는 역할을 한다. HostInterceptor 이용)클러스터 에이전트는 1개의 소스와, 웹서버 대수만큼의 채널 및 싱크가 있다.클러스터의 소스는 이벤트의 host 헤더를 보고 그에 해당하는 채널로 이벤트를 전달한다. (MultiplexingSelector 사용)각 채널은 자신에게 대응되는 싱크에 이벤트를 전달하고, 싱크는 각자의 HDFS 경로에 이벤트를 파일로 출력한다.최종 에이전트 구성: 채널 셀렉터로 트래픽 나누기최종적으로 나온 에이전트의 구성은 다음과 같습니다.최종 에이전트 구성그리고 에이전트 설정 파일은 아래와 같이 작성했습니다.... log_to_avro.sources.log_src.type = exec log_to_avro.sources.log_src.command = tail -F /path/to/log/file log_to_avro.sources.log_src.restart = true log_to_avro.sources.log_src.channels = mem_channel log_to_avro.sources.log_src.interceptors = ts_ic host_ic # 호스트 인터셉터 설정 log_to_avro.sources.log_src.interceptors.ts_ic.type = timestamp # 이벤트 헤더에 timestamp 삽입 (날짜별 구분을 위해) log_to_avro.sources.log_src.interceptors.host_ic.type = host # 이벤트 헤더에 호스트명 삽입 (호스트별 구분을 위해) log_to_avro.sources.log_src.interceptors.host_ic.useIP = true # 호스트명 대신에 IP 사용 log_to_avro.channels.mem_channel.type = memory log_to_avro.channels.mem_channel.capacity = 10000 log_to_avro.channels.mem_channel.transactionCapacity = 10000 log_to_avro.channels.mem_channel.byteCapacityBufferPercentage = 20 log_to_avro.channels.mem_channel.byteCapacity = 10485760 log_to_avro.sinks.avro_sink.type = avro log_to_avro.sinks.avro_sink.channel = mem_channel log_to_avro.sinks.avro_sink.hostname = hostname.of.cluster.agent log_to_avro.sinks.avro_sink.port = 4141 ...웹서버 에이전트 설정파일... avro_to_hdfs.sources.avro_src.type = avro avro_to_hdfs.sources.avro_src.bind = 0.0.0.0 avro_to_hdfs.sources.avro_src.port = 4141 avro_to_hdfs.sources.avro_src.channels = c_101 c_102 avro_to_hdfs.sources.avro_src.selector.type = multiplexing # Multiplexing Selector 설정 avro_to_hdfs.sources.avro_src.selector.header = host # 호스트 이름으로 채널 나누기 avro_to_hdfs.sources.avro_src.selector.mapping.192.168.0.101 = c_101 # 192.168.0.101 에서 온 이벤트는 c_101 채널로 avro_to_hdfs.sources.avro_src.selector.mapping.192.168.0.102 = c_102 # 192.168.0.102 에서 온 이벤트는 c_102 채널로 # 채널 c_101 설정 avro_to_hdfs.channels.c_101.type = memory avro_to_hdfs.channels.c_101.capacity = 10000 avro_to_hdfs.channels.c_101.transactionCapacity = 10000 avro_to_hdfs.channels.c_101.byteCapacityBufferPercentage = 20 avro_to_hdfs.channels.c_101.byteCapacity = 10485760 # 싱크 k_101 설정 avro_to_hdfs.sinks.k_101.type = hdfs avro_to_hdfs.sinks.k_101.channel = c_101 avro_to_hdfs.sinks.k_101.hdfs.fileSuffix = .log.gz avro_to_hdfs.sinks.k_101.hdfs.path = hdfs://namenode/path/to/logs/dir/%Y%m%d/%{host} # 날짜별, 호스트별로 다른 디렉토리에 avro_to_hdfs.sinks.k_101.hdfs.rollSize = 104857600 avro_to_hdfs.sinks.k_101.hdfs.rollInterval = 7200 avro_to_hdfs.sinks.k_101.hdfs.rollCount = 0 avro_to_hdfs.sinks.k_101.hdfs.fileType = CompressedStream avro_to_hdfs.sinks.k_101.hdfs.codeC = gzip # 채널 c_102 설정 avro_to_hdfs.channels.c_102.type = memory avro_to_hdfs.channels.c_102.capacity = 10000 avro_to_hdfs.channels.c_102.transactionCapacity = 10000 avro_to_hdfs.channels.c_102.byteCapacityBufferPercentage = 20 avro_to_hdfs.channels.c_102.byteCapacity = 10485760클러스터 에이전트 설정파일p.s. Flume 설정 파일은 변수 또는 외부 파일 include 등을 지원하지는 않아서, 위와 같이 반복되는 설정을 여러 번 써 주어야 합니다.호스트마다 CDH 알람 트리거 설정그리고 CDH 상에서도 웹서버 호스트의 개수만큼 알람 트리거를 만들어 줍니다. 초당 이벤트 개수가 0에 가깝게 떨어지면 알람이 오도록 해 주면 됩니다. 채널/싱크 중 어느 것을 기준으로 해도 크게 상관은 없는데, 저희는 싱크가 초당 이동완료한 이벤트 개수를 기준으로 했습니다.CDH에서의 알람 트리거 상태 화면이렇게 해 놓으면 또 한가지 좋은 점은, CDH가 알아서 차트를 그려 주기 때문에, 웹서버마다 트래픽 추이를 한눈에 볼 수 있다는 것입니다.HDFSSink의 초당 이벤트 개수 그래프맺음말지금까지 Apache Flume 과 CDH 를 사용해 로그 수집 시스템을 구성하고 모니터링을 설정한 후기를 살펴 보았습니다. 이 과정에서 느낀 점들을 한번 정리해 보겠습니다.첫째, 일견 간단해 보이는 기능이었지만 의외로 많은 시행착오를 거쳐야 했습니다. 아무리 간단해 보이더라도 각자의 상황에 맞추어 시스템을 설계하는 데에는 그에 맞는 고민을 거쳐야 합니다.둘째, 처음에는 로그가 일단 수집되게 하는 것이 가장 중요하다고 생각했는데, 실제로 겪어보니 모니터링이 훨씬 어렵고 중요한 문제라는 것을 알게 되었습니다. 어떤 기능이 일단 실행되도록 설정을 해 놓더라도, 그것이 매일 문제없이 실행됨을 보장받는 것은 또 다른 문제입니다.셋째, Health 페이지와 Pingdom을 이용한 웹서버 측의 모니터링은 JSON 리포팅의 문제 때문에 큰 쓸모가 없게 되었습니다. 하지만 꽤 유용한 테크닉이라는 생각이 들고, 어딘가에서는 비슷하게 이용할 수 있을 것 같습니다.마지막으로 CDH 쓰면 좋습니다. 많은 것들이 편해집니다.P.S. 리디북스 데이터팀에서는 이러한 로그 시스템을 함께 고민하고 만들어나갈 분들을 찾고 있습니다. 많은 관심 부탁드립니다.#리디북스 #개발 #서버 #서버개발 #모니터링 #로그 #Flume #CDH #로그수정 #인사이트
조회수 4780

Elasticsearch X-Pack Alerting 체험기

Logstash로 로그를 수집한 후 Elasticsearch와 Kibana로 분석하는 방법을 다룬 글은 많다. 그런데 이상하더라 이 말이지. 로그를 분석하고 경향을 파악하는 정도라면야 괜찮은데 심각한 오류 로그를 발견했을 때 Slack이나 이메일 등으로 알람 받을 수단이 마땅치 않더라. 사람이 키바나 대시보드를 5분마다 확인할 수도 없는 노릇이다. (이건 새로운 차원의 고문?)이런 생각을 먼저 한 사람이 있기 마련이라 Yelp의 elastalert라던가 Elasticsearch의 X-Pack을 활용하면 이런 문제를 해소할 수 있다. 오늘은 그 중에서 후자를 살펴볼 예정이다.경고! X-Pack은 Elasticsearch가 유료 서비스 시장을 열려고 야심차게 미는 모양인데 “자기네가 직접 만들었으니 쿨하겠지?”라고 쉽게 생각하면 하루 안에 절벽 아래로 떨어지는 끔찍한 기분을 맞이할 수도 있다.X-Pack은 가격이 상당한데 Alert 등을 설정하려면 전적으로 RESTful API에 의존해야 한다. 적어도 아직까지는! 이 사실을 깨닫자마자 당황할 수 있는데 침착하자. 이것은 시작일 뿐이다. 여러분이 검색엔진의 초보라면 그 다음 난관은 검색 쿼리를 작성하는 것이다. “나는 그냥 OutOfMemoryError 로그를 발견하면 알람을 보내줬으면 좋겠어"라고 쉽게 생각했겠지만 그 간단한 결과를 얻으려면 험난한 여정을 거쳐야 한다."search" : { "request" : { "indices" : [ "", ], "body" : { "query" : { "bool" : { "must" : { "multi_match": { "query": "OutOfMemoryError", "fields": ["message", "log"] } }, "filter" : { "range": { "@timestamp": { "from": "{{ctx.trigger.scheduled_time}}||-5m", "to": "{{ctx.trigger.triggered_time}}" } } } } } } } }음… 좋다. 일단 이렇게 작성한 쿼리가 제대로 된 것인지 테스트하려면 어떻게 해야 하는가? 검색 API로 대충 테스트해볼 수는 있다.GET logstash-2017.02.2*/_search { "query" : { "bool" : { "must" : { "multi_match": { "query": "OutOfMemoryError", "fields": ["message", "log"] } } } } }어찌어찌 잘 나온다. 그래서 잘 돌 줄 알았지? 그럴 줄 알고 있다가 이런 메시지를 만난다.Trying to query 1157 shards, which is over the limit of 1000. This limit exists because querying many shards at the same time can make the job of the coordinating node very CPU and/or memory intensive. It is usually a better idea to have a smaller number of larger shards. Update [action.search.shard_count.limit] to a greater value if you really want to query that many shards at the same time.음… logstash 인덱스를 매시간마다 분할했더니 샤드가 꽤 많아진 모양이다. 그래서 최근 두 개의 인덱스로 검색 대상을 제한하려고 한다. Date math support in index names라는 문서에 인덱스 이름을 동적으로 바꾸는 법이 나와 있긴 하다. 그런데 막상 내가 짠 게 어떤 값이 나오는지 확인하는 방법은 제대로 안 나온다. 예를 들어 가 logstash-2017.02.22t01로 해석되는지 어떻게 아는가? 많은 삽질 끝에 방법을 찾았다.를 URL 인코딩한다.그렇게 얻은 값 을 가지고 인덱스 조회 API를 호출한다. GET /3Clogstash-{now-1h/d}t{now-1h{HH}}>그러면 다음과 같이 결과가 나와서 인덱스 이름이 어떻게 해석됐는지 확인할 수 있다.{ "logstash-2017.02.23t01": { "aliases": {}, "mappings": { /* 중략 */ } }여기까지는 전적으로 검색 쿼리 작성 경험이 부족해서 발생한 삽질이다. 하지만 애플리케이션 로그 분석을 패턴화하지 않고 이렇게 검색 쿼리를 복잡하게 짜야 한다니 아직 갈 길이 멀다는 생각이 든다. DataDog 또는 NewRelic 같은 상용 서비스를 참고해서 개선하면 좋겠다.이제 결과를 알람으로 보내면 된다. 이래저래 고생하다 대충 아래와 같은 형태로 완성했다.PUT _xpack/watcher/watch/outofmemoryerror { "trigger" : { "schedule" : { "cron" : "0 0/4 * * * ?" } }, "input" : { "search" : { "request" : { "indices" : [ "", "" ], "body" : { "query" : { "bool" : { "must" : { "multi_match": { "query": "OutOfMemoryError", "fields": ["message", "log"] } }, "filter" : { "range": { "@timestamp": { "from": "{{ctx.trigger.scheduled_time}}||-5m", "to": "{{ctx.trigger.triggered_time}}" } } } } }, "sort" : [ { "@timestamp" : {"order" : "desc"}}, "_score" ] } } } }, "condition" : { "compare" : { "ctx.payload.hits.total" : { "gt" : 0 }} }, "actions" : { "notify-slack" : { "throttle_period" : "5m", "slack" : { "message" : { "to" : [ "#ops", "@dev" ], "text" : "로그 모니터링 알람", "attachments" : [ { "title" : "OutOfMemoryError", "text" : "지난 5분 동안 해당 오류가 {{ctx.payload.hits.total}}회 발생했습니다. 가장 최근의 오류는 다음과 같습니다.", "color" : "warning" }, { "fields": [ { "title": "환경", "value": "Prod", "short": true }, { "title": "발생시각", "value": "{{ctx.payload.hits.hits.0._source.@timestamp}}", "short": true }, { "title": "메시지", "value": "{{ctx.payload.hits.hits.0._source.message}}", "short": false }, { "title": "확인명령어", "value": "`GET /{{ctx.payload.hits.hits.0._index}}/{{ctx.payload.hits.hits.0._type}}/{{ctx.payload.hits.hits.0._id}}`", "short": false } ], "color" : "warning" } ] } } } } }4분마다 검색 쿼리를 실행해서 최근 5분 간의 레코드를 감시하기 때문에 동일한 오류에 대해 2회 연속으로 알람을 받을 가능성이 있다. X-Pack은 이를 우회할 방법을 제공하지 않는 것 같다. 그래서 쿼리가 발견한 레코드의 인덱스 ID를 Slack 메시지 중 확인명령어 필드에 넣었다. 알람이 두 번 왔지만 인덱스 아이디가 동일하다면 오류가 한번 발생한 것으로 간주하면 된다.참고 문서위의 Alert를 작성하며 도움을 받은 문서는 다음과 같다.Multi Search Template은 검색 쿼리를 짤 때 도움이 됐다.Search Input 문서는 검색 쿼리 또는 검색 결과를 작성할 때 어떤 변수를 사용할 수 있는지 설명한다. 예) {{ctx.payload.hits.hits.0._source.message}}Watcher APIsSlack ActionDate math support in index names 문서는 인덱스 이름을 동적으로 바꾸는 법을 설명한다.기타Elasticsearch Cloud는 기본적으로 이메일 발송을 지원하기 때문에elasticsearch.yml 설정에 xpack.notification.email를 추가하지 않아도 된다. 아니, 추가하면 잘못된 설정이라며 거부한다. Illegal이라고만 하지 이유를 자세히 알려주지 않기 때문에 삽질하기 쉽니다. Invalid addresses라고 오류 로그가 찍히면 이것은 설정 문제가 아니다. 이메일 설정 메뉴로 가서 Watcher Whitelist에 수신 이메일 주소를 등록하면 문제가 해결된다.테스트용 로그 메시지를 Fluentd로 보내고 싶다면 fluent-cat 명령을 이용한다.echo '{"message":"Dummy OutOfMemoryError"}' | fluent-cat kubernetes.logOriginally published at Andromeda Rabbit.#데일리 #데일리호텔 #개발 #개발자 #개발팀 #인사이트
조회수 10322

파이썬의 시간대에 대해 알아보기(datetime.timezone)

안녕하세요. 스포카 크리에이터 김두리입니다.  스포카는 많은 프로덕트에서 국제화 서비스를 제공하고 있습니다. 그래서 시간대와 시간을 제대로 정확하게 처리하는 것은 중요합니다. 하지만 파이썬의 datetime.datetime은 날짜(datetime.date)와 시각(datetime.time)의 정보를 담고 있고, 시간대(datetime.timezone)의 정보는 담거나 담지 않을 수도 있으므로 헷갈리는 부분이 존재합니다.     시간을 처리할 때 시간대는 왜 중요할까요? 시간대가 명시되지 않은 시각은 충분한 정보를 내포하고 있지 않습니다. 저는 얼마 전, Google Calendar API를 이용하여 작업할 때 골치 아픈 일을 겪었습니다. 오늘의 일정을 불러오고 싶어서 오늘 0시~24시로 데이터를 요청했지만, 계속해서 결괏값에 다음 날의 일정도 포함되어서 반환되었습니다.   왜 다음날 일정도 포함되었던 걸까요? 아래와 같은 코드를 작성하여 Google Calendar API에 요청했습니다.   today = datetime.date.today() from_ = datetime.datetime(today.year, today.month, today.day, 0, 0, 0) to = datetime.datetime(today.year, today.month, today.day, 23, 59, 59) events = get_events_from_google_calendar(from_, to)   몇 시간 동안 머리를 싸매고 코드를 한 줄 한 줄 따져가며 고민을 했습니다. 결국, 제가 요청한 시각에 시간대가 지정되어 있지 않아 get_events_from_google_calendar() 함수 내부에서 from_과 to가 의도하지 않은 시간대의 시각으로 인식되어서 발생했던 문제라는 것을 알게 되었습니다.  # 원래 의도했던 시간대: 대한민국 시간대(KST)에서 오늘 0시 0분 0초 KST = datetime.timezone(datetime.timedelta(hours=9)) from1 = datetime.datetime(today.year, today.month, today.day, 0, 0, 0, tzinfo=KST) # get_events_from_google_calendar()가 받아들인 시간대: UTC 시간대에서 오늘 0시 0분 0초 from2 = datetime.datetime(today.year, today.month, today.day, 0, 0, 0, tzinfo=datetime.timezone.utc)   위 예제에서 from2 - from1를 하게 되면 timedelta(hours=9)가 계산됩니다. 우리가 원했던 것은 KST 기준 오늘 0시부터의 일정이었지만, Google Calendar API에서는 시간대를 UTC로 취급하여 KST 기준 오늘 9시부터 다음날 9시까지의 일정을 불러왔던 것입니다.  이렇듯 시간 관련 작업을 할 때 시간대에 대해 제대로 알고 있지 않으면 의도치 않게 많은 시간을 소모하게 될 수도 있습니다.  오늘은 제가 파이썬으로 시간대 관련 처리를 하며 모았던 정보를 정리하여 공유하고자 글을 작성하게 되었습니다.  시간대  나라 또는 지역마다 살아가는 시각이 다르기 때문에 시간대에 따른 편차가 존재합니다. 이 차이가 피부로 잘 와닿지 않은 채 살아가더라도 캘린더 API나 국제화 서비스 준비 등등 시간과 관련된 작업을 진행하다 보면 시간대 문제에 직면하게 됩니다.  시간대는 영국의 그리니치 천문대(본초 자오선, 경도 0도)를 기준으로 지역에 따른 시간의 차이, 다시 말해 지구의 자전에 따른 지역 사이에 생기는 낮과 밤의 차이를 인위적으로 조정하기 위해 고안된 시간의 구분 선을 일컫는다. 시간대는 협정 세계시(UTC)를 기준으로 한 상대적인 차이로 나타낸다.     UTC에 대한 더 자세한 내용은 여기를 참고해주세요.   시간대에 대한 더 자세한 내용은 여기를 참고해주세요.   파이썬의 datetime.datetime.now()는 실행 환경의 시간대에 따라서 시각을 표시합니다.  2019-01-01 00:00:00 +09:00에 시간대가 Asia/Seoul로 설정된 제 랩탑에서 현재 시각을 가지고 오면, 아래와 같은 시각이 표시됩니다.  >>> print(datetime.datetime.now()) 2019-01-01 00:00:00.000000   그런데, 같은 시각에 Asia/Taipei로 설정된 랩탑에서는 현재 시각이 아래와 같이 표시됩니다.  >>> print(datetime.datetime.now()) 2018-12-31 23:00:00.000000  위의 예제처럼 시간대에 따라 시각이 다를 수 있다는 것을 알 수 있습니다.  나라별 시간대 비교해보기  UTC를 기준으로 시간이 빠르면 +시차, 시간이 느리면 -시차로 표시합니다.                                                                                                                                시간대나라코드UTC-5미국(동부)ESTUTC영국GMTUTC+8대만TWUTC+9대한민국KSTUTC+9일본JSTUTC+10오스트레일리아(동부)AEST     나라별 시간대 차이에 대한 더 자세한 내용은 여기를 참고해주세요.   시간대를 명확히 표시하지 않은 시각은 혼동을 일으킬 수 있습니다. 예를 들어서, 서울에 살고 있는 점주가 2019년 1월 1일 0시 0분에 방문한 고객을 알고 싶어 한다고 가정해봅시다. 이 데이터를 파이썬으로 표현하면 아래와 같이 적을 수 있습니다.  KST = datetime.timezone(datetime.timedelta(hours=9)) korea_1_1 = datetime.datetime(2019, 1, 1, 0, 0, 0, tzinfo=KST)   만약, 대만에 사는 점주가 이를 요청했다면 아래와 같이 적을 수 있습니다.  TW = datetime.timezone(datetime.timedelta(hours=8)) taipei_1_1 = datetime.datetime(2019, 1, 1, 0, 0, 0, tzinfo=TW)   위 예제에서 보이는 것 같이 대한민국과 대만에 있는 점주가 같은 시각을 요청했더라도, 시간대(KST/TW)에 따라서 별도로 처리해야 합니다.  assert korea_1_1 != taipei_1_1 assert taipei_1_1 - korea_1_1 == datetime.timedelta(hours=1) # 같은 시각이지만 시간대에 따라서 시간차가 있습니다.   그렇기 때문에 시간대가 표시되어 있지 않은 2019년 1월 1일이라는 정보만으로는 정확한 시각을 알 수 없습니다.  naive_1_1 = datetime.datetime(2019, 1, 1, 0, 0, 0) assert korea_1_1 != naive_1_1 assert taipei_1_1 != naive_1_1   이런 상황을 해결하기 위해 시각은 어떤 한 시각을 기준으로 하여 그 차이가 표시되어야 합니다. 그 기준으로 정한 것이 UTC입니다. 대한민국은 UTC를 기준으로 아홉시간 빠르기 때문에 korea_1_1의 시각을 UTC 시간대로 표현하면 2018-12-31 15:00:00+00:00입니다. 대만은 UTC를 기준으로 여덟시간 빠르기 때문에 taipei_1_1의 시각을 UTC 시간대로 표현하면 2018-12-31 16:00:00+00:00입니다. 위의 시각은 각각 대한민국(2019-01-01 00:00:00+09:00), 대만(2019-01-01 00:00:00+08:00)으로 표시할 수 있습니다. 이렇게 시간대와 같이 표시하면 혼란 없이 정상적으로 처리할 수 있습니다.  datetime  datetime은 파이썬에서 기본으로 제공하는 표준 라이브러리로, 간단하거나 복잡한 방식으로 날짜와 시각을 조작하기 위한 클래스를 제공합니다.  The datetime module supplies classes for manipulating dates and times in both simple and complex ways.  datetime은 시간대 포함 여부에 따라서 naive datetime, aware datetime 두 가지로 나눕니다.  naive datetime / aware datetime  datetime의 타입을 알아봅시다. 파이썬에서 시간 관련 연산을 하다 보면 종종 아래와 같은 에러 문구를 만날 수 있습니다.  >>> a = datetime.datetime.now() >>> b = datetime.datetime.now(datetime.timezone.utc) >>> a - b Traceback (most recent call last): File "", line 1, in TypeError: can't subtract offset-naive and offset-aware datetimes      naive datetime : naive datetime 객체는 그 자체만으로 시간대를 찾을 수 있는 충분한 정보를 포함하지 않습니다. (e.g. datetime.datetime(2019, 2, 15, 4, 58, 4, 114979))   aware datetime(timezone-aware) : 시간대를 포함합니다. (e.g.datetime.datetime(2019, 2, 15, 4, 58, 4, 114979, tzinfo=)) aware datetime 객체는 자신의 시각 정보를 다른 aware datetime 객체와 상대적인 값으로 조정할 수 있도록 시간대나 일광 절약 시간 정책 혹은 적용 가능한 알고리즘 정보를 담고 있습니다.   tzinfo는 UTC, 시간대 이름 및 DST 오프셋에서 로컬 시간의 오프셋을 나타내는 방법을 담고 있습니다. 더 자세한 내용은 공식 문서를 확인해주세요.  naive datetime은 어느 시간대를 기준으로 하는 시각인지 모호하므로 aware datetime을 이용하는 것을 권장합니다.  직접 확인해보기  준비한 몇 가지 코드를 보며 확인해봅시다. naive datetime과 aware datetime의 차이를 확인하고, 시간대 지정 방법에 대한 내용을 다룹니다.  개발환경     Python 3.7   pytz   여기서는 datetime을 쉽게 다루기 위해 pytz 라이브러리를 사용합니다. pytz는 아래와 같은 장점이 있습니다.    시간대를 시간차가 아닌 사람이 알아보기 쉬운 지역 이름으로 비교적 쉽게 설정할 수 있습니다.   원하는 시간대의 aware datetime으로 변경해주는 localize() 메소드를 제공합니다.   pytz 사용에 앞서, pytz가 제공하는 시간대 식별자를 확인하시려면 다음을 따라 해주세요. import pytz for tz in pytz.all_timezones: print(tz)  혹은 여기를 참고하셔도 좋습니다.  naive datetime  naive datetime은 날짜와 시각만을 갖습니다.  import datetime datetime.datetime.utcnow() # UTC 기준 naive datetime : datetime.datetime(2019, 2, 15, 4, 54, 29, 281594) datetime.datetime.now() # 실행 환경 시간대 기준 naive datetime : datetime.datetime(2019, 2, 15, 13, 54, 32, 939155)   aware datetime naive datetime과 달리 aware datetime은 시간대 정보(tzinfo) 도 갖습니다. import datetime from pytz import utc utc.localize(datetime.datetime.utcnow()) # UTC 기준 aware datetime : datetime.datetime(2019, 2, 15, 4, 55, 3, 310474, tzinfo=)   now는 UTC를 기준으로 현재 시각을 생성합니다. 하지만, naive한 시각입니다.  now = datetime.datetime.utcnow()   이 시각은 naive한 시각이므로 pytz.timezone.localize를 통해 timezone-aware한 시각으로 변환된 시각과 동일하지 않습니다.  assert now != utc.localize(now)   시간대 제대로 지정하기  시간대가 무엇이고, 명시하는 것이 왜 중요한지 알게 되셨다면 시간대를 원하는 의도에 맞게 지정하는 방법에 대해 알아봅시다.  import datetime from pytz import timezone, utc KST = timezone('Asia/Seoul') now = datetime.datetime.utcnow() # UTC 기준 naive datetime : datetime.datetime(2019, 2, 15, 4, 18, 28, 805879) utc.localize(now) # UTC 기준 aware datetime : datetime.datetime(2019, 2, 15, 4, 18, 28, 805879, tzinfo=) KST.localize(now) # UTC 시각, 시간대만 KST : datetime.datetime(2019, 2, 15, 4, 18, 28, 805879, tzinfo=) utc.localize(now).astimezone(KST) # KST 기준 aware datetime : datetime.datetime(2019, 2, 15, 13, 18, 28, 805879, tzinfo=)   replace() 메소드로 날짜나 시간대를 변경할 수 있습니다.  KST = timezone('Asia/Seoul') TW = timezone('Asia/Taipei') date = datetime.datetime.now() # datetime.datetime(2019, 2, 15, 13, 59, 44, 872224) date.replace(hour=10) # hour만 변경 # datetime.datetime(2019, 2, 15, 10, 59, 44, 872224) date.replace(tzinfo=KST) # tzinfo만 변경 # datetime.datetime(2019, 2, 15, 13, 59, 44, 872224, tzinfo=) date.replace(tzinfo=TW) # tzinfo만 변경 # datetime.datetime(2019, 2, 15, 13, 59, 44, 872224, tzinfo=)   하지만 replace는 그 속성 자체만을 바꿔버리는 것이기 때문에 사용에 주의할 필요가 있습니다.  now = datetime.datetime.utcnow() assert utc.localize(now) == now.replace(tzinfo=utc) assert KST.localize(now) != now.replace(tzinfo=KST) assert TW.localize(now) != now.replace(tzinfo=TW)  그뿐만 아니라 replace()를 이용할 경우 의도하지 않은 시간대로 설정될 수도 있으므로 유의해야 합니다. 그 이유는 아래와 같습니다.     시간대는 생각보다 자주 바뀝니다(더 자세한 내용은 스포카의 규칙 2번을 참고해주세요). 이렇게 변경되는 사항들은 tz database에 기록되는데, pytz는 이에 기반합니다. pytz의 버전이 2018.9와 같은 날짜로 되어있는데 2018.9 버전은 2018년 9월 기준 시간대 테이블을 기준으로 시간대를 만들어주는 버전입니다. 이 버전에선 Asia/Seoul의 시간대는 UTC+9입니다.   pytz는 무슨 이유에서 인지 datetime.replace()나 datetime.astimezone()에서 호출될 때 이 tz database 타임 테이블의 맨 첫 번째(가장 오래된) 기록을 가지고 변환을 시도합니다. 서울의 경우 초기에 UTC+8:28이었기 때문에 이 정보를 기반으로 변환합니다.   그래서 pytz를 사용할 때는 pytz.timezone.localize()를 항상 써야 하고, .astimezone()같은 파이썬의 표준 메서드들을 사용하고 싶다면 datetime.timezone을 사용해야 합니다.  스포카의 규칙 스포카에서 datetime을 다룰 때 흔히 따르는 두 가지 큰 원칙이 있습니다.  1. naive datetime은 절대 사용하지 않습니다. 가장 큰 이유는 naive datetime과 aware datetime을 서로 섞어서 쓰지 못한다는 것입니다.  >>> from datetime import datetime, timezone >>> datetime.utcnow() + datetime.now(tz=timezone.utc) Traceback (most recent call last): File "", line 1, in TypeError: unsupported operand type(s) for +: 'datetime.datetime' and 'datetime.datetime'   동적 타입 언어에서 쓸 수 있는 가장 간단한 타입 검사 수단인 isinstance() 체크로도 이 둘을 구별할 수가 없으므로, 코드의 어느 지점에서 naive datetime이 섞이기 시작하면 예기치 않은 지점에서 버그 발생 가능성이 급격히 올라갑니다. Python 2에서 str과 unicode를 섞으면 안 되는 것과 비슷한 이유라고 생각하시면 됩니다.  2. 장기적으로 보존해야 하는 datetime은 항상 UTC를 기준으로 저장합니다. 지역 시간대는 지정학적 또는 정치적인 이유로 생각보다 자주 바뀝니다. 예컨대 1961년 이전까지 한국은 UTC+08:30을 지역 시간대로 사용했었고, 1988년 올림픽 즈음에는 일광 절약 시간대를 시행하고 있었습니다. 시간대 데이터베이스(tz database)는 이런 변경 내역을 담고 있고, pytz가 제공하는 시간대 객체의 동작에도 반영되어 있습니다. 그 때문에 시간대 데이터베이스가 제때 업데이트되지 않거나, 갑작스러운 시간대 변경으로 데이터베이스에 반영이 늦어지거나 하면, 시간 계산에서 오차가 발생할 여지가 있습니다. 또한 같은 aware datetime 이어도 서로 다른 시간대를 가진 datetime끼리 연산하거나 하는 상황도 문제를 복잡하게 만들고, DB나 다른 서비스의 API를 사용할 때, 그 서비스가 시간대를 제대로 다루는 데에 필요한 복잡도를 감수하는 대신 단순히 UTC 기준의 고정 오프셋 시간대만 사용하는 등의 이유로 서로 지원 범위가 맞지 않아 곤란을 겪을 수도 있습니다.  혼선을 줄일 수 있는 좋은 규칙 중 하나는, str과 unicode를 다루던 것과 비슷하게 모든 내부적인 계산에서 UTC 기준의 aware datetime만 사용하고, 사용자에게 보여줘야 할 때만 필요한 시간대로 변환해서 보여 주는 것입니다.  스포카에서는 메인 서버의 dodo.datetime 유틸리티 모듈도 이런 규칙을 따르고 있으며, 대부분의 SQLAlchemy DB 모델 객체의 DateTime 컬럼에서 timezone=True 옵션을 켜서 사용하고 있습니다.  정리  시간 관련 작업을 하신다면 아래 사항을 꼭 기억해주세요.시간대를 명시합시다.시각을 애플리케이션 로직이나 데이터베이스에서 저장할 때는 UTC로 사용하고, 유저에게 표시할 때만 유저의 시간대로 변환하여 보여주도록 합시다.    백엔드 서버끼리 통신할 때도 항상 UTC를 사용한다는 가정을 하면, 시간대가 없더라도 robust하게 처리할 수 있습니다.
조회수 908

할아버지/할머니도 코딩을 해야 하는 이유

대부분의 교육은 초, 중, 고등학생이나 대학생 등 주로 젊은 층을 위주로 진행되고 있습니다. 프로그래밍 교육도 마찬가지로, 현재 10대에서 30대인 주로 젊은 층의 학생과 직장인들을 대상으로 교육이 서서히 일어나고 있습니다. 하지만 높아진 평균 수명으로 노인층이 급격히 늘어나고, 빠르게 변화하는 산업 아래 노인층의 재교육을 통한 지속적인 사회 활동이 요구 되는 시대가 되었습니다.2016년 한국의 인구분포도. 42–57세의 중장년층이 15–24의 청년층보다, 청년층이 0–9세의 유아층보다 월등히 많습니다. Wikipedia위 그래프에서 보이는 것처럼 이렇게 사회의 전체적인 평균 연령의 급격한 상승이 예고되어있음에도 불구하고, 고등학교나 대학까지의 일회성 교육이 아닌 전 연령층을 대상으로 한 지속적인 교육 제공은 아직 보편화 되어 있지 않습니다. 노인층 대상으로 진행되는 교육은 미미하며, 특히나 젊은층도 배우기 어려운 코딩 교육은 노인층에게는 교육이 불가능하거나 전혀 필요하지 않다고 여겨지고 있습니다.UC San Diego 대학의 Phillip Guo 교수Phillip Guo 교수는 HCI (사람-컴퓨터 인터랙션) 및 온라인/컴퓨터 교육 분야에서 명성이 높은 연구자입니다. Guo 교수는 처음으로 노인층에 대한 코딩 교육 연구를 진행하여 온라인에서 프로그래밍을 배운 52개국 60~80대 504명으로부터 다양한 설문조사와 심층조사를 진행한 결과를 CHI 국제 학술회에 출간했습니다. 본 연구 설명과 함께 엘리스에서 생각하는 로드맵을 소개합니다.연구본 연구는 http://www.pythontutor.com 웹사이트에서 실시된 온라인 코딩 교육 설문조사에 응한 504명의 60~85세 학생에 대한 심층 분석과 인터뷰로 이루어져있습니다. 이들이 코딩을 배우는 목적은 세가지 주요 요점으로 종합됩니다.첫째는 코딩을 배움으로서 노화되는 뇌를 자극하기 위함이고, 둘째로 젊은 시절 놓쳤던 새로운 기회를 잡기 위함, 그리고 마지막으로 어린 가족 구성원들과 소통하기 위함이었습니다.혼자 공부하는 방식의 교육은 온라인에서 특히 더 높은 이탈율을 보입니다.이들이 프로그래밍을 배우는 원동력은 교육을 통한 취업과 같은 정확히 정해진 목표보다는, 스스로의 동기부여 및 젊은층과의 소통을 위한 이유가 더 컸습니다. 코딩을 배우는 과정 중에 가장 힘든 세가지는 감퇴하는 인지력, 질문에 대답해 줄 수 있는 강사나 조교 혹은 학생이 없었고, 매번 변화하는 SW를 따라가기 어려움이 있었습니다. 첫번째를 제외한 나머지 어려움은 다른 연령층에서도 겪은 어려움이었습니다.마치며Philip Guo 교수의 논문에서 알 수 있는 것은 노인층이 노화하면서 겪을 수밖에 없는 배움의 어려움과 더불어, 현재 교육 시스템이 노인층을 전혀 고려하지 않고 있다는 것입니다. 이것은 노인층 대상의 교육을 더욱 어렵게 합니다.논문에서는 노인층에게 적합한 교육 시스템이 만들어지거나 제공된다면, 이들이 산업에 바로 투여될 수 있는 능력을 갖추기는 어려울 수도 있으나 프로그래밍 교육을 할 수 있는 선생님으로 활동할 수 있다고 서술하고 있습니다. 이를 활용하면 현재 현저히 부족한 SW 교육자 수로 어려움을 겪고 있는 공교육에 도움이 될 수 있습니다.엘리스에서는 라이브 교육 방송 진행, 헬프 센터 조교 도우미 등 학생들에게 좋은 교육을 제공하기 위해 부단히 노력하는 다양한 연령층의 온라인 조교님들이 계십니다. 언젠가는 60~80대 조교님이 활동하실 수 있다고 믿고 있습니다. 이러한 믿음을 주신 중2 아들을 둔 한 어머니의 피드백을 참조합니다. (엘리스 기초 자바 과정에서 최상위 점수를 받으셨습니다.)저는 전공도 인문학쪽이고 수학 싫어서 문과갔던 문과생인지라, 코딩처럼 논리력 요구하는 수업 따라가기나 할까 큰 기대없이 시작했었습니다.수업 초반에는 마냥 어리둥절했고, 시키는대로 따라하면 다 되었기 때문에 ‘어라 쉽잖아?’ 라고 느꼈습니다. 하지만 중반부 넘어가면서…클래스, 메소드라는 개념이 낯설기도 했고, 각종 연산자의 적용이나 변수들을 식에 적용시키는 다양한 패턴들이 적응이 잘 안되었어요. 반복문의 순서나 마침표,세미콜론, 콜론을 기억하지 못해서 다시 되돌아와서 확인한 것만도 수 십번이었습니다.다른 분들은 마치 초급 과정을 어디서 마스터 하고 온 것처럼 잘 따라가시는데, 저는 매 시간마다 헤매고 오류나고…하지만 똑똑한 것 보다 꾸준한 것이 더 낫다고… ‘머리가 안따라가면 더 오래 공부하면 되겠지’ 하고 다시 보고, 다시 풀고, 계속 질문하고그러나보니 어느 순간 이해가 가는 개념들, 저절로 외워지는 패턴들이 조금씩 늘어났어요.특히 실시간 강의라서 피드백을 받을 수 있고, 조교님이나 강사님들께 질문을 편하게 할 수 있는 시스템이 정말 좋았습니다. 비주얼 좋은 두 분이 수업을 진행해 주신 것도 좋았구요. 반응 좋은 우리 반 수강생들도 참 좋았습니다.저녁 설거지 해 두고 (때로는 저녁상을 치우기 바쁘게) 컴퓨터 앞에 앉아서 8주간 공부한 시간들이 저한테는 정말 소중한 시간이었습니다. 이렇게 집안 일 하고, 애들 챙기면서도 공부할 수 있고, 배울 수 있다는 것이 너무 좋습니다. 좋은 강의 열어주셔서 고맙습니다. ^^*p.s.수업 중에 어떤 분이 자바 알고리즘 강의 열어달라고 하시던데, 알고리즘이 뭔지 물어보고 싶었는데 못 물어봤네요 ㅋ#엘리스 #코딩교육 #교육기업 #기업문화 #조직문화 #서비스소개
조회수 995

[Tech Blog] Software architecture: The important stuff

마틴 파울러는 Software architecture 를 “무엇이건 간에 중요한 것들(The important stuff whatever it is)” 이라고 정의합니다. 조금은 재미있는 정의지만, 그 정의를 도출하기 위해 제시한 다른 정의를 들어보면 고개를 끄덕이게 합니다.  Software architecture 는 전문 개발자들이 같은 생각을 가지고 이해하는 시스템 디자인입니다. Software architecture 는 이른 시기에 정해져야 하는 디자인 결정들입니다. 혹은 여러분이 “아, 처음부터 좀 더 잘 생각하고 할 껄”이라고 후회하는 바로 그 결정들입니다. Software architecture 는 또한 바꾸기 어려운 결정들의 집합입니다.  결국 무엇을 중요하게 생각할 것인가, 그것이 Software Architecture 라는 의미입니다. Why is it important? 왜 중요한지 설득하지 못한다면 사실 중요하지 않은 것일지도 모르죠. 그래서 왜 Software Architecture 이 중요한지 짚어보고자 합니다. 쿠팡은 Microservice architecture 로 전환하는 여정을 글로 남겼는데요. 블로그 글의 제목을 “행복을 찾기 위한 우리의 여정” 이라고 지었습니다. (좋은 글이니 읽어보시길!) 다시 말해서, Software Architecture는 개발가자 더 좋은 제품을 만들 수 있는 길이기 때문에 중요하다고 말합니다. 그러나 좋은 Software Architecture를 만드는 일은 쉽지 않습니다. 블로그 글을 인용 해보겠습니다: “여기 저렴한 제품과 비싼 제품이 있습니다. 비싼 제품은 software architecture 가 잘 고려되어 있고, 저렴한 제품은 시스템 디자인에 대한 고민 없이 구현되어 있습니다. 하지만 두 제품은 겉으로 보기에 차이가 없습니다. 소비자가 보기에 똑같이 보이고, 똑같은 기능이 있으며, 성능 또한 같습니다. 어떤 제품을 사야할까요?” 소비자는 제품을 만든 개발자의 행복을 위해 더 비싼 제품을 선택하지는 않습니다. 개발자 역시 동료들에게 “내가 행복하려면 시간과 돈이 좀 더 들더라도 좋은 software architecture 를 구성해야 해.” 라고 주장하기엔 설득력이 부족하죠. Software architecture 가 왜 중요한지 모두가 공감하려면 경제적인 입장에서 그 중요성을 설득해야 합니다. “내부 품질을 좀 포기하더라도 이번 릴리즈에 더 많은 기능들이 들어가야 해.” 라는 의견에 “안돼 우리(개발자)는 더 전문적으로 구성해야 해.”라는 의견으로 대응하면 항상 질 수 밖에 없습니다. 장인 정신과 경제 논리 사이의 싸움에서는 경제 논리가 항상 이겨왔거든요.   Cumulative functionality over Time Software architecture 를 고려하지 않으면서 제품을 개발하면 초기에는 기능 추가 속도가 빠를 수 있지만, 시간이 흐름에 따라 제품의 기능 증가 속도는 점차 느려집니다. 이미 구현된 기능들과 코드가 새로운 기능을 추가하는데 걸림돌이 되기 때문입니다. 한편, 좋은 설계를 지속적으로 건강하게 유지하고, 주기적으로 리팩토링을 하고, 코드를 깨끗하게 유지한다면 시간이 흘러도 기능 추가가 느려지지 않을 수 있습니다. 오히려 기능을 추가하기 위해 수정해야 할 곳들이 명확하고 모듈화 또한 잘 되어있기 때문에 시간이 갈 수록 기능 추가가 더욱 빠르게 진행될 수 있습니다. 새로운 개발자가 참여하는 시점에도 시스템을 더욱 빠르게 이해하고, 더 빠르고 안전하게 기능을 추가할 수 있게 됩니다. 결국 장기적으로 더 많은 기능을 생산하고 빠르게 고객에게 전달하기 위해서 개발팀은 좋은 디자인과 설계에 대해 깊게 고민해야 합니다. What is the best software architecture? 옳은 software architecture 는 없습니다. 상황에 따라 해답은 다를 수 있습니다. Microservice architecture 가 좋다고 해서 모든 것에 대한 답이 microservice architecture 인 것은 아니고, 마찬가지로 어떤 시스템이 monolithic architecture 로 구현되어 있다고 해서 뒤쳐져 있는 것도 아닙니다. 모든 선택에는 Tradeoff 가 있기 마련이니까요. 유선 통신 시스템을 구성한다고 생각해 볼까요? 우리 나라처럼 인터넷이 잘 구성된 상황에서 Skype 로 할 수 있는 통화는 무료이고, 품질도 좋고, 영상 통화까지 됩니다. “Skype 만세! 인터넷을 통한 통신이 항상 옳습니다!” 라고 외치려던 시점에 정전이 되었습니다. 방금 외친 외침은 멀리 가봐야 옆집 정도 닿겠죠. 한편 기존 유선 전화 시스템은 느리고 화상 통화도 안되지만, 전화선 자체에 전원이 공급되고 있기 때문에 정전 시에도 통화가 가능합니다. 전쟁 상황이나 기타 재난 등에도 반드시 통신이 가능해야 하는 곳은 유선 전화 시스템이 꼭 필요할 것 같습니다. 은행 시스템도 적절한 예시가 될 수 있습니다. 비밀번호 입력, 전화 인증, OTP 확인하는 등 은행 업무는 왜이리도 복잡할까요? 그냥 비밀번호 기억해주고 로그인 유지해주면 참 편할텐데 말이죠. 안전하기 위해서겠죠. 여러분의 자산은 소중하니까요. 사용성(Usability)과 안전성(Security)은 종종 둘 사이를 조절해야 하는 Tradeoff 입니다. 만들려는 제품과 시스템, 환경, 시기와 조건 등에 따라서 적절한 architecture 는 달라집니다. 좋은 architecture 를 선택할때 개발자는 선택한 것의 대척점에 있는 무언가를 포기 해야합니다. 그렇기에 software architecture 는 기술적인 범주 안에서만 고려되면 안되고, 구현하고자 하는 비지니스를 매우 잘 이해하고 고려해서 적용해야 합니다. What are you going to do? 이미 구성된 software architecture 를 변경하는 것은 굉장히 어렵습니다. 이미 구성되어 있는 것들을 상세하게 알고 있어야 하고, 비지니스의 요구 사항을 수용해야 하며, 이미 존재하는 기능이 변경 도중 문제 없이 동작해야 합니다. 또한 기존 시스템에 기여한 개발자들과 변경 사항에 대한 공감대를 이뤄야 하며, 겉으로 보기에 당장 변화가 없는 것에 대한 비용에 대해 많은 사람들을 설득해야 합니다. 최근 Buzzvil 에서는 Architecture Task Force 팀을 구성하였습니다. 이를 통해 전체적인 설계를 정비하고 모든 개발팀이 구조적으로 같은 이해를 할 수 있도록 분석, 조사, 계획 수립, 실행에 옮길 예정입니다. 지속적인 공유를 통해 전사적인 공감대를 유지하고 체계적인 문서화와 가이드라인을 통해 모든 팀원이 함께 실행하며 성장할 수 있는 기반을 준비하게 될 것입니다. 궁극적으로 전사 프로젝트와 모든 팀이 더욱 빨리 움직일 수 있는 software architecture 를 구성하고, 이를 통해 더 많은 기능을 더 빠르게 전달할 수 있게 할 것입니다. 아직 해야할 일들이 많이 남아있지만 제대로 계획하고 빠르게 움직인다면 충분히 좋은 결과를 만들 수 있을 것 같습니다. 당장은 눈에 보이는 변화가 없을지라도, 좋은 디자인에 대한 고민과 실행이 우리가 궁극적으로 바라는 비전과 목표에 한 걸음 더 빠르게 다가가는 올바른 길이라고 믿습니다.   *버즈빌에서 개발자를 채용 중입니다. (전문연구요원 포함)작가소개 Whale, Chief Architect “Keep calm and dream on.”
조회수 2351

전산팀의 홍일점, 김민서 개발자

안녕하세요 써티입니다!벌써 4월 중순, 벚꽃 흩날리는 봄이에요.비욘드펀드는 오늘도 상품 두개나 오픈했어요!오늘의 인터뷰 주인공은전산팀의 홍일점! 김민서 개발자입니다.입사 4개월차 신입이지만맡은 몫을 완벽히 해내고 계신 민서님:)사내인터뷰를 거부하며 3주간 저를 피해다니셨지만............ 언주역 태양빌딩에서 나의 인터뷰를 피할 수 있는 자 아무도 없으리.재밌는 이야기 들어볼까요?1. 안녕하세요 민서님. 전산팀의 유일한 여자 개발자이시네요. 현재 맡고 있는 일을 간단히 설명해주세요.일단 전산팀은 부장님, 과장님, 대리님, 저까지 총 4명인데요. 저는 비욘드펀드 홈페이지 프론트엔드를 맡고 있습니다.2. 프론트엔드가 뭔가요? (역시 개발자 인터뷰가 젤 어렵;;)음….홈페이지 구성할 때 프론트엔드와 백엔드가 있는데요. 프론트엔드는 브라우저로 보이는 기능들을 만드는거고 백엔드는 프론트엔드가 기능을 제대로 할 수 있도록 해주는 거거든요. 지금 백엔드는 과장님이 하고 계시고요. 제가 하는 일은 사용자들이 비욘드펀드 홈페이지에 들어갔을 때 보이는 모든 것들이라고 생각하시면 됩니다.3. 여기가 첫 직장이시라고 들었어요. 어떻게 오게 되셨어요?비욘드플랫폼에 합류하기 전에 한국정보기술연구원(Kitri) 산하 학원에서 웹/어플리케이션 과정을 공부하고 있었는데요. 추천 채용이 들어와서 면접을 보게 됐어요.4. 그러면 전공도 공대쪽이겠네요? 혹시…. 공대 아름이?+_+여대였어요……………………(절망) (역시 여대나온 써티도 함께 웁니다)서울 모 여대에서 컴퓨터학과를 졸업했습니다^^5. 면접 보고 어떠셨어요? P2P금융이라는 산업에 대해서는 알고 계셨었나요?잘 몰랐어요. 금융회사의 개발자가 되라라고는 상상도 못했죠. 사실 스타트업에서 일한다는 생각 자체를 해본 적이 없어요. 아는 분이 스타트업에 다니셔서 제안을 받아본 적은 있지만 진지하게 고려해보지 않았었거든요. 항상 일이 많은 전산팀...... ㅠㅠ 태양빌딩 3층에서는 커피를 양손에 들고 전산실로 걸어가는 그녀의 모습을 종종 발견할 수 있다.6. 오, 그런데 비욘드플랫폼에는 합류를 하신거네요?처음에는 회사소개에 ‘카드론’, ‘대부업’ 같은 단어가 나오니까 걱정이 좀 됐었어요. 사실 아직도 P2P금융이 일반인들에게는 많이 알려져 있지 않잖아요. 더구나 저처럼 금융에 대해서 잘 모르는 사람들은 더더욱 들어본 적이 없고요. 친구들에게 ‘여기 어떤 것 같아?’라고 물어봐도 다들 가지말라고 하더라고요ㅎㅎ그런데 홈페이지 들어가보니까 깔끔한 분위기가 맘에 들었어요. 트렌디한 회사 같다는 느낌? 대표님도 삼일회계법인 임원 출신의 대단한 분이라서 믿고 입사를 하게 됐어요.7. 그래서 P2P금융에는 관심을 좀 갖게 되셨어요?아니요. 돈이 없어요ㅋㅋㅋㅋㅋㅋㅋ 농담이고요. 비욘드펀드 상품이 좋은건 알겠는데 개발자다 보니 솔직히 완벽히 상품을 이해하진 못했어요. 지금은 사회초년생이라 투자할만한 돈은 없지만 목돈이 생기면 P2P로 재테크해볼 생각입니다.8. 비욘드펀드가 이제 좀 커나가고 있는데, 어떤 회사가 됐음 좋겠어요?비욘드펀드라고 말했을때 ‘거기 믿을만하다!’라는 평을 들을 수 있는 그런 회사가 됐으면 좋겠습니다. (사내 복지 쪽으로는 아침을 주면 좋겠…)9. 일적으로 목표가 있다면?솔직히 아직 잘 모르겠어요. 그게 문제라고 생각하기도 하면서도… 이제 4개월차 개발자니까 한창 고민할 때라고 생각해요. 예전에는 모호하게 알던 것들이 이제 조금 구체적으로 다가와요. 점점 더 디테일하게 알아가면서 깊이 공부하고 싶은 부분들이 생기는 것 같아요. 일단은 비욘드플랫폼에서 주어진 일을 열심히 해나가는 것이 목표입니다.10. 마지막으로 민서님이 제일 좋아하는건?누워있는거요. 주말에 약속 잡는 친구들이 제일 싫어요. 완전 집순이거든요. 그래서 우리 회사 휴게실에 있는 영롱한 오렌지색의 이케아 빈백이 너무 탐나요. 나중에 사려고요.민서님이 좋아하는 휴게실 빈백(옆)에서 진행된 즐거운 인터뷰!요즘 비욘드펀드가 상품출시를 활발히 하다보니 민서님이 많이 바쁘신 것 같은데, 화이팅입니다:)#비욘드플랫폼서비스 #비욘드펀드 #개발자 #인터뷰 #팀원 #팀원소개 #팀원인터뷰 #사내문화 #조직문화 #기업문화
조회수 1443

레진 기술 블로그 - 자바 기반의 백엔드와의 세션 공유를 위한 레일즈 세션 처리 분석

레일즈 기반의 프론트엔드(브라우저에서 서버 사이드 렌더링 계층까지)와 자바 기반의 백엔드(내부 API와 그 이후 계층)이 세션을 공유하기 위해 먼저 레일즈의 세션 처리 과정을 분석하고, 레일즈 세션 쿠키를 다루기 위한 자바 소스 코드를 공유합니다.여기저기 자랑하고 다녔으니 아시는 분은 아시다시피 레진은 구글앱엔진을 사용하고 있습니다. 지금이야 Java, Python, Node.js, Go 언어와 Flexible Environment 같은 다양한 선택지가 있지만, 레진이 입주할 당시만 해도 Java 7(subset), Python(subset)을 지원하는 Standard Environment라는 선택지 밖에 없었죠.최근 Saemaeul Undong 기술 부채 탕감의 일환으로 자바7, 스프링3.x, JSP(!) 기반의 백엔드에 포함되어 있던 프론트엔드를 레일즈 기반의 프론트엔드 서버(서버 사이드 렌더링을 담당하는 서버는 프론트일까요? 백엔드일까요?)로 분리하고 있습니다.서로 다른 세계의 존재들 - 자바와 레일즈의 세션을 공유해야하는 상황이 문제의 발단입니다.자바와 레일즈의 세션을 공유하는 여러가지 방법이 있겠지만, 가장 단순하고 효과적인 방법은 쿠키(cookie)라고 판단하고, 세션 encrypt/decrypt와 marshal/unmarshal을 동일한 방식으로 맞추기로 했습니다. (백엔드 API를 완전히 stateless하게 새로 만들면 좋겠지만, 코인은 벌어야 소는 키워야죠)이를 위해 레일즈의 세션 처리 과정을 분석하고 정리했습니다.레일즈의 actionpack의 action_dispatch/middleware/cookie.rb를 보면 EncryptedCookieJar 클래스의 초기화 과정은 다음과 같습니다(digest의 경우 따로 지정안하면 SHA1이 사용되는 듯):class EncryptedCookieJar < AbstractCookieJar # :nodoc: include SerializedCookieJars def initialize(parent_jar) super if ActiveSupport::LegacyKeyGenerator === key_generator raise "You didn't set secrets.secret_key_base, which is required for this cookie jar. " + "Read the upgrade documentation to learn more about this new config option." end secret = key_generator.generate_key(request.encrypted_cookie_salt || '') sign_secret = key_generator.generate_key(request.encrypted_signed_cookie_salt || '') @encryptor = ActiveSupport::MessageEncryptor.new(secret, sign_secret, digest: digest, serializer: ActiveSupport::MessageEncryptor::NullSerializer) end private def parse(name, encrypted_message) debugger deserialize name, @encryptor.decrypt_and_verify(encrypted_message) rescue ActiveSupport::MessageVerifier::InvalidSignature, ActiveSupport::MessageEncryptor::InvalidMessage nil end def commit(options) debugger options[:value] = @encryptor.encrypt_and_sign(serialize(options[:value])) raise CookieOverflow if options[:value].bytesize > MAX_COOKIE_SIZE end end key_generator는 EncryptedCookieJar에 포함된 SerializedCookieJars 모듈에 정의되어 있습니다:module SerializedCookieJars # ... def key_generator request.key_generator end end 흠… 좀 더 파보죠. request.key_genrator는 다음과 같습니다:class Request # ... def key_generator get_header Cookies::GENERATOR_KEY end #... end 흠… 좀 더 파야할 듯 ㅠㅠ.Cookies::GENERATOR_KEY는 다음과 같습니다:class Cookies #... GENERATOR_KEY = "action_dispatch.key_generator".freeze end action_dispatch.key_generator는 레일즈의 엔진 모듈에 해당하는 railties의 application.rb에 정의되어 있습니다:def key_generator # number of iterations selected based on consultation with the google security # team. Details at https://github.com/rails/rails/pull/6952#issuecomment-7661220 @caching_key_generator ||= if secrets.secret_key_base unless secrets.secret_key_base.kind_of?(String) raise ArgumentError, "`secret_key_base` for #{Rails.env} environment must be a type of String, change this value in `config/secrets.yml`" end key_generator = ActiveSupport::KeyGenerator.new(secrets.secret_key_base, iterations: 1000) ActiveSupport::CachingKeyGenerator.new(key_generator) else ActiveSupport::LegacyKeyGenerator.new(secrets.secret_token) end end # ... def env_config @app_env_config ||= begin validate_secret_key_config! super.merge( # ... "action_dispatch.key_generator" => key_generator, "action_dispatch.signed_cookie_salt" => config.action_dispatch.signed_cookie_salt, "action_dispatch.encrypted_cookie_salt" => config.action_dispatch.encrypted_cookie_salt, "action_dispatch.encrypted_signed_cookie_salt" => config.action_dispatch.encrypted_signed_cookie_salt, "action_dispatch.cookies_serializer" => config.action_dispatch.cookies_serializer, "action_dispatch.cookies_digest" => config.action_dispatch.cookies_digest ) end end 너무 깊이 판 느낌적느낌(?)이 있지만, 여기까지 왔으니 좀 더 파보겠습니다.핵심 알고리즘은 activesupport의 key_generator.rb, message_encryptor.rb, message_verifier.rb에 정의되어 있습니다.먼저, key_generator.rb의 핵심은 다음과 같습니다:class KeyGenerator def initialize(secret, options = {}) @secret = secret # The default iterations are higher than required for our key derivation uses # on the off chance someone uses this for password storage @iterations = options[:iterations] || 2**16 end # Returns a derived key suitable for use. The default key_size is chosen # to be compatible with the default settings of ActiveSupport::MessageVerifier. # i.e. OpenSSL::Digest::SHA1#block_length def generate_key(salt, key_size=64) OpenSSL::PKCS5.pbkdf2_hmac_sha1(@secret, salt, @iterations, key_size) end end 계속해서, message_encryptor.rb의 핵심은 다음과 같습니다:def initialize(secret, *signature_key_or_options) options = signature_key_or_options.extract_options! sign_secret = signature_key_or_options.first @secret = secret @sign_secret = sign_secret @cipher = options[:cipher] || 'aes-256-cbc' @verifier = MessageVerifier.new(@sign_secret || @secret, digest: options[:digest] || 'SHA1', serializer: NullSerializer) @serializer = options[:serializer] || Marshal end def _encrypt(value) cipher = new_cipher cipher.encrypt cipher.key = @secret # Rely on OpenSSL for the initialization vector iv = cipher.random_iv encrypted_data = cipher.update(@serializer.dump(value)) encrypted_data << cipher.final "#{::Base64.strict_encode64 encrypted_data}--#{::Base64.strict_encode64 iv}" end def _decrypt(encrypted_message) cipher = new_cipher encrypted_data, iv = encrypted_message.split("--".freeze).map {|v| ::Base64.strict_decode64(v)} cipher.decrypt cipher.key = @secret cipher.iv = iv decrypted_data = cipher.update(encrypted_data) decrypted_data << cipher.final @serializer.load(decrypted_data) rescue OpenSSLCipherError, TypeError, ArgumentError raise InvalidMessage end def encrypt_and_sign(value) verifier.generate(_encrypt(value)) end def decrypt_and_verify(value) _decrypt(verifier.verify(value)) end (Hopefully)마지막으로, message_verifier.rb의 핵심은 다음과 같습니다:def initialize(secret, options = {}) raise ArgumentError, 'Secret should not be nil.' unless secret @secret = secret @digest = options[:digest] || 'SHA1' @serializer = options[:serializer] || Marshal end def valid_message?(signed_message) return if signed_message.nil? || !signed_message.valid_encoding? || signed_message.blank? data, digest = signed_message.split("--".freeze) data.present? && digest.present? && ActiveSupport::SecurityUtils.secure_compare(digest, generate_digest(data)) end def verified(signed_message) if valid_message?(signed_message) begin data = signed_message.split("--".freeze)[0] @serializer.load(decode(data)) rescue ArgumentError => argument_error return if argument_error.message =~ %r{invalid base64} raise end end end def generate(value) data = encode(@serializer.dump(value)) "#{data}--#{generate_digest(data)}" end private def encode(data) ::Base64.strict_encode64(data) end def decode(data) ::Base64.strict_decode64(data) end def generate_digest(data) require 'openssl' unless defined?(OpenSSL) OpenSSL::HMAC.hexdigest(OpenSSL::Digest.const_get(@digest).new, @secret, data) end # ... # encode, decode는 base64사용 이제 레일즈가 쿠키 기반의 세션을 어떻게 처리하는지 조금 눈에 들어옵니다. 그러나 우리의 최종 목표는 레일즈의 내부를 공부하는 것이 아니라, 자바에서 동일한 처리를 하는 것입니다. 모듈 의존성 따위는 가볍게 무시하고 무한복붙(?)을 시전해서, 레일즈의 세션 처리 과정을 눈으로 확인할 수 있도록 재구성했습니다:require 'openssl' require 'base64' require 'concurrent/map' class Object def blank? respond_to?(:empty?) ? !!empty? : !self end def present? !blank? end end class Hash # By default, only instances of Hash itself are extractable. # Subclasses of Hash may implement this method and return # true to declare themselves as extractable. If a Hash # is extractable, Array#extract_options! pops it from # the Array when it is the last element of the Array. def extractable_options? instance_of?(Hash) end end class Array def extract_options! if last.is_a?(Hash) && last.extractable_options? pop else {} end end end module SecurityUtils def secure_compare(a, b) return false unless a.bytesize == b.bytesize l = a.unpack "C#{a.bytesize}" res = 0 b.each_byte { |byte| res |= byte ^ l.shift } res == 0 end module_function :secure_compare end class KeyGenerator def initialize(secret, options = {}) @secret = secret # The default iterations are higher than required for our key derivation uses # on the off chance someone uses this for password storage @iterations = options[:iterations] || 2**16 end def generate_key(salt, key_size=64) OpenSSL::PKCS5.pbkdf2_hmac_sha1(@secret, salt, @iterations, key_size) end end class CachingKeyGenerator def initialize(key_generator) @key_generator = key_generator @cache_keys = Concurrent::Map.new end # Returns a derived key suitable for use. def generate_key(*args) @cache_keys[args.join] ||= @key_generator.generate_key(*args) end end class MessageVerifier class InvalidSignature < StandardError; end def initialize(secret, options = {}) raise ArgumentError, 'Secret should not be nil.' unless secret @secret = secret @digest = options[:digest] || 'SHA1' @serializer = options[:serializer] || Marshal end def valid_message?(signed_message) return if signed_message.nil? || !signed_message.valid_encoding? || signed_message.blank? data, digest = signed_message.split("--".freeze) data.present? && digest.present? && SecurityUtils.secure_compare(digest, generate_digest(data)) end def verified(signed_message) if valid_message?(signed_message) begin data = signed_message.split("--".freeze)[0] @serializer.load(decode(data)) rescue ArgumentError => argument_error return if argument_error.message =~ %r{invalid base64} raise end end end def verify(signed_message) verified(signed_message) || raise(InvalidSignature) end def generate(value) data = encode(@serializer.dump(value)) "#{data}--#{generate_digest(data)}" end private def encode(data) ::Base64.strict_encode64(data) end def decode(data) ::Base64.strict_decode64(data) end def generate_digest(data) require 'openssl' unless defined?(OpenSSL) OpenSSL::HMAC.hexdigest(OpenSSL::Digest.const_get(@digest).new, @secret, data) end end class MessageEncryptor module NullSerializer #:nodoc: def self.load(value) value end def self.dump(value) value end end class InvalidMessage < StandardError; end OpenSSLCipherError = OpenSSL::Cipher::CipherError def initialize(secret, *signature_key_or_options) options = signature_key_or_options.extract_options! sign_secret = signature_key_or_options.first @secret = secret @sign_secret = sign_secret @cipher = options[:cipher] || 'aes-256-cbc' @verifier = MessageVerifier.new(@sign_secret || @secret, digest: options[:digest] || 'SHA1', serializer: NullSerializer) @serializer = options[:serializer] || Marshal end def encrypt_and_sign(value) verifier.generate(_encrypt(value)) end def decrypt_and_verify(value) _decrypt(verifier.verify(value)) end def _encrypt(value) cipher = new_cipher cipher.encrypt cipher.key = @secret # Rely on OpenSSL for the initialization vector iv = cipher.random_iv encrypted_data = cipher.update(@serializer.dump(value)) encrypted_data << cipher.final "#{::Base64.strict_encode64 encrypted_data}--#{::Base64.strict_encode64 iv}" end def _decrypt(encrypted_message) cipher = new_cipher encrypted_data, iv = encrypted_message.split("--".freeze).map {|v| ::Base64.strict_decode64(v)} cipher.decrypt cipher.key = @secret cipher.iv = iv decrypted_data = cipher.update(encrypted_data) decrypted_data << cipher.final @serializer.load(decrypted_data) rescue OpenSSLCipherError, TypeError, ArgumentError raise InvalidMessage end def new_cipher OpenSSL::Cipher.new(@cipher) end def verifier @verifier end end #key generate encrypted_cookie_salt = 'encrypted cookie' encrypted_signed_cookie_salt = 'signed encrypted cookie' def key_generator secret_key_base = 'db1c366b854c235f98fc3dd356ad6be8dd388f82ad1ddf14dcad9397ddfdb759b4a9fb33385f695f2cc335041eed0fae74eb669c9fb0c40cafdb118d881215a9' key_generator = KeyGenerator.new(secret_key_base, iterations: 1000) CachingKeyGenerator.new(key_generator) end # encrypt secret = key_generator.generate_key(encrypted_cookie_salt || '') sign_secret = key_generator.generate_key(encrypted_signed_cookie_salt || '') encryptor = MessageEncryptor.new(secret, sign_secret, digest: 'SHA1', serializer: MessageEncryptor::NullSerializer) value = "{\"session_id\":\"6022d05887d2ab9c1bad8a87cf8fb949\",\"_csrf_token\":\"OPv/LxbiA5dUjVsbG4EllSS9cca630WOHQcMtPxSQUE=\"}" encrypted_message = encryptor.encrypt_and_sign(value) #encrypted_message = encryptor._encrypt(value) p '-----------encrypted value-------------' p encrypted_message # decrypt encrypted_message = 'bDhIQncxc2k0Rm9QS0VBT0hWc3M4b2xoSnJDdkZNc1B0bGQ2YUhhRXl6SU1oa2c5cTNENWhmR0ZUWC9zN05mamhEYkFJREJLaDQ3SnM3NVNEbFF3ZVdiaFd5YXdlblM5SmZja0R4TE9JbDNmOVlENHhOVFlnamNVS2g1a05LY0FYV3BmUmRPRWtVNUdxYTJVbG5VVUlRPT0tLXd1akRqOU1lTTVneU9LTWszY0I5bFE9PQ==--b0a57266c00e76e0c7d9d855b25d24b242154070' p '-----------decypted value-------------' puts encryptor.decrypt_and_verify encrypted_message p '---------------------------------------' 이 과정을 자바로 구현한 소스는 생략 깃헙에 올려두었습니다. 이 코드를 이용해서 서블릿 세션과 연동하는 방법은 추후 사측(?)과 협의되는 대로 공유할 예정입니다. 물론, 그 전에 쿠키를 공유할 필요가 없어지면(or 공유할 쿠키가 없어지면) 더 좋겠죠 :D
조회수 1428

Code without Limits

WWDC18 Review (1): Bring the Func! 보기 Introduction지난 글 Bring the Func! 에서 WWDC를 소개했습니다. Keynote와 Platforms State of the Union에서 인상 깊었던 경험도 소개했고요. WWDC 첫째 날은 애플에서 큰 이벤트를 진행했고, 둘째 날부터 마지막날까지는 세션과 랩스, 스페셜 이벤트를 진행했습니다. 이번엔 지난 글에서 미처 쓰지 못했던 것을 소개하겠습니다.SessionWWDC 하면 가장 먼저 떠오르는 건 대개 Keynote입니다. 하지만 다른 세션이나 랩스부터 생각나는 애플 개발자도 있을 겁니다. 저도 처음엔 Keynote만 기대했지만, 행사에 참여하면서 세션과 랩스의 매력(?)에 빠졌습니다.Apple Developer 웹사이트에서 수많은 기술 관련 영상을 볼 수 있다.애플 관련 애플리케이션 개발자는 문제에 부딪히면 Apple Developer 웹사이트에서 도움을 얻는데요. 특히 Development Videos 사이트에 들어가면 그해 발표한 WWDC 세션부터 시작해서 그 동안의 세션들을 모두 볼 수 있습니다. Topics에서는 주제별로 카테고리를 만들어, 해당 주제에 관한 동영상들을 모아서 볼 수 있고, Library에서는 찾고자 하는 내용에 대한 키워드를 검색해서 찾을 수 있습니다.Development Videos - Apple Developer 첫 화면Topics 에서는 주제별 동영상들을 볼 수 있다.Library 에서는 검색하는 키워드에 해당하는 동영상들을 볼 수 있다.WWDC 행사장은 Hall 1 ~ Hall 3, 그리고 Executive Ballroom까지 4개의 방으로 구성되어 있었습니다. 이곳에서 각각의 세션을 들을 수 있었는데요. 시간대별로 3~4개의 세션을 동시에 진행합니다. 듣고 싶은 세션은 해당하는 방에 들어가서 들으면 됩니다. 만약 같은 시간에 듣고 싶은 세션이 두 개 이상이라면 하나만 현장에서 듣고, 다른 세션은 developer 웹사이트 또는 WWDC 앱에서 업로드되길 기다려야겠죠. 물론 24시간이 지나면 세션 영상이 WWDC앱에 업로드됩니다. WWDC 앱에서 제공하는 행사장 지도세션이 진행되는 곳의 내부수많은 개발자의 똑똑한 머리와 지미집세션이 시작되자 개발자들은 무릎 위에 올려 놓은 맥북을 열심히 쳤습니다. 하나라도 놓치기 싫어서 열심히 타자를 치는 개발자들의 모습이 멋있었습니다. 마치 대학 영어 강의를 듣는 기분이었죠.아쉬운 점이 있다면, 에어컨을 너무 강하게 틀어 세션 행사장이 매우 추웠다는 겁니다. 며칠을 견디다 마지막 날엔 결국 행사장 밖에서 라이브로 시청했습니다. 그리고 세션을 진행하는 동안 빠르게 코딩을 하다 보니, 소스 코드를 다 작성하기도 전에 다음 장면으로 넘어가는 부분이 많았습니다. 실시간으로 같이 작업할 예제 소스 코드를 제공하거나 조금 더 효율적으로 세션을 들을 수 있게 해줬으면 좋겠다는 생각이 들었습니다.행사장에서 제공하는 아침 식사와 함께 맥북 프로에서 라이브로 세션 시청What’s new in ARTKit 2지금부터는 인상 깊었던 세션 세 가지를 소개하겠습니다. 첫 번째는 What’s new in ARTKit 2였습니다. 이 세션이 가장 인상 깊었던 이유는 애플이 AR에 중점을 두고 있다는 생각이 들었기 때문입니다. 실제로 Keynote 발표 중에 장난감용 블럭을 만드는 회사 관계자 두명이 AR을 활용한 앱을 실행해 노는 모습을 보여주기도 했습니다.Keynote 발표 중 한 장면. 크레이그 페더리기가 AR 파트에서 Shared experiences에 대해 발표하고 있다.가장 재미있었던 건 현실 공간을 저장해 다른 유저들과 공유할 수 있는 기능이었습니다. ARWorldMap Object를 이용해 사용자가 기기를 움직이면서 현실 공간의 모습을 저장합니다. 나중에 앱을 다시 실행하면 저장했던 현실 공간 맵이 그대로 유지되고, 이전의 모습도 나타나죠. 예를 들어, 노란 테이블 위에 가상의 물건을 올려 놓았다면, 나중에 테이블을 향해 기기를 움직였을 때, 그 자리에 놓여있던 가상의 물건이 다시 나타납니다. 또한, 저장한 맵을 근처의 다른 유저의 기기로 전송할 수 있습니다. 이렇게 하면 서로 다른 기기에서 같은 맵을 보면서, 같은 경험을 할 수 있게 됩니다. 개념을 확장하면 하나의 AR앱으로 다중 유저들이 게임을 함께 즐기거나 멀리 떨어져 있어도 같은 교육을 받을 수 있죠.SwiftShot AR게임을 즐기려고 기다리는 개발자들WWDC18 Keynote에서 잠깐 소개되었던 SwiftShot AR 게임이 이런 특징을 잘 나타난 앱입니다. 실제로 행사장 1층 안쪽에 이 게임을 즐길 수 있는 공간이 따로 마련되어 있었습니다. 개발자들이 직접 게임을 즐길 수 있었고, 마지막 날엔 개인전과 팀전을 진행해 1등에게 선물(AR뱃지)을 주었습니다. 옆에서 구경했는데 재밌었습니다. 아이패드가 있다면 여기를 클릭해 샘플 코드를 다운 받을 수 있습니다. 빌드해서 재미있는 AR 게임을 친구들과 함께 즐겨보세요. A Tour of UICollectionView브랜디 앱은 90% 이상 UICollectionView를 이용해 앱 화면을 만들었습니다. 많은 UICollectionViewCell을 다시 사용할 수 있고, 커스텀 레이아웃도 만들 수 있기 때문입니다. 이전에 포스팅한 ‘테이블이냐, 컬렉션이냐, 그것이 문제로다!’에서 UICollectionView를 공부했지만 더 배우고 싶어서 A Tour of UICollectionView를 들었습니다.이 세션은 UICollectionView에 대해 좀 더 깊은 내용을 다뤘습니다. UICollectionView와 UITableView의 가장 큰 차이점인 레이아웃에 초점을 두었는데요. 단순히 UICollectionView에서 선형 레이아웃 말고 그리드 형식의 레이아웃을 만들 수 있다는 것, 커스텀 레이아웃을 만들 때 고려할 것, 구현에 대한 가이드라인까지 제시했습니다. 애플에서 제공하는 레이아웃 중 하나는 UICollectionViewFlowLayout입니다. UICollectionViewFlowLayout은 line-based 레이아웃 시스템입니다. 일직선 상에서 최대한 많은 아이템들을 채운 후, 다음 행 또는 열로 넘어가 아이템을 채우는 형식으로 컨텐츠들을 배치합니다. 가장 흔한 레이아웃 모습이 바로 그리드 레이아웃입니다.그리드 레이아웃, 또는 UICollectionViewFlowLayout으로 구현할 수 있는 레이아웃Line-based 레이아웃이 아닌 다른 모습의 레이아웃이라면 어떤게 있을까요? 세션에서 예를 든 레이아웃이 바로 모자이크 레이아웃이였습니다. 브랜디 앱, 또는 다른 앱에서 볼 수 있는 모자이크 레이아웃은 일직선상에서 일렬로 정렬하지 않고, 그리드 레이아웃과 조금 다른 모습입니다. 아래의 스크린샷을 보면 어떤 레이아웃인지 감이 잡힐 겁니다.브랜디 앱, 인스타그램 앱, 세션 예제 앱의 모자이크 레이아웃모자이크 레이아웃은 line-based 레이아웃이 아니기 때문에 일반적인 UICollectionViewFlowLayout을 사용하지 않고, UICollectionViewLayout을 상속하여 커스텀합니다. 총 4개의 기본 메소드와 추가적으로 고려해야하는 메소드 하나를 이용하여 커스텀 UICollectionViewLayout을 만들 수 있습니다. 모든 컨텐츠를 담는 뷰의 크기, 레이아웃의 속성 2개, 그리고 레이아웃을 준비하는 기본 메소드들을 구현하고, 레이아웃이 변경해야하는 상황(기기를 가로로 눕히거나 레이아웃의 위치가 변경될 때 등)을 고려하여 메소드를 구현하면 됩니다.open var collectionViewContentSize: CGSize { get } func layoutAttributesForElements(in rect: CGRect) → [UICollectionViewLayoutAttributes]? func layoutAttributesForItem(at indexPath: IndexPath) → UICollectionViewLayoutAttributes? func prepare() func shouldInvalidateLayout(forBoundsChange newBounds: CGRect) → Bool 세션 강연자가 직접 소스를 작성하면서 메소드 구현과 퍼포먼스를 위한 팁을 설명했습니다. 이 세션을 통해서 UICollectionView의 핵심인 레이아웃에 대해 더 깊이 배울 수 있었죠. 레이아웃 말고도 멋진 애니메이션 효과 구현 방법을 설명해주었는데요, 여기를 클릭해 직접 동영상을 보는 걸 추천합니다! 영상을 보고 나면 분명 멋진 UICollectionView를 구현할 수 있을 겁니다.Build Faster in XcodeBuild Faster in Xcode 는 가장 인기 있었던 세션 중 하나였습니다. 한국 개발자들 사이에서도 추천할 세션 중 하나로 꼽혔죠. 물론 혁신적으로 빌드 타임을 줄일 수는 없지만, Xcode의 기능과 빌드 타임이 어떻게 연결되는지 알 수 있었습니다. 프로젝트 세팅과 가독성 있는 코드 작성, 이 두 가지가 빌드 타임과 관련되어 있었습니다. Xcode는 프로젝트를 구성(configure)할 때, 빌드할 targets(iOS App, Framework, Unit Tests 등)와 targets 사이의 종속 관계(dependency)를 따릅니다. Dependency에 따라서 target을 빌드하는 순서도 정해지는데, 순서대로 빌드하지 않고 최소한의 연결을 유지하면서 병렬적으로 빌드하게 됩니다.빌드 시간을 아름답게 줄일 수 있다.이것은 Xcode 10에서 Scheme Editor에서 설정할 수 있습니다. 프로젝트의 Target → Edit Scheme → Build → Build Options에서 Parallelize Build를 체크하면 됩니다.Xcode 10의 Parallelize Build또한 Xcode 10에는 빌드 타임을 계산하는 기능도 있습니다. 빌드할 때 어떤 부분에서 얼마나 걸렸는지 요약해서 보여주는 기능도 있습니다. Product → Perform Action → Build With Timing Summary를 선택하면 빌드 후 요약해서 Xcode에 나타납니다.Build With Timing Summary를 선택하여 빌드하면위 스크린샷처럼 요약해서 보여준다.Xcode 프로그램을 이용해서 빌드 타임을 관리하는 방법도 있고, Swift으로 작성한 소스 코드를 가독성 높은 코드로 바꾸는 방법도 알려줍니다. 또한 Bridging Header로 Objective-C와 Swift를 동시에 개발할 때 도움이 되는 방법도 설명해줍니다. 빌드 타임에 대해 관심을 가질 수 있는 계기가 될 겁니다. 한 번씩 영상을 보길 추천합니다!Labs세션을 듣고 궁금한 점이 생겼다면 Labs(랩스)에서 질문할 수 있습니다. 각 세부 분야별 애플 기술자들이 시간대별로 모여서 개발자의 질문을 받거나 문제점을 해결할 수 있도록 도움을 줍니다.Technology Labstechnology Labs 간판Labs 입구에 있는 부스별 주제짙은 남색 Engineer 티셔츠를 입은 애플 기술자들이 질문을 받고 있다.가장 인기가 많았던 랩스는 Auto Layout and Interface Builder, UIKit and Collection View, Building Your App with Xcode 10 등등이었습니다. 사람이 많아서 줄 서서 기다릴 정도였습니다. 내년에는 랩스 시간이 조금 더 길게 진행됐으면 좋겠다는 생각이 들었습니다.WWDC 기간 중에 랩스에서 시간 보낸 적이 있었습니다. iOS 프로그래밍을 시작한 지 1년도 되지 않아 궁금했던 것들과 새로운 Xcode 10에 대해서 질문했습니다. 아래는 질문했던 내용을 문답형식으로 작성했습니다.애플 기술자와의 문답문: iOS 프로그래밍을 개발한지 얼마 안 된 신입 개발자입니다. 어떻게 하면 프로그래밍 실력을 높일 수 있나요? 답: 앱 하나를 처음부터 끝까지 개발해보면 실력을 늘릴 수 있다. 또한, 애플에서 만든 스위프트 책 보는 걸 추천한다.문: WWDC 기간 동안에 테스팅(testing)에 관심을 가지게 되었습니다. 앞으로 상용하는 앱을 테스트하면서 개발하고 싶은데, 테스트는 어떻게 시작하면 좋을까요?답: 이것에 대한 세션 동영상 을 보는 걸 추천한다. 테스트는 중요한 것이기 때문에 이 동영상을 보면서 테스트에 대해 배우고 난 뒤, 직접 앱을 테스트해보길 권장한다.문: 새로운 Xcode 10에서 앱을 빌드해봤는데 에러가 났습니다. 이런 에러가 나타난 이유는 무엇인가요?답: Xcode 10에 있는 컴파일러 문제다. 소스를 수정하면 앱이 빌드될 것이다. 컴파일러에 대해서 Xcode 팀에게 전달하겠다. (Range 관련된 컴파일러 문제였습니다.)문: 빌드 시간을 줄일 수 있는 방법은 무엇인가요?답: 컴파일하는 소스 코드를 줄이거나 프레임워크를 만들어서 빌드할 때 마다 계속 빌드하지 않도록 하면 시간을 줄일 수 있다. 이와 관련된 세션을 들으면 조금 더 자세한 내용을 확인할 수 있다.Consultation Labs애플 기술자와 일대일 면담식으로 진행하는 랩스도 있었습니다. 예전에는 선착순으로 진행되었는데 올해는 신청을 받고 당첨된 개발자에게만 기회를 주었습니다. 당첨되면 30분 동안 신청한 분야(디자인, 앱 스토어, 마케팅 등)의 전문가와 질의응답을 할 수 있습니다. 가장 인기가 많았던 User Interface Design 랩스를 신청하고 당첨이 되었습니다. 디자인 전문가들과 시간을 보낼 수 있었는데요. 애플 디자이너들이 생각하는 최선의 디자인 가이드라인을 배울 수 있었고, 함께 앱을 관찰하면서 개선되었으면 하는 디자인 요소 등의 팁을 얻었습니다. 아쉽게도 촬영 및 녹음은 불가능했습니다. 시간도 짧게 느껴져서 아쉬웠습니다.Special EventsWWDC 기간 동안에는 세션과 랩스 위주로 진행되지만 중간에 가끔 스페셜 이벤트들도 진행합니다. 점심 시간에 유명 인사들을 초청해서 하는 짧은 강연, 아침 일찍부터 모여서 같이 달리면서 즐길 수 있는 이벤트(WWDC Run with Nike Run Club), 맥주와 함께 음악을 즐기는 이벤트 등 개발 외적인 이벤트들을 많이 진행했습니다. 저는 그 중에서 Bash 이벤트를 소개하고 싶군요.BashBash는 목요일에 진행한 뒤풀이 파티였습니다. WWDC 행사장 근처에 공원을 빌려서 맛있는 음식과 주류를 무료로 제공하고, 초청 가수의 공연도 볼 수 있었습니다. 초청 가수가 공연하기 전에 소개할 때 크레이그 페더리기가 무대에 나왔습니다. 개발로 지친 몸과 머리를 식히고 다른 개발자들과 어울려 놀 수 있는 공간이였습니다. 뒤풀이 파티가 끝나갈 때쯤 진짜로 WWDC가 끝나간다는 느낌이 들어서 괜히 아쉽기도 했었습니다.무대와, 맥주와, bash 입장권한국인 개발자들과 함께 즐긴 뒤풀이 파티초청 가수를 소개하러 무대에 올라온 크레이그 페더러기아름다운 노을!마치며이번 글에서는 WWDC의 세션, 랩스, 스페셜 이벤트를 설명했습니다. WWDC가 한 달 전에 끝났지만 지금 다시 생각하면 두근두근 설레고 또 가고 싶어집니다. 내년 WWDC에 또 갈 수 있을까요? 지금까지 애플 개발자들의 축제였던 WWDC의 Review를 마치겠습니다. 긴 글을 읽어주셔서 감사합니다!글김주희 사원 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유 #이벤트참여 #이벤트후기 #미국
조회수 3306

Attention is all you need paper 뽀개기

이번 포스팅에서는 포자랩스에서 핵심적으로 쓰고 있는 모델인 transformer의 논문을 요약하면서 추가적인 기법들도 설명드리겠습니다.Why?Long-term dependency problemsequence data를 처리하기 위해 이전까지 많이 쓰이던 model은 recurrent model이었습니다. recurrent model은 t번째에 대한 output을 만들기 위해, t번째 input과 t-1번째 hidden state를 이용했습니다. 이렇게 한다면 자연스럽게 문장의 순차적인 특성이 유지됩니다. 문장을 쓸 때 뒤의 단어부터 쓰지 않고 처음부터 차례차례 쓰는 것과 마찬가지인것입니다.하지만 recurrent model의 경우 많은 개선점이 있었음에도 long-term dependency에 취약하다는 단점이 있었습니다. 예를 들어, “저는 언어학을 좋아하고, 인공지능중에서도 딥러닝을 배우고 있고 자연어 처리에 관심이 많습니다.”라는 문장을 만드는 게 model의 task라고 해봅시다. 이때 ‘자연어’라는 단어를 만드는데 ‘언어학’이라는 단어는 중요한 단서입니다.그러나, 두 단어 사이의 거리가 가깝지 않으므로 model은 앞의 ‘언어학’이라는 단어를 이용해 자연어’라는 단어를 만들지 못하고, 언어학 보다 가까운 단어인 ‘딥러닝’을 보고 ‘이미지’를 만들 수도 있는 거죠. 이처럼, 어떤 정보와 다른 정보 사이의 거리가 멀 때 해당 정보를 이용하지 못하는 것이 long-term dependency problem입니다.recurrent model은 순차적인 특성이 유지되는 뛰어난 장점이 있었음에도, long-term dependency problem이라는 단점을 가지고 있었습니다.이와 달리 transformer는 recurrence를 사용하지 않고 대신 attention mechanism만을 사용해 input과 output의 dependency를 포착해냈습니다.Parallelizationrecurrent model은 학습 시, t번째 hidden state를 얻기 위해서 t-1번째 hidden state가 필요했습니다. 즉, 순서대로 계산될 필요가 있었습니다. 그래서 병렬 처리를 할 수 없었고 계산 속도가 느렸습니다.하지만 transformer에서는 학습 시 encoder에서는 각각의 position에 대해, 즉 각각의 단어에 대해 attention을 해주기만 하고, decoder에서는 masking 기법을 이용해 병렬 처리가 가능하게 됩니다. (masking이 어떤 것인지는 이후에 설명해 드리겠습니다)Model ArchitectureEncoder and Decoder structureencoder는 input sequence (x1,...,xn)<math>(x1,...,xn)</math>에 대해 다른 representation인 z=(z1,...,zn)<math>z=(z1,...,zn)</math>으로 바꿔줍니다.decoder는 z를 받아, output sequence (y1,...,yn)<math>(y1,...,yn)</math>를 하나씩 만들어냅니다.각각의 step에서 다음 symbol을 만들 때 이전에 만들어진 output(symbol)을 이용합니다. 예를 들어, “저는 사람입니다.”라는 문장에서 ‘사람입니다’를 만들 때, ‘저는’이라는 symbol을 이용하는 거죠. 이런 특성을 auto-regressive 하다고 합니다.Encoder and Decoder stacksEncoderN개의 동일한 layer로 구성돼 있습니다. input $x$가 첫 번째 layer에 들어가게 되고, layer(x)<math>layer(x)</math>가 다시 layer에 들어가는 식입니다.그리고 각각의 layer는 두 개의 sub-layer, multi-head self-attention mechanism과 position-wise fully connected feed-forward network를 가지고 있습니다.이때 두 개의 sub-layer에 residual connection을 이용합니다. residual connection은 input을 output으로 그대로 전달하는 것을 말합니다. 이때 sub-layer의 output dimension을 embedding dimension과 맞춰줍니다. x+Sublayer(x)<math>x+Sublayer(x)</math>를 하기 위해서, 즉 residual connection을 하기 위해서는 두 값의 차원을 맞춰줄 필요가 있습니다. 그 후에 layer normalization을 적용합니다.Decoder역시 N개의 동일한 layer로 이루어져 있습니다.encoder와 달리 encoder의 결과에 multi-head attention을 수행할 sub-layer를 추가합니다.마찬가지로 sub-layer에 residual connection을 사용한 뒤, layer normalization을 해줍니다.decoder에서는 encoder와 달리 순차적으로 결과를 만들어내야 하기 때문에, self-attention을 변형합니다. 바로 masking을 해주는 것이죠. masking을 통해, position i<math>i</math> 보다 이후에 있는 position에 attention을 주지 못하게 합니다. 즉, position i<math>i</math>에 대한 예측은 미리 알고 있는 output들에만 의존을 하는 것입니다.위의 예시를 보면, a를 예측할 때는 a이후에 있는 b,c에는 attention이 주어지지 않는 것입니다. 그리고 b를 예측할 때는 b이전에 있는 a만 attention이 주어질 수 있고 이후에 있는 c는 attention이 주어지지 않는 것이죠.Embeddings and Softmaxembedding 값을 고정시키지 않고, 학습을 하면서 embedding값이 변경되는 learned embedding을 사용했습니다. 이때 input과 output은 같은 embedding layer를 사용합니다.또한 decoder output을 다음 token의 확률로 바꾸기 위해 learned linear transformation과 softmax function을 사용했습니다. learned linear transformation을 사용했다는 것은 decoder output에 weight matrix W<math>W</math>를 곱해주는데, 이때 W<math>W</math>가 학습된다는 것입니다.Attentionattention은 단어의 의미처럼 특정 정보에 좀 더 주의를 기울이는 것입니다.예를 들어 model이 수행해야 하는 task가 번역이라고 해봅시다. source는 영어이고 target은 한국어입니다. “Hi, my name is poza.”라는 문장과 대응되는 “안녕, 내 이름은 포자야.”라는 문장이 있습니다. model이 이름은이라는 token을 decode할 때, source에서 가장 중요한 것은 name입니다.그렇다면, source의 모든 token이 비슷한 중요도를 갖기 보다는 name이 더 큰 중요도를 가지면 되겠죠. 이때, 더 큰 중요도를 갖게 만드는 방법이 바로 attention입니다.Scaled Dot-Product Attention해당 논문의 attention을 Scaled Dot-Product Attention이라고 부릅니다. 수식을 살펴보면 이렇게 부르는 이유를 알 수 있습니다.Attention(Q,K,V)=softmax(QKT√dk)V<math>Attention(Q,K,V)=softmax(QKTdk)V</math>먼저 input은 dk<math>dk</math> dimension의 query와 key들, dv<math>dv</math> dimension의 value들로 이루어져 있습니다.이때 모든 query와 key에 대한 dot-product를 계산하고 각각을 √dk<math>dk</math>로 나누어줍니다. dot-product를 하고 √dk<math>dk</math>로 scaling을 해주기 때문에 Scaled Dot-Product Attention인 것입니다. 그리고 여기에 softmax를 적용해 value들에 대한 weights를 얻어냅니다.key와 value는 attention이 이루어지는 위치에 상관없이 같은 값을 갖게 됩니다. 이때 query와 key에 대한 dot-product를 계산하면 각각의 query와 key 사이의 유사도를 구할 수 있게 됩니다. 흔히 들어본 cosine similarity는 dot-product에서 vector의 magnitude로 나눈 것입니다. √dk<math>dk</math>로 scaling을 해주는 이유는 dot-products의 값이 커질수록 softmax 함수에서 기울기의 변화가 거의 없는 부분으로 가기 때문입니다.softmax를 거친 값을 value에 곱해준다면, query와 유사한 value일수록, 즉 중요한 value일수록 더 높은 값을 가지게 됩니다. 중요한 정보에 더 관심을 둔다는 attention의 원리에 알맞은 것입니다.Multi-Head Attention위의 그림을 수식으로 나타내면 다음과 같습니다.MultiHead(Q,K,V)=Concat(head1,...,headh)WO<math>MultiHead(Q,K,V)=Concat(head1,...,headh)WO</math>where headi=Attention(QWQi,KWKi,VWVi)dmodel<math>dmodel</math> dimension의 key, value, query들로 하나의 attention을 수행하는 대신 key, value, query들에 각각 다른 학습된 linear projection을 h번 수행하는 게 더 좋다고 합니다. 즉, 동일한 Q,K,V<math>Q,K,V</math>에 각각 다른 weight matrix W<math>W</math>를 곱해주는 것이죠. 이때 parameter matrix는 WQi∈Rdmodelxdk,WKi∈Rdmodelxdk,WVi∈Rdmodelxdv,WOi∈Rhdvxdmodel<math>WiQ∈Rdmodelxdk,WiK∈Rdmodelxdk,WiV∈Rdmodelxdv,WiO∈Rhdvxdmodel</math>입니다.순서대로 query, key, value, output에 대한 parameter matrix입니다. projection이라고 하는 이유는 각각의 값들이 parameter matrix와 곱해졌을 때 dk,dv,dmodel<math>dk,dv,dmodel</math>차원으로 project되기 때문입니다. 논문에서는 dk=dv=dmodel/h<math>dk=dv=dmodel/h</math>를 사용했는데 꼭 dk<math>dk</math>와 dv<math>dv</math>가 같을 필요는 없습니다.이렇게 project된 key, value, query들은 병렬적으로 attention function을 거쳐 dv<math>dv</math>dimension output 값으로 나오게 됩니다.그 다음 여러 개의 head<math>head</math>를 concatenate하고 다시 projection을 수행합니다. 그래서 최종적인 dmodel<math>dmodel</math> dimension output 값이 나오게 되는거죠.각각의 과정에서 dimension을 표현하면 아래와 같습니다.*dQ,dK,dV<math>dQ,dK,dV</math>는 각각 query, key, value 개수Self-Attentionencoder self-attention layerkey, value, query들은 모두 encoder의 이전 layer의 output에서 옵니다. 따라서 이전 layer의 모든 position에 attention을 줄 수 있습니다. 만약 첫번째 layer라면 positional encoding이 더해진 input embedding이 됩니다.decoder self-attention layerencoder와 비슷하게 decoder에서도 self-attention을 줄 수 있습니다. 하지만 i<math>i</math>번째 output을 다시 i+1<math>i+1</math>번째 input으로 사용하는 auto-regressive한 특성을 유지하기 위해 , masking out된 scaled dot-product attention을 적용했습니다.masking out이 됐다는 것은 i<math>i</math>번째 position에 대한 attention을 얻을 때, i<math>i</math>번째 이후에 있는 모든 position은 Attention(Q,K,V)=softmax(QKT√dk)V<math>Attention(Q,K,V)=softmax(QKTdk)V</math>에서 softmax의 input 값을 −∞<math>−∞</math>로 설정한 것입니다. 이렇게 한다면, i<math>i</math>번째 이후에 있는 position에 attention을 주는 경우가 없겠죠.Encoder-Decoder Attention Layerquery들은 이전 decoder layer에서 오고 key와 value들은 encoder의 output에서 오게 됩니다. 그래서 decoder의 모든 position에서 input sequence 즉, encoder output의 모든 position에 attention을 줄 수 있게 됩니다.query가 decoder layer의 output인 이유는 query라는 것이 조건에 해당하기 때문입니다. 좀 더 풀어서 설명하면, ‘지금 decoder에서 이런 값이 나왔는데 무엇이 output이 돼야 할까?’가 query인 것이죠.이때 query는 이미 이전 layer에서 masking out됐으므로, i번째 position까지만 attention을 얻게 됩니다.이 같은 과정은 sequence-to-sequence의 전형적인 encoder-decoder mechanisms를 따라한 것입니다.*모든 position에서 attention을 줄 수 있다는 게 이해가 안되면 링크를 참고하시기 바랍니다.Position-wise Feed-Forward Networksencoder와 decoder의 각각의 layer는 아래와 같은 fully connected feed-forward network를 포함하고 있습니다.position 마다, 즉 개별 단어마다 적용되기 때문에 position-wise입니다. network는 두 번의 linear transformation과 activation function ReLU로 이루어져 있습니다.FFN(x)=max(0,xW1+b1)W2+b2x<math>x</math>에 linear transformation을 적용한 뒤, ReLU(max(0,z))<math>ReLU(max(0,z))</math>를 거쳐 다시 한번 linear transformation을 적용합니다.이때 각각의 position마다 같은 parameter W,b<math>W,b</math>를 사용하지만, layer가 달라지면 다른 parameter를 사용합니다.kernel size가 1이고 channel이 layer인 convolution을 두 번 수행한 것으로도 위 과정을 이해할 수 있습니다.Positional Encodingtransfomer는 recurrence도 아니고 convolution도 아니기 때문에, 단어의sequence를 이용하기 위해서는 단어의 position에 대한 정보를 추가해줄 필요가 있었습니다.그래서 encoder와 decoder의 input embedding에 positional encoding을 더해줬습니다.positional encoding은 dmodel<math>dmodel</math>(embedding 차원)과 같은 차원을 갖기 때문에 positional encoding vector와 embedding vector는 더해질 수 있습니다.논문에서는 다른 *frequency를 가지는 sine과 cosine 함수를 이용했습니다.*주어진 구간내에서 완료되는 cycle의 개수PE(pos,2i)=sin(pos/100002i/dmodel)<math>PE(pos,2i)=sin(pos/100002i/dmodel)</math>PE(pos,2i+1)=cos(pos/100002i/dmodel)<math>PE(pos,2i+1)=cos(pos/100002i/dmodel)</math>pos<math>pos</math>는 position ,i<math>i</math>는 dimension 이고 주기가 100002i/dmodel⋅2π<math>100002i/dmodel⋅2π</math>인 삼각 함수입니다. 즉, pos<math>pos</math>는 sequence에서 단어의 위치이고 해당 단어는 i<math>i</math>에 0부터 dmodel2<math>dmodel2</math>까지를 대입해 dmodel<math>dmodel</math>차원의 positional encoding vector를 얻게 됩니다. k=2i+1<math>k=2i+1</math>일 때는 cosine 함수를, k=2i<math>k=2i</math>일 때는 sine 함수를 이용합니다. 이렇게 positional encoding vector를 pos<math>pos</math>마다 구한다면 비록 같은 column이라고 할지라도 pos<math>pos</math>가 다르다면 다른 값을 가지게 됩니다. 즉, pos<math>pos</math>마다 다른 pos<math>pos</math>와 구분되는 positional encoding 값을 얻게 되는 것입니다.PEpos=[cos(pos/1),sin(pos/100002/dmodel),cos(pos/10000)2/dmodel,...,sin(pos/10000)]<math>PEpos=[cos(pos/1),sin(pos/100002/dmodel),cos(pos/10000)2/dmodel,...,sin(pos/10000)]</math>이때 PEpos+k<math>PEpos+k</math>는 PEpos<math>PEpos</math>의 linear function으로 나타낼 수 있습니다. 표기를 간단히 하기 위해 c=100002idmodel<math>c=100002idmodel</math>라고 해봅시다. sin(a+b)=sin(a)cos(b)+cos(a)sin(b)<math>sin(a+b)=sin(a)cos(b)+cos(a)sin(b)</math>이고 cos(a+b)=cos(a)cos(b)−sin(a)sin(b)<math>cos(a+b)=cos(a)cos(b)−sin(a)sin(b)</math> 이므로 다음이 성립합니다.PE(pos,2i)=sin(posc)<math>PE(pos,2i)=sin(posc)</math>PE(pos,2i+1)=cos(posc)<math>PE(pos,2i+1)=cos(posc)</math>PE(pos+k,2i)=sin(pos+kc)=sin(posc)cos(kc)+cos(posc)sin(kc)=PE(pos,2i)cos(kc)+cos(posc)sin(kc)<math>PE(pos+k,2i)=sin(pos+kc)=sin(posc)cos(kc)+cos(posc)sin(kc)=PE(pos,2i)cos(kc)+cos(posc)sin(kc)</math>PE(pos+k,2i+1)=cos(pos+kc)=cos(posc)cos(kc)−sin(posc)sin(kc)=PE(pos,2i+1)cos(kc)−sin(posc)sin(kc)<math>PE(pos+k,2i+1)=cos(pos+kc)=cos(posc)cos(kc)−sin(posc)sin(kc)=PE(pos,2i+1)cos(kc)−sin(posc)sin(kc)</math>이런 성질 때문에 model이 relative position에 의해 attention하는 것을 더 쉽게 배울 수 있습니다.논문에서는 학습된 positional embedding 대신 sinusoidal version을 선택했습니다. 만약 학습된 positional embedding을 사용할 경우 training보다 더 긴 sequence가 inference시에 입력으로 들어온다면 문제가 되지만 sinusoidal의 경우 constant하기 때문에 문제가 되지 않습니다. 그냥 좀 더 많은 값을 계산하기만 하면 되는거죠.Trainingtraining에 사용된 기법들을 알아보겠습니다.Optimizer많이 쓰이는 Adam optimizer를 사용했습니다.특이한 점은 learning rate를 training동안 고정시키지 않고 다음 식에 따라 변화시켰다는 것입니다.lrate=d−0.5model⋅min(step_num−0.5,step_num⋅warmup_steps−1.5)warmup_step<math>warmup_step</math>까지는 linear하게 learning rate를 증가시키다가, warmup_step<math>warmup_step</math> 이후에는 step_num<math>step_num</math>의 inverse square root에 비례하도록 감소시킵니다.이렇게 하는 이유는 처음에는 학습이 잘 되지 않은 상태이므로 learning rate를 빠르게 증가시켜 변화를 크게 주다가, 학습이 꽤 됐을 시점에 learning rate를 천천히 감소시켜 변화를 작게 주기 위해서입니다.RegularizationResidual ConnectionIdentity Mappings in Deep Residual Networks라는 논문에서 제시된 방법이고, 아래의 수식이 residual connection을 나타낸 것입니다.yl=h(xl)+F(xl,Wl)<math>yl=h(xl)+F(xl,Wl)</math>xl+1=f(yl)<math>xl+1=f(yl)</math>이때 h(xl)=xl<math>h(xl)=xl</math>입니다. 논문 제목에서 나온 것처럼 identity mapping을 해주는 것이죠.특정한 위치에서의 xL<math>xL</math>을 다음과 같이 xl<math>xl</math>과 residual 함수의 합으로 표시할 수 있습니다.x2=x1+F(x1,W1)<math>x2=x1+F(x1,W1)</math>x3=x2+F(x2,W2)=x1+F(x1,W1)+F(x2,W2)<math>x3=x2+F(x2,W2)=x1+F(x1,W1)+F(x2,W2)</math>xL=xl+L−1∑i=1F(xi,Wi)<math>xL=xl+∑i=1L−1F(xi,Wi)</math>그리고 미분을 한다면 다음과 같이 됩니다.σϵσxl=σϵσxLσxLσxl=σϵσxL(1+σσxlL−1∑i=1F(xi,Wi))<math>σϵσxl=σϵσxLσxLσxl=σϵσxL(1+σσxl∑i=1L−1F(xi,Wi))</math>이때, σϵσxL<math>σϵσxL</math>은 상위 layer의 gradient 값이 변하지 않고 그대로 하위 layer에 전달되는 것을 보여줍니다. 즉, layer를 거칠수록 gradient가 사라지는 vanishing gradient 문제를 완화해주는 것입니다.또한 forward path나 backward path를 간단하게 표현할 수 있게 됩니다.Layer NormalizationLayer Normalization이라는 논문에서 제시된 방법입니다.μl=1HH∑i=1ali<math>μl=1H∑i=1Hail</math>σl= ⎷1HH∑i=1(ali−μl)2<math>σl=1H∑i=1H(ail−μl)2</math>같은 layer에 있는 모든 hidden unit은 동일한 μ<math>μ</math>와 σ<math>σ</math>를 공유합니다.그리고 현재 input xt<math>xt</math>, 이전의 hidden state ht−1<math>ht−1</math>, at=Whhht−1+Wxhxt<math>at=Whhht−1+Wxhxt</math>, parameter g,b<math>g,b</math>가 있을 때 다음과 같이 normalization을 해줍니다.ht=f[gσt⊙(at−μt)+b]<math>ht=f[gσt⊙(at−μt)+b]</math>이렇게 한다면, gradient가 exploding하거나 vanishing하는 문제를 완화시키고 gradient 값이 안정적인 값을 가짐로 더 빨리 학습을 시킬 수 있습니다.(논문에서 recurrent를 기준으로 설명했으므로 이에 따랐습니다.)DropoutDropout: a simple way to prevent neural networks from overfitting라는 논문에서 제시된 방법입니다.dropout이라는 용어는 neural network에서 unit들을 dropout하는 것을 가리킵니다. 즉, 해당 unit을 network에서 일시적으로 제거하는 것입니다. 그래서 다른 unit과의 모든 connection이 사라지게 됩니다. 어떤 unit을 dropout할지는 random하게 정합니다.dropout은 training data에 overfitting되는 문제를 어느정도 막아줍니다. dropout된 unit들은 training되지 않는 것이니 training data에 값이 조정되지 않기 때문입니다.Label SmoothingRethinking the inception architecture for computer vision라는 논문에서 제시된 방법입니다.training동안 실제 정답인 label의 logit은 다른 logit보다 훨씬 큰 값을 갖게 됩니다. 이렇게 해서 model이 주어진 input x<math>x</math>에 대한 label y<math>y</math>를 맞추는 것이죠.하지만 이렇게 된다면 문제가 발생합니다. overfitting될 수도 있고 가장 큰 logit을 가지는 것과 나머지 사이의 차이를 점점 크게 만들어버립니다. 결국 model이 다른 data에 적응하는 능력을 감소시킵니다.model이 덜 confident하게 만들기 위해, label distribution q(k∣x)=δk,y<math>q(k∣x)=δk,y</math>를 (k가 y일 경우 1, 나머지는 0) 다음과 같이 대체할 수 있습니다.q′(k|x)=(1−ϵ)δk,y+ϵu(k)<math>q′(k|x)=(1−ϵ)δk,y+ϵu(k)</math>각각 label에 대한 분포 u(k)<math>u(k)</math>, smooting parameter ϵ<math>ϵ</math>입니다. 위와 같다면, k=y인 경우에도 model은 p(y∣x)=1<math>p(y∣x)=1</math>이 아니라 p(y∣x)=(1−ϵ)<math>p(y∣x)=(1−ϵ)</math>이 되겠죠. 100%의 확신이 아닌 그보다 덜한 확신을 하게 되는 것입니다.Conclusiontransformer는 recurrence를 이용하지 않고도 빠르고 정확하게 sequential data를 처리할 수 있는 model로 제시되었습니다.여러가지 기법이 사용됐지만, 가장 핵심적인 것은 encoder와 decoder에서 attention을 통해 query와 가장 밀접한 연관성을 가지는 value를 강조할 수 있고 병렬화가 가능해진 것입니다.Referencehttp://www.whydsp.org/280http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/http://openresearch.ai/t/identity-mappings-in-deep-residual-networks/47https://m.blog.naver.com/PostView.nhn?blogId=laonple&logNo=220793640991&proxyReferer=https://www.google.co.kr/https://www.researchgate.net/figure/Sample-of-a-feed-forward-neural-network_fig1_234055177https://arxiv.org/abs/1603.05027https://arxiv.org/abs/1607.06450http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdfhttps://arxiv.org/pdf/1512.00567.pdf
조회수 2045

StyleShare 서비스의 구조

안녕하세요. 스타일쉐어에서 서버사이드 개발을 하고있는 김현준입니다. 스타일쉐어의 엔지니어링 블로그의 첫 글에서는 저희 서비스의 스택을 소개하도록 하겠습니다. 사실은 Instagram의 스택과 유사한 면이 많아 글 또한 많이 유사할 것 같네요.서버먼저 스타일쉐어는 서버의 운영 체제로 Ubuntu 12.04 (Precise Pengolin)를 사용합니다. 모든 서버는 아마존 웹 서비스(Amazon Web Services)의 Elastic Compute Cloud(EC2) 위에서 돌아가고 있습니다. 스타일쉐어는 EC2 이외에도 Simple Storage Service(S3)와 같은 AWS의 다양한 서비스를 사용하고 있는데요, AWS를 사용하는 가장 큰 이유는 유연한 확장성(Scalability)이라 말할 수 있을 것 같습니다. EC2의 서버는 모두 가상 머신이기 때문에 관리 콘솔에서의 쉬운 조작으로 서버를 끄고 켤 수 있을 뿐만 아니라, 장애가 생겼을 때도 간편하게 장애가 생긴 서버를 내리고, 새로운 서버로 대체할 수 있는 이점이 있습니다. 이 모든 기능은 API로도 제공되고 있기 때문에, 자동화도 가능합니다. 실제로 스타일쉐어에서도 웹 요청을 처리하는 웹 서버들과 작업을 처리하는 워커들에 대해서 오토-스케일러를 구현해 사용하고 있습니다.로드 밸런싱스타일쉐어의 웹 서버들은 AWS의 Elastic Load Balancing(ELB)에 등록되어 있어서 ELB가 수많은 요청들을 여러 서버들에게 차례로 나누어 보냅니다. 보내어진 요청들은 각각의 서버에서 nginx를 거치며 또 한번 여러 개의 프로세스로 분배되어 처리됩니다.웹 어플리케이션스타일쉐어의 웹 어플리케이션은 Werkzeug 기반의 웹 프레임워크 Flask와 ORM 프레임워크인 SQLAlchemy 위에서 Python으로 구현되어 있습니다.데이터스타일쉐어의 대부분의 데이터는 PostgreSQL에 저장되고 있습니다. 여러 대의 PostgreSQL 인스턴스의 풀링(Pooling)을 하기 위해서 pgpool을 사용합니다. 서비스의 성능 향상을 위한 캐싱 도구로는 Memcached를 사용합니다.스타일쉐어에 올라오는 사진들을 비롯한 대부분의 이미지들은 Key 기반의 스토리지인 AWS S3에 저장하고, 관리합니다. S3의 가장 큰 장점은 사용자가 용량 제한과 파티셔닝에 대해 신경쓰지 않아도 된다는 점일 것입니다. 앞으로도 무한히 많은 사진이 올라올 서비스를 만드는 저희로서는 아주 유용하답니다. 이미지 뿐만 아니라, 서비스를 배포할 때마다 만드는 패키지와 매일매일 데이터베이스 백업 모두 S3에 저장되어 있습니다.작업 관리대부분의 서비스와 마찬가지로, 스타일쉐어도 웹 어플리케이션 서버와 별개로 무거운 작업(Task)을 처리하기 위한 워커(Worker) 서버를 따로 구동하고 있습니다. 여기서 작업이란 계속해서 쏟아지는 웹 요청을 처리하기도 벅찬 웹 어플리케이션에서 처리하기에는 비교적 오래걸리는, 예를 들면 알림(푸시)과 메일을 보내거나, 이미지 프로세싱과 같은 일들을 이야기합니다. 이러한 작업들을 비동기적으로 처리하기 위해 저희는 Celery와 RabbitMQ를 사용합니다. Celery는 Python으로 구현된 비동기 작업 워커이고, RabbitMQ는 워커로 넘길 작업을 관리하는 AMQP 프로토콜 기반의 브로커(Broker) 큐입니다.오픈 소스?스타일쉐어 서버는 비동기 네트웍(asynchronous I/O)을 구현하기 위해서 gevent를 사용합니다. 그 외에 배포(deploy)를 위한 Fabric과 boto나, 내부 문서화를 위해 사용하는 Sphinx 등이 스타일쉐어에서 주로 사용하는 라이브러리/프로젝트 입니다.오픈 소스.위에 적은 것처럼, 스타일쉐어의 구현의 많은 부분이 오픈 소스 프로젝트에 크게 의존하고 있습니다. 훌륭하고 건강한 오픈 소스 생태계 덕분에 우리는 스타일쉐어를 훨씬 더 수월하게 만들고 지탱할 수 있었습니다. 그래서 저희도 도움을 받은 만큼 기여하고, 구성원으로서 더 나은 생태계를 만드려 합니다. 그 중 하나가 바로 이 스타일쉐어 엔지니어링 블로깅 활동이고, 다른 하나가 저희 팀의 오픈 소스 프로젝트 활동입니다. 스타일쉐어 팀의 오픈 소스 활동들은 StyleShare’s GitHub에서 살펴보실 수 있답니다. 여러분들의 관심어린 피드백과 기여도 언제나 감사히 환영합니다.그 외의 도구들스타일쉐어 실 서비스에서 발생하는 오류와 버그를 추적하기 위해 사용하는 Exceptional도 매우 유용합니다. Flask 프레임워크에서 Exceptional 서비스를 쉽게 이용할 수 있도록 도와주는 Flask 확장 모듈인 Flask-Exceptional이 공개되어 있습니다.함께해요저희와 비슷한 환경에서 개발하시는, 같은 도구를 사용하시는, 저희에게 도움을 주고 싶으시거나, 저희에게 (저희가 도와드릴 수 있다면) 도움을 받고 싶으신, 또는 그저 많은 이야기를 나누고 싶은 분들까지 많은 분들과의 소통과 교류가 많았으면 좋겠습니다. IRC를 하시는 분들은 오징어 네트워크(irc.ozinger.org)의 #styleshare-tech 채널로 놀러오세요.#스타일쉐어 #개발 #서버개발 #서버환경 #업무환경 #개발자 #인사이트
조회수 1212

클라우드와 운영자의 불안함.

2018년은 정말 클라우드가 일반화되는 해가 될듯 합니다. 클라우드 이전 사업 소식이 이곳저곳에서 들리는 요즘입니다. 스타트업 생태계는 이미 클라우드로 넘어갔지만 올해에는 엔터프라이즈 기업에서 대규모 IT 기업들까지 모두 클라우드로 넘어가고 있습니다. 와탭이 클라우드 최적화를 목표로 하는 모니터링 서비스이다보니 클라우드로 전환하는 시점에 있는 많은 기업들을 만나는데요. 클라우드를 적용하려고 준비중이거나 최근 클라우드로 이전한 기업의 운영팀들은 현업에서 사용하는 과정에서 클라우드 안정성에 대한 불안을 토로하기도 합니다. IT 운영자들이 느끼는 클라우드에 대한 불안감IT 운영의 핵심은 안정화입니다. 클라우드 이전까지 IT 인프라는 변화를 관리하는 대상이 아니였습니다. IT 인프라는 운영중에 변화하지 않으며 초기 설계에서도 최대 부하를 견디기에 충분한 여지를 남겨서 구성하였습니다. 하지만 클라우드에서는 IT 인프라가 운영중에도 변화 가능한 요소가 되면서 IT 인프라 규모 산정에서 부터 커다란 변화가 발생합니다. 최대 부하가 아닌 최소 부하가 규모 산정 기준이 되다. 여지껏 IT 인프라의 구성 기준은 언제나 최대 부하를 견딜수 있도록 설계되어왔습니다. 하지만 IT 인프라를 클라우드로 시작한 스타트업들이 IT 인프라를 구성하는 방법은 기존의 규칙을 무시하기 시작합니다. IT 인프라를 규모를 최소 부하에 맞춰서 구성하는 것입니다. 단지 실시간으로 확장 가능한 서비스 구조와 Auto Scailing을 통해 규모를 맞춰갑니다.IT 인프라 평균 부하의 기준이 높아지다. 클라우드 이전까지 우리는 IT 인프라의 CPU 부하율을 평소 20% 아래로 유지해 왔습니다. 하지만 이 또한 변화가 생깁니다. 제가 만나는 많은 클라우드 기반 서비스 기업들이 CPU 부하율을 50%에서 70%까지 유지하고 있었습니다. 일반적은 운영관점에서 IT 서비스 운영에 익숙하지 않은 기업의 운영 미숙이라 생각할 수 있습니다. 하지만 클라우드에 익숙한 운영팀은 서비스 성능에 문제가 발생하지 않는 범위에서 인프라의 규모를 실시간으로 조절합니다. 기존의 상식으로는 매우 위험해 보이지만 클라우드를 정말 잘 쓰는 기업들은 성능과 안정성을 해치지 않으면서 인프라 자원의 여유를 최대한 줄이는 방법들을 내재화하고 있습니다. IT 인프라 장애를 해결하지 않는다.  모든 IT 인프라는 장애가 발생합니다. 인프라의 장애는 이벤트성으로 발생하지만 운영팀은 장애를 반복 해결해 나가는 과정에서 패턴을 인지하고 대처해 나갑니다. 클라우드에서도 장애는 어쩔수 없이 발생하지만 운영팀은 장애를 인지할 뿐 장애를 물리적으로 해결하지는 않습니다. 대신 클라우드를 사용하는 IT 운영팀은 빠르게 서비스 구성과 환경을 전환하여 서비스를 원활하게 동작시킵니다. 운영자들이 갖는 불안감이 현실이 되다.다시 운영자들의 불안감에 대해서 이야기 해보죠. IT 인프라의 규모를 줄이고 자원 사용률이 평소에서 50%를 넘기는 급박한 사용 환경에서 클라우드 인프라에 장애가 발생해도 할 수 있는 일이 없다는 것은 정말 큰 스트레스를 주는 일입니다. 물론 위에서 설명한 것처럼 클라우드 네이티브한 서비스라면 문제없이 돌아갈 수 있겠지만 기존 레거시를 운영하면서 클라우드로 전환한다면 IT 운영자 입장에서는 앞에 이슈들이 불안감이 아닌 현실이 됩니다. 넷플릭스 7년만에 클라우드 이전을 완료하다.넷플릭스가 클라우드 이전을 결정한것은 2007년이지만 이전을 완료한것은 2016년이였습니다. 이렇게 긴 시간은 투자한 이유에 대해 넷플릭스는 "기존 IDC 기반의 인프라가 가진 문제들을 클라우드로 가져가지 않기 위해서"라고 했지만 다른 한편으로는 클라우드에서 발생하는 문제들을 해결할 수 있는 시스템 구조를 만들기 위해서였습니다. 그렇기 때문에 넷플릭스에서는 클라우드 네이티브 방식을 택하여 사실상 모든 기술을 재구축하고 운영 방식을 근본적으로 바꿨다. 아키텍처 면에서 넷플릭스는 거대한 앱을 수백 개의 마이크로 서비스로 마이그레이션하고 NoSQL 데이터베이스를 사용하여 데이터 모델을 반정규화했다. 예산 승인, 중앙화된 릴리스 관리, 몇 주에 걸친 하드웨어 프로비저닝 주기를 도입해 지속적인 콘텐츠 전달이 가능해졌으며, 느슨하게 결합된 개발운영(DevOps) 환경에서 엔지니어링 팀이 셀프서비스 툴로 독립적인 결정을 내릴 수 있게 되면서 혁신이 가속화되었다. 이 과정에서 새로운 시스템을 여럿 구축해야 했으며, 새로운 기술도 배워야 했다. 넷플릭스가 클라우드 네이티브 기업으로 변신하는 데는 많은 시간과 노력이 필요했지만, 클라우드 마이그레이션을 통해 글로벌 TV 네트워크로서 지속적인 성장을 이뤄나갈 밑거름을 마련할 수 있었다.https://media.netflix.com/ko/company-blog/completing-the-netflix-cloud-migration결론기존의 레거시를 바탕으로 클라우드 마이그레이션을 진행하는 기업들은 클라우드에서 발생하는 다양한 운영 이슈들을 겪을 수 밖에 없습니다. 대부분 클라우드 이전 사업을 진행하는 데 있어서 이전 서비스 성능을 맞추는 데만 집중하다보니 이전 후 운영과정에서 발생하는 많은 문제들은 운영팀이 짊어지게 됩니다. 하지만 이 문제들은 개발팀과 운영팀이 함께 지속적으로 개선해 나가야 합니다. 최종적으로 클라우드 네이티브 구조가 완성되기 위해서는 시스템과 조직 문화 모두가 변화해야 합니다. 클라우드 마이그레이션은 엄청 고난한 일입니다. 만일 클라우드를 도입했는데, 아직 불안함이 있다면 아직 클라우드 마이그레이션이 끝나지 않은것입니다. #와탭랩스 #개발자 #개발팀 #인사이트 #경험공유 #일지
조회수 1629

박문수 이야기

출근 첫날 이효진 대표님으로부터 입사 지원 메일을 하나 전달받았다. 이력서를 살펴보니 컴퓨터를 전공하지도 않았고, 현재 개발을 하고 있지도 않았지만 개발자로 일하고 싶다고 적혀 있었다. 개발을 할 수만 있다면 인턴부터 시작해도 좋다고 말했다. 남들이 부러워하는 삼성에 다니고 있는데 어떤 이유로 개발자가 되고 싶어 할까? 궁금한 마음에 한 번 만나보기로 했다. (뽑을 생각은 없었다)첫인상은 그냥 수수한 시골 청년이었다. 나도 입사한 지 얼마 안 되어 회사 주위 식당을 몰라 그냥 눈에 띄는 식당으로 들어갔다. (생각해 보니 그 식당을 그 이후로는 한 번도 가지 않았다) 지난 회사에서 어떤 일들을 했고, 왜 개발에 대한 목마름을 느꼈는지를 들었다. 개발자가 되기 위해 어떤 것들을 포기할 수 있는가에 대한 각오도 들었다.나는 앞으로 일 년 동안 인턴 월급을 받아야 할지 모른다고 이야기했다. 정말 열심히 하지 않으면 그저 그런 개발자가 되어 인생이 꼬일지도 모른다고 경고했다. 그런데도 흔쾌히 도전해보고 싶다고 말했고, 나는 배움의 기회를 제공하겠다는 약속을 했다. 좋은 대학을 나와 어렵게 얻은 직장을 포기하고 다시 새로운 길을 선택하려는 용기를 높이 샀다. 입사일은 3주 뒤로 정했다. 파이썬 책과 웹 프로그래밍 기본 책을 던져주고 모두 읽어 오라고 했다.입사 후 정신없이 3주가 지나고 문수님이 입사를 했다. 첫날 개발 환경을 셋업 하는 것을 도와주었다. 나에게는 너무나도 자연스러운 많은 것들이 그에게는 생소한 것이고 설명을 해야 했다. 문수님이 이해할 수 있는 간단한 것만 설명하고 나머지는 더 크면 알게 된다고 설명을 미루었다.(첫날 전체를 대상으로 자기소개를 하는 문수님. 우리 회사에는 입사자가 전체를 대상으로 자기소개를 하는 문화가 있다. 이 문화의 유래에 대해서는 다시 한 번 이야기해 보겠다.)내가 모든 것을 알려 줄 수는 없으니 코세라 수업을 같이 들어 보자고 이야기했다. 내 기준으로는 너무 쉬운 강의였지만 나는 회사 내에서 공부하는 분위기를 만들어 가고 싶었고 문수님께는 회사에서 필요한 기술 스택을 맛보는 기회가 될 수 있으리라 생각했다. (현재 시점으로 3달째 코세라 강의를 이어서 듣고 있다.)첫 강의인 HTML5를 들으면서 간단한 버그 수정부터 문수님께 요청을 하기 시작했다. 오자를 고치거나 박스의 위치를 조정하는 일부터 시작했다. 입사하고 3일이 지나서 첫 번째 배포를 했다. 처음이 어려웠을 뿐 간단한 수정을 하는 것에는 일주일이면 충분했다. 그때부터는 git과 git flow를 알려주기 시작했다. 착한 신입은 마음이 열려 있어서 불만 없이 모든 것을 따라 했다. 어느 정도 이해를 했는지는 알 수가 없다. 하지만 프로그래밍을 배우는 길에는 머리보다 손이 먼저 익히는 것들도 많다.3주가 지난 시점에는 첫 번째 데모를 전체 앞에서 보였다. (우리는 스크럼을 하고 있어서 매번 스크럼이 끝나는 날에 개발자가 스스로 자신이 개발한 것을 전 직원 앞에서 데모를 보인다.) 지금은 잠깐 문을 닫은 채권 거래소에서 채권 판매자가 손쉽게 채권을 팔 수 있는 기능이었다. 그것을 만들기 위해 일주일 넘게 꽁꽁 머리를 싸매고 있었고, 결국은 결과물을 내놓았다.(첫 번째 데모를 보이는 문수님. 긴장한 모습이 느껴진다. 데모를 마치고 다들 뜨거운 박수를 보내주었다)내가 만들면 2시간이면 끝났을 기능이라 일주일간 고생하는 것을 옆에서 지켜보는 것은 상당한 인내를 필요로 했다. 하지만 최대한 혼자만의 힘으로 첫 번째 과제를 해내기를 원했기에 최소한의 도움만을 주었다.이제 문수님이 입사한 지 만 3개월이 되었다. 그동안 많은 변화가 있었다. 회사에서 조그마한(점점 커지고 있다) 수정/기능들은 대부분 맡아 주고 있기에 다른 개발자들은 좀 더 어려운 문제를 풀 수 있게 되었다. 처음에는 코드 리뷰를 온라인으로 할 수가 없었다. 옆에 앉아서 어떤 부분을 어떻게 고쳐야 하는지를 구체적으로 알려 주어야 했고, 이해하지 못하면 관련된 지식을 얻을 방법을 알려 주어야 했기 때문이다. 하지만 이제 github의 PR을 보고 코멘트를 다는 것 만으로 코드를 적절히 수정할 수 있게 되었다. 얼마 전에는 하루에 1억이 넘는 이체를 하는 내부 시스템을 80% 이상 만들기도 했다. (내가 뼈대는 잡아 주기는 했다.)개발자라 부를 수 있는 기준이 따로 있겠냐만은 나는 이제 그를 개발자라 부를 수 있을 것 같다. 아마도 오늘의 문수님에게는 “개발자 박문수 님”이 가장 듣고 싶은 호칭이 아닐까 생각한다.  마지막으로 전공하지도 않았고, 첫 직장과도 관련 없는 새로운 도전을 하는 문수님의 용기에 박수를 보낸다. 내게 말하지는 않았지만 수많은 주위의 걱정과 우려를 이겨내기 위해 최선을 다하고 있으리라 생각한다. 나는 앞으로 그에게 “문수님은 지금 어디로 가고 있나요?"를 종종 물어봄으로 내 역할을 해야겠다.8퍼센트는 멋진 저희 팀과 함께 할 분들을 찾고 있습니다. 특히 저보다 개발을 잘 하시는 시니어 개발자, 그리고 3년 뒤에는 저 보다 잘하게 되실 주니어 개발자는 제가 모시러 갑니다. [email protected]로 연락 주세요.박문수 님이 이체 시스템 개발을 할 때 Toss의 이체 대행 API를 사용했습니다. 정말 간편합니다. 관련 개발을 하시는 분들은 사용해 보세요.#8퍼센트 #에잇퍼센트 #채용 #채용후기 #개발자 #개발자채용 #인턴 #인턴채용 #스타트업CTO

기업문화 엿볼 때, 더팀스

로그인

/