스토리 홈

인터뷰

피드

뉴스

조회수 1386

크몽 gulp 개선기

안녕하세요. 프론트개발자 bk입니다 :)이 글은 gulp사용법에 대한 글이 아닙니다. build 자동화 도구를 개선할까 말까 고민하는 개발자들을 위해 제 경험을 공유드리려 합니다.음... build 자동화 꼭 해야 해..?가 아닙니다. 크몽이라는 서비스가 어떤 개발 환경을 통해 만들어졌는지, 좀 더 편하고 효율적으로 개발 생활을 즐기기 위해 어떻게 개선을 했는지에 대한 개발 경험을 나눠 보려고 합니다.왜 이 작업을 하게 되었고 뭐가 그리 중요했는지, 크몽 개발 환경에서 gulp가 개선되어야 했던 이유에 초점을 맞추었습니다.시작에 앞서본격적인 gulp에 대한 이야기를 하기 전에 왜 내가 크몽에 입사하자마자 gulp를 개선해야겠다 마음먹었습니다.크몽에서의 개발크몽에 입사한 지 이제 3개월이 되었습니다. 회사의 개선사항, 변화가 필요한 것들에 대해선 반드시 말하는 스타일이라 크몽의 자유로운 분위기와 수평적 문화는 정말 만족했고 적응에 큰 어려움은 없었습니다.첫 주는 개발환경 laravel + vuejs 공부의 시간을 보냈고 둘째 주부터 이벤트 페이지를 맡아서 작업했습니다. 기존 사용하였던 개발환경과 크게 다르지 않아 크게 어려움 없이 이벤트 페이지 작업을 완료하고 배포가 되었습니다.호환성을 위한 es6 환경 필요성하지만 늘 그렇듯 다음 날 출근을 하니 버그가 날 기다리고 있었습니다. 조금 생소한 버그였습니다. script관련 오류였는데, 이전의 개발환경에선 babel, browserify가 거의 대부분의 script에 걸려있었기 때문에 습관적으로 es6로 작업했습니다. 결국은 es5스타일로 복구하여 수정했습니다. 곰곰이 생각해보니 호환성을 위해 es6를 사용하지 않는 것이 아닌 es6를 사용하도록 환경이 구성되어야 하는 게 맞는 것 아닌가 라는 생각했습니다.gulp가 개선되어야만 하는 이유크몽에 입사한 지 1주일 만에 다른 작업을 뒤로하고 회사에서 gulp만 외치고 다녔습니다. 다른 무언가 개선을 하려면 gulp가 필연적으로 개선이 되어야 했습니다. 기존의 개발환경은 파일 수정할 때마다 terminal에서 gulp를 명령어를 쳐야 했습니다. 주르륵 코드를 적고 한번 새로고침해서 짠하고 바뀌는 스타일이 아니라, 내가 짠 코드도 의심이 되어 자주 스텝별로 확인 스타일이라 이러한 현재 환경은 저와 정말 맞지 않았습니다.앞잡이(크몽의 프론트앤드 멤버) 챕터 회의 때 gulp개선을 요청하였고 모두에게 현재의 문제를 공유하고 gulp개선을 해야 하는 이유에 대해 설득 한 뒤 크몽개발팀 내 프로젝트 일정으로 잡히게 되었다.나 편하자고 시작한 작업, 내가 편한 건 팀원도 편하다우선 gulp 개선의 가장 큰 목적은 4가지였다.es6 및 최신 기술과 라이브러리를 사용하자gulp watch를 효율적으로 사용하자script태그와 style태그로 쓰는 것을 지양하자 (.js, .scss파일 많아지는 것에 대한 부담 가지지 말자)script, style, directory 구조를 기능별로 구조화시키자bk's PLANs그렇게 gulp는 이렇게 만들었습니다.기존 크몽 개발 환경에서 너무 확 바뀌진 않도록 개발자 분들과 협업하여 flow를 최대한 유지하며 작업했습니다. (공통 모듈, 유틸, 서비스 관련, 인증, 라이브러리, 이벤트, 구매 판매 트랙, sass)로 모듈을 나누어 bundle을 하였고 각각에 watch를 걸어 파일을 변경하면 자동으로 관련 모듈만 bundle이 실행되도록 작업했습니다.gulp를 위한 작업이었지만directory구조도 깔끔해지고 project도 좀 더 가벼워졌습니다. 계획은 거창했고 의욕은 앞섰지만 build 자동화 툴을 제대로 만져본 적이 경험이 없어서 (gulp, elixir, babel, browserify, stream) 작업과 공부를 병행하느라 예상보단 조금 더 시간이 걸렸지만 결과적으론 개선된 지금이 훨씬 개발하기 편해졌다.불필요한 작업이 습관이 되기 전에 개선을 실행했습니다.사실 크몽의 이전 개발환경에선 gulp가 크게 중요하지 않았지만, 크몽의 팀원이 많아지고 개발자도 많아지면 제가 아니더라도 크몽팀 누군가는 했을 작업이었습니다. 더 나은 환경이 분명히 존재하는데도 불구하고 기존의 불필요한 작업이 습관이 되어 개선을 망설이거나 하는 회사, 개발자가 많다고 생각합니다.개발자가 더 나은 환경에서 개발하는 걸 막자고 할 사람은 없을 것입니다. 그것이 입사한 지 1개월이 되든 10년이 되든 누가 말하든지 간에 말입니다. 갓 들어온 주니어 개발자의 말을 잘 들어주고 gulp 개선에 대한 필요성을 인정해주어 작업이 가능했던 것 같습니다.올바른 방향으로 문제 해결방법을 목표로 삼았습니다.앞으로의 bk의 계획이제 gulp가 완성이 됨과 동시에 directory 구조와 es6가 해결되었으니, 원래 가장 하려던 크몽의 코드 스타일, ESLint를 적용할 예정입니다. 그 후 vue2 마이그레이션 작업이 진행될 예정입니다.마무리작지만 하나하나 개선해 나가면 더 나아진 개발환경 구축이 되고 이런 작은 개선 사항들이 모여서 더 나은 크몽이 될 것이라 생각합니다.real _마무리이렇게 개발했던 경험을 블로그로 포스팅한 건 이번이 처음입니다.역시 글을 쓰는 건 어렵고 두서없었지만 build 자동화 툴에 대해 더 깊게 공부할 시간을 가지게 되어 좋은 경험이었습니다.글을 마무리 지으려니 어떻게 지어야 할지 모르겠네요.그래서 급 마무리 인사드립니다.이렇게 부족한 글 귀한 분들께서 읽어주셔서 감사합니다.다음 포스팅에는 크몽의 개발 조직문화 소개로 돌아오겠습니다.#크몽 #개발팀 #개발자 #개발문화 #경험공유 #인사이트
조회수 2234

Dropwizard와 Asynchronous HBase 적용기

Background워크인사이트 서비스는 루비 온 레일즈 기반으로 작성된 웹 애플리케이션입니다. 주로 사용하는 데이터의 대부분은 HBase에 저장되어 있습니다. HBase는 자바로 작성된 API를 기본으로 제공하므로, 레일즈가 직접 HBase의 데이터에 접근할 수 없습니다. 따라서 데이터를 효과적으로 읽어들이기 위해서는 두 가지 방법 중 하나를 선택해야 합니다. 첫 번째는 HBase Java API를 이용하기 위해 웹 애플리케이션 역시 자바 기반의 프레임워크로 재작성하는 것이고, 두 번째는 HBase 스토리지 측 데이터 형식과 레일즈 웹서비스 측 데이터 형식을 서로 연결해주는 RPC 중개자를 도입하는 것입니다. 첫 번째 방법은 프로그래밍 언어를 통일함으로써 데이터 통신의 일관성은 물론 시스템 안정성이나 성능 측면에서 좀 더 낫다는 장점이 있는 반면에, 현재까지 작성한 레일즈 애플리케이션을 전부 자바 기반의 프레임워크로 재작성해야한다는 단점이 있습니다. 두 번째 방법은 보다 범용성을 지향하는 방식으로 향후 시스템의 확장에 좀 더 유용하지만, 첫 번째 방법보다 시스템 전체 성능은 뒤떨어진다는 단점을 갖고 있습니다.당시에는 이미 워크인사이트의 개발이 상당히 진척된 상태였기 때문에, 레일즈 프레임워크를 그대로 유지하면서 자바와 소통할 수 있는 JRuby를 사용하는 것이 최선인 것 같았습니다. 하지만 실험 결과 JRuby는 실 사용할 수 없을 정도의 성능을 냈습니다. 무엇보다도 레일즈 지원이 아직 미성숙한 상태였고, 사용중인 루비 젬 중에도 네이티브 C 구현 루비만 지원하는 젬이 상당 수 있었으며, 이러한 이유들로 인해 결국 JRuby는 대안에서 제외되었습니다. 루비 온 레일즈를 버리고 다른 자바 기반 프레임워크로 전면 재작성하기에는 너무 큰 소모비용과 위험요소가 있었기에 다른 방식을 고려하게 됩니다.그래서 조이는, 앞서 말한 크게 두 가지의 대안 중 두 번째, 범용 데이터 중개자를 도입하기로 결정하고, Thrift를 선택하기로 결정하였습니다. Thrift는 페이스북에서 처음 개발하였고, 현재는 아파치 재단에서 관리하고 있는 범용 RPC 프레임워크입니다. 비슷한 기능을 가진 다른 프레임워크로는 구글의 Protocol Buffer나 아파치 Avro등이 있습니다만, Thrift를 선택한 이유는 지원하는 프로그래밍 언어의 종류가 가장 다양하다는 것이었고, 워낙 많은 사용 사례가 있어 신뢰성이 검증되었다는 판단을 했기 때문입니다. Thrift는 그 규모에 걸맞게 다양한 플랫폼별 배포판을 지원하고 있으며, 조이는 현재 사용중인 하둡 시스템 관리용 Cloudera manager를 지원하는 배포판을 이용하여 디플로이하였습니다. 레일즈와의 연동도 thrift젬을 이용하여 손쉽게 할 수 있었습니다. 테스팅 결과도 문제 없었고, 이것으로 모든 것이 잘 돌아가는 줄 알았습니다.그림1. Thrift를 적용한 ZOYI Back-end SystemProblem워크인사이트는 런칭 이후 지금까지 가파른 성장세를 이어오고 있습니다. 서비스 초기에 느긋한 속도로 성장하던 적용 매장 증가 추세는, 2015년 현재 기하급수적으로 증가하는 상승곡선을 그리고 있으며, 그에 따른 시스템의 스케일 업 & 아웃 이슈도 매 달 새롭게 발생하고 있습니다.그림2. 오픈 이후 워크인사이트가 구동 중인 실제 매장 수문제없이 잘 굴러갈 것만 같았던 Thrift서비스 역시 조이의 성장세에 따라 점차 부하가 걸리기 시작했는데, 당초에 기대했던 범용 RPC 프레임워크가 보장하는 확장성과 동시성과는 조금 다른 성격의 문제가 발생하게 되었습니다. 시스템에 대규모 질의가 집중되는 시점에 병목 현상이 발생하고, 이것이 CPU와 메모리의 한도를 초과하면 그대로 다운되는 현상이었습니다. 특히 메모리 사용량이 복구되지 못하고 계속 쌓여만 가는 누수 현상이 치명적이었습니다. 게다가 이렇게 다운된 Thrift가 재시작된 경우, 레일즈와의 연결을 복구하지 못하는 현상도 비주기적으로 발생하였습니다.조이의 하둡 클러스터는 본래부터 확장성을 고려하여 설계되었기 때문에, Thrift에서 발생한 이러한 문제는 생소한 것이었습니다. 다각도에서 테스트를 해 봤지만, 처음에는 원인을 파악하기가 쉽지 않았습니다. 리부트된 클러스터도 자가 복구가 되지 않아, 개발팀이 직접 클라우데라 매니저를 주시하고 있다가 Thrift 서버의 다운 시점에 수동으로 재시작을 해 줘야 하기도 했습니다. 데이터 변환 프로토콜의 문제인지 검토해 보았으나, Thrift 프로토콜이 갖는 본질적 결함은 더더욱 아니었습니다. 자바 언어가 갖고 있는 내재적 결함도 아니었습니다. HBase가 제공하는 자바 API의 문제도 아니었습니다.하지만 심도 있는 검증 과정을 통해, Thrift의 가비지 컬렉션이 제대로 작동하지 않는 문제를 발견하였고, 이는 단순히 Thrift의 최적화의 문제가 아니라는 결론에 이르렀습니다.Dropwizard그렇게 고심하던 개발팀은, 2014년의 워크인사이트 첫 런칭 시점으로 되돌아가서 생각해보기로 합니다. 당시의 조이가 먼저 생각했던 방식은 JVM 기반의 프레임워크였는데, 자바를 이용하여 서비스 레벨도 구현하면 Thrift에서의 데이터 변환 과정에서 야기되는 문제를 원천적으로 방지할 수 있음에 다시금 주목하게 되었습니다. 많은 프로그래밍 언어간의 데이터 통신을 위해 설계된 Thrift는 사실 레일즈와 자바로 균일하게 구축된 조이 시스템에는 필요 이상으로 무겁고 큰 프레임워크였습니다. 조이가 겪은 이런 Thrift의 문제를, 해외의 여러 기업들도 경험하였고 각기 다른 방법으로 최적화를 진행한 것도 알게 되었습니다. 이렇게 된 이상 바꿀 수 밖에 없었던 것입니다.그래서 다음 대안을 찾기 위해 많은 리서치와 스터디를 진행했습니다. 넘쳐나는 프레임워크들의 홍수 속에서 가볍고 안정적이며 구현이 편리한 프레임워크를 찾기란 쉽지 않았습니다만, 결국 Dropwizard라는 자바 프레임워크를 도입하기로 결정하게 됩니다. Dropwizard는 이미 잘 알려져 있는 Spring이나 Play 등과 같은 풀 스택 자바 프레임워크와는 다른, 경량 REST API 프레임워크입니다. Dropwizard는 모듈화가 잘 되어 있고, 숙성된 자바 생태계의 안정적인 라이브러리(Jetty, Jersey, Jackson)들을 사용하였으며, 모던 자바에 걸맞는 방식(리플렉션, 동시성 등)을 사용하기 쉽게 패키징되어있습니다. 국내에는 잘 알려지지 않았지만, 해외에서는 이미 Airbnb 등 유수의 스타트업들이 실제 서비스에 사용함으로써 그 유용성을 입증하고 있는 프레임워크입니다.그림3. Dropwizard로 새로 구성된 ZOYI Back-end System다만, 처음 사용하는 프레임워크에 조이의 모든 서비스를 포팅하는 것은 불가능에 가까웠고, 설령 하더라도 엄청난 리스크를 감당할 가치가 있는 지 의문이었습니다. 레일즈가 보장해주는 빠른 기능 구현과 쉬운 배포 및 강력한 ORM 등은 루비 온 레일즈가 주는 최대의 강점이기에, 이를 포기하기는 쉽지 않았습니다. 생산성과 성능, 어느 한 쪽도 놓치고 싶지 않았습니다.그래서 조이는 두 마리 토끼를 다 잡아 보기로 결정합니다. 레일즈의 장점을 유지하면서, Dropwizard의 최대 장점인 HBase 데이터 접근의 유연성도 살릴 수 있는 방법을 찾기로 하였고, 결론적으로 Dropwizard는 기존의 Thrift가 담당하던 데이터 중개자의 역할만을 수행하게 되었습니다. Dropwizard의 잘 나뉘어진 모듈화는 이를 가능하게 해 주었습니다. 모든 모듈을 사용하면 풀 스택 프레임워크에 버금가는 규모의 시스템도 구축할 수 있지만, 필요한 것만 선택하여 사용하면 가볍고 빠르게 작동하는 미들웨어 역할도 가능한 것입니다.Asynchronous HBase, and Java 8Dropwizard가 HBase 연결에 사용한 클라이언트 모듈은 AsyncHBase입니다. Asynchronous HBase는, 타임스탬프 기반 데이터베이스인 OpenTSDB를 만든 팀이 자신들의 제품에 HBase를 연동하기 위해 기존의 HBase 클라이언트인 HTable을 대체하는 모듈을 재작성한 것으로, 완전한 비동기 방식과 넌블록킹 및 스레드 안전성 보장이 강점이라 할 수 있습니다. AsyncHBase와 Dropwizard를 연동하는 것은 매우 수월했습니다. 테스트 결과, 간결한 코드로도 초당 수 만 단위의 동시성을 안정적으로 처리할 수 있음을 검증했습니다. 조이는 OpenTSDB를 실시간 데이터 분석에 사용하고 있어, 해당 팀이 제공하는 제품의 품질과 전망에 대해 신뢰를 갖고 있었습니다. 테스트 결과는 이 신뢰를 더욱 뒷받침해주었고, 본 모듈을 Dropwizard의 HBase 연결 모듈로 선정하게 되었습니다.또한, Dropwizard와 AsyncHBase의 도입과 함께 처음으로 자바 버전 8로의 이식도 진행하게 되었습니다. 자바 8은 람다와 스트림 등 함수형 프로그래밍의 여러 기법을 대거 도입하였고, 자바 특유의 장황한 문법을 조금 더 간결하게 축약할 수 있는 장점이 있습니다. Dropwizard와 AsyncHBase 모두 자바 8과 순조롭게 연동되었으며, 이 결과에 만족한 조이는 기존의 하둡 맵 리듀스 프로젝트 역시 자바 8로 버전업하기로 결정하였습니다.PerformanceDropwizard의 성능 테스트 결과는 만족스러웠습니다. AsyncBase도 기대를 저버리지 않는 결과를 보여 주었습니다. HBase Java API와의 매끄러운 연동은, 성능 측면에서 기존과는 비교할 수 없을 정도의 향상을 보여주었고, 이 덕분에 기존 맵 리듀스 워크플로우 중 일부를 실시간 처리로 옮겨, 좀 더 유연하고 동적인 분석이 가능하게 되었습니다.다음의 비교는 Thrift와 Dropwizard의 각각의 벤치마크 테스트를 100개 동시 작업, 단위당 10000개의 요청으로 수행한 경우의 결과를 나타낸 것입니다.그림4. Thrift 테스트 시의 메모리 사용량Concurrency Level: 100 Time taken for tests: 514.315 seconds Complete requests: 10000 Failed requests: 0 Total transferred: 32090000 bytes HTML transferred: 27600000 bytes Requests per second: 19.44 [#/sec] (mean) Time per request: 5143.151 [ms] (mean) Time per request: 51.432 [ms] (mean, across all concurrent requests) Transfer rate: 60.93 [Kbytes/sec] received Thrift 벤치마크 결과. 전체 수행에 514초가 걸렸습니다.그림5. Dropwizard 테스트 시의 메모리 사용량Concurrency Level: 100 Time taken for tests: 4.599 seconds Complete requests: 10000 Failed requests: 121 (Connect: 0, Receive: 0, Length: 121, Exceptions: 0) Non-2xx responses: 121 Total transferred: 23288000 bytes HTML transferred: 21559452 bytes Requests per second: 2174.25 [#/sec] (mean) Time per request: 45.993 [ms] (mean) Time per request: 0.460 [ms] (mean, across all concurrent requests) Transfer rate: 4944.72 [Kbytes/sec] received Dropwizard 벤치마크 결과. 전체 수행에 4초가 걸렸습니다!그림6. 초당 처리량 (높을수록 좋음)벤치마크 테스팅 시 스레드 분산이 최적화 된 경우에는 최대 100배 이상의 속도 향상이 있었습니다. Dropwizard는 기존 Thrift에 비하여 성능 향상은 물론, 안정성 면에서도 시스템이 다운된 이후에 자동 복구되지 않는 현상도 사라졌습니다. 무엇보다도 짧은 코드만으로 대규모의 질의에도 견고하고 신속하게 반응하는 서비스를 구현할 수 있다는 점이 Dropwizard의 가장 큰 장점입니다.Conclusion유용한 오픈소스 프로젝트는 시장에 너무나도 많이 널려 있습니다. 이 중에 어떤 것을 선택하는가는 소프트웨어 기업에게 중요한 안건이며, 잘못된 결정은 프로젝트 자체는 물론 회사의 생사를 결정하기까지 합니다. 조이는 적합성, 성능, 안정성, 생산성 등 모든 면에서 조이의 서비스와 알맞는 제품을 찾으려고 항상 노력하고 있으며, 가능한 한 넓고 깊은 검증, 분석 및 연구를 통해 최적의 대안을 찾아내고 있습니다. 그 결과, 이번 Dropwizard와 Asynchronous HBase를 도입하여 기존의 Thrift를 대체하는 프로젝트는 예상보다 훨씬 좋은 성과를 낼 수 있었습니다. 국내에는 Dropwizard의 실무 사용기 등을 찾아보기 힘들고, 한글화된 문서 자체도 찾기 쉽지 않은데, 이 글이 앞으로의 선택을 고민하는 분들, 드롭위자드에 관심이 있는 분들께 도움이 될 수 있으면 좋겠습니다.#조이코퍼레이션 #개발팀 #개발자 #개발환경 #업무환경 #인사이트 #경험공유
조회수 3681

[어반베이스 인턴일기] 전공의 벽을 뚫어낸 능력자들

                                                      ‘전공무관’. 많은 채용 사이트에서 볼 수 있는 이야기죠. 하지만 채용공고만 그렇지, 막상 개발이라면 컴퓨터 공학을 전공해야 할 것 같고, 마케팅이라면 경영을 전공해야 할 것만 같습니다. 하지만 어반베이스의 개발 인턴들은 컴퓨터공학을 전공하지 않았고, 마케팅 인턴도 경영학을 전공하지 않았다는 사실! 우리는 어떻게 어반베이스를 알게 되어 어반베이스를 선택하게 되었을까요? 이제 들어온 지 한 달, 타운홀 미팅을 통해 정식으로 인사도 드렸으니 진정한 어반베이스의 식구가 되었습니다. 한달 간 느낀 인턴들의 솔직한 이야기를 만나보세요!※ 타운홀이란 ? 매달 1회 전직원이 모여 자유로운 주제로 소통하고 네트워킹하는 어반베이스만의 토론 문화 Pt 0. 자기 소개 및 하는 일 왼쪽부터 민진, 수민, 윤아마케팅부문 인턴 _ 민진 (컨텐츠 제작)건축공학을 전공하고 마케팅 부문 인턴이 되었다.어반베이스의 SNS들을 관리하고, 그에 맞는 컨텐츠를 제작, 그리고 이번에 열리는 어반스니커즈 컨퍼런스의 진행을 돕고 있다.개발부문 인턴 _ 수민 (3D 도면변환)건축학을 전공하고 개발부문 인턴이 되었다. 지금은 3D로 변환된 도면을 산업에서 쓸 수 있도록 다양한 3D 포맷으로 바꾸는 일을 한다. 개발부문 인턴 _ 윤아 (머신러닝)생체의공학을 전공하고 개발부문 인턴이 되었다.공간을 찍으면 공간이 어느 곳인지 인식하여 분류해주는 작업이다. 머신러닝과 딥러닝을 사용해서, 연령, 성별, 취향 등으로 공간을 세분화하여 그 공간에 맞는 제품을 추천해주는 시스템까지 계획하고 있다Pt 1. 선택Q. 어반베이스의 인턴 셋은 모두 전공과 다른 길을 가고 있네요. 어떻게 선택하게 된 길 인가요?전공과 맞지 않음을 깨달은 인턴 3人수민 : 전공이 건축이잖아요. 그런데 설계에 대한 회의가 들었어요. 그리고 VR에 관심이 생겼고, 그래서 프로그래밍을 배우게 됐어요.윤아 : 생체의공학과는 주로 배우는 분야가 하드웨어 쪽에 가까워요. 근데 저는 하드웨어 쪽은 잘 안 맞는 것 같더라고요. 전자공학과를 복수 전공하면서 프로그래밍 수업을 듣다가 프로그래밍을 이용한 데이터 분석에 흥미를 갖게 됐어요. 민진 : 취직 준비를 하면서 느꼈는데, 건축업계 자체가 굉장히 폐쇄적이고 수직적이고 보수적인 문화를 가지고 있더라고요. 그런 곳에서 잘 적응하지 못할 것 같아 건축이라는 전공을 살려 할 수 있는 다양한 길을 찾아 봤고, 그런 과정 중에 어반베이스를 알게 됐어요.Q. 그렇다면 왜 어반베이스를 선택했나요? 윤아 : 데이터 사이언스 쪽으로 일자리를 찾다가 알게 됐어요. 수치나 텍스트 데이터를 사용해서 분석하는 공부를 많이 해서, 이미지 데이터를 사용하는 분야도 배우고 싶었는데, 어반베이스에서 그런 일을 하더라구요.수민 : VR에 관심이 있었고, 회사가 하는 일이 건축 전공이라면 잘 맞을 것 같아서 선택했고, 와서 겪어보니 실제로도 그런 것 같아요. 채용공고나 블로그에서 봤던 회사의 복지나 비전도 선택에 큰 영향을 미쳤죠. 민진 : 건축을 베이스로 하는, 4차 산업혁명의 흐름을 직접 느낄 수 있는 회사에서 일을 하고 싶었어요. 그래서 무모하지만 과감하게 마케팅 팀에 지원을 했습니다. 수민님에게 큰 영향을 주었다는 어반베이스의 꿀복지!Q. 대기업이 아닌 스타트업을 생각했던 이유가 있나요? 윤아 : 대기업의 획일화 된 채용 시스템이 싫었어요. 딱딱하고, 틀에 박혀있는 그런 형식들이요.민진 : 저두요. 그리고 저는 스타트업에서 일을 하면 바로 실무를 할 수 있다고 해서 욕심이 났어요. 바로 일을 해보고 싶었거든요.Q. 전에 일을 하신적이 있나요? 실제로 일을 해보니 어떤가요?수민 : 실무를 하는 것은 처음이에요. 저는 3D로 변환된 도면을 산업에서 쓸 수 있도록 다양한 3D 포맷으로 바꾸는 일을 해요. 설계할 때는 3D 툴을 직접 다루는 입장이었는데 지금은 파일만 다루니 생소하긴 하네요. 부담되기도 하지만, 사람들에게 많이 물어보거나 정보를 알아서 흡수하려고 해요. 3D 도면변환을 담당하고 계신 수민님윤아 : 마찬가지로 실무는 처음이에요. 저는 머신러닝 쪽인데, 쉽게 말해서 공간을 찍으면 공간이 어느 곳인지 인식하여 분류해주는 작업이에요. 일단 아직은 배우는 중이라 그런지 일이 재미있어요. 시간이 빨리 가는건 재밌다는 거 아닐까요? 사실 사수가 있을 줄 알았는데 없어서 되게 막막했어요. 가끔 일 하다가 막힐 때가 있는데, 모르는 것은 다른 분들에게 물어보기도 하고, 구글링하거나 다른 책을 찾아보기도 해요. 머신러닝 부분의 윤아님민진 : 타 회사에서 설계 관련 인턴을 했었어요. 마케팅 실무는 처음이라 모든 것이 새로워요. 채용공고와 면접에서 SNS 콘텐츠 기획 및 제작을 주로 맡게 될 거라고 했고, SNS나 블로그를 운영하고 있어서 자신이 있었어요. 그래도 확실히 실무는 다르더라고요. 사수분이 잘 가르쳐 주시는 덕에 잘 적응하고 있어요. 내 손으로 직접 무언가를 기획하고 컨텐츠를 제작한다는 것이 굉장히 재밌어요!SNS에 올라가는 컨텐츠를 만들고컨퍼런스 관련 컨텐츠를 제작하고 업무를 서포트 하고 있는 민진님Pt 2. 어반베이스의 첫 인상<인턴들이 뽑은 어반베이스의 좋은 점>1.윤아 : 사람들이 친절해요.민진 : 맞아, 뭐든 물어보면 되게 친절하게 알려주세요.2.민진 : 아, 그리고 유연 근무제 너무 좋아요. 아침에 지각하지 않으려 뛰지 않아도 되고, 사정이 있으면 빨리 퇴근할 수도 있고.수민 : 금요일에 2시에 퇴근하시는 분들도 많이 있어요. 짱이에요. 9시 13분, 사무실 풍경. 자율적으로 조절하는 업무 스케줄3. 수민 : 또, 식대 8000원! 선릉 맛집 점령! 이 정도면 굉장히 넉넉하지 않나요? 어반베이스 단체방에 올라오는 점심 사진들. 넉넉함 인정4.윤아 : 무제한 맥주가 있는 것, 그리고 근무시간에 먹어도 된다는 것! 민진 : 커피도 무제한이잖아요. 심지어 맥주, 커피 모두 밖에서 사먹는 것보다 맛있어요.사진 출처 : 스파크플러스Q. 반면, 당황했던 부분이나 힘들었던 점도 있나요?민진 : 저는 처음에 ‘ㅇㅇ님’ 이라고 부르는 것이 너무 어색했어요. 전에 하던 알바와 인턴, 모두 직급체계가 확실한 곳이었거든요. 근데 이젠 다 적응해서 아무렇지도 않아요.Pt. 3 채용 과정Q. 어반베이스를 어떻게 알게 됐어요? 수민 : 로켓펀치와 원티드에서 알게 됐어요. 그리고 유튜브나 관련기사들도 많이 검색해봤어요. 보도자료를 보니 어반베이스가 하고 있는 일이 미래를 널리 생각하고 있는 것 같아서 굉장히 좋은 영향을 줬어요.  윤아 : 저도 원티드에서 보고 알았어요. 블로그나 기사가 많아서 하나씩 다 살펴봤어요. 민진 : 저도요. 유튜브 계정에서 하나씩 다 살펴봤어요. 건축 AR에 관련된 영상이었는데, 굉장하더라고요. 그동안 제가 만들었던 허접한 모형들이 뇌리를 스쳐 지나가며.. 이런 신세계가 10년만 일찍 펼쳐졌다면 밤을 좀 덜 샜을 텐데.. 모형을 만드는 나도, 그걸 보는 교수님도, 서로 덜 괴롭지 않았을까.. 하는 생각이 들기도 했습니다 하하. 영상의 풀버전은 어반베이스 유튜브에 올라와 있습니다!Q. 자기소개서 및 포트폴리오 준비는 어떻게 했나요?수민 : 자기소개서는 다른 자기소개서들이랑 비슷했어요. 지원동기, 성장배경, 성격 등 기본적인 문항들로 채웠고 그동안 했던 프로젝트를 PPT에 정리해 제출했어요. 윤아 : 저도 거의 비슷해요. 민진 : 저는 자기소개서를 굉장히 짧게 적었어요. '왜 어반베이스에 지원했는지, 왜 나를 뽑아야 하는지' 딱 두 개만 적었어요. 포트폴리오는 건축 프로젝트, 공모전, 동아리 등 내가 했던 모든 활동을 정리해서 제출했어요. Q. 면접은 어땠나요?윤아 : CTO님이 이야기를 굉장히 잘 들어주시고 편한 분위기에서 면접이 진행되었어요. 면접을 진행하며 좋은 인상을 받았어요.수민 : 저는 조금 긴장했어요. CTO님께서 제 포트폴리오를 보고 질문을 하셨어요. 제 답변에 틀린 점도 있었는데 틀린 부분을 친절히 설명해 주시기도 했어요. 2차 면접도 역시 편안했고요.민진 : 저는 1차 면접을 마케팅팀 분들과 봤어요. 면접 자체가 제가 일방적으로 질문에 응답하는 것이 아닌, 서로 이야기를 주고 받는 '대화'에 가까웠어요. 그래서 저도 면접 이후로 더욱 좋은 인상을 받았어요. 두 번의 면접이 진행되면서 어반베이스가 하고 있는 사업들에 대해 더욱 자세히 알게되었는데, 진짜 꼭 붙고 싶더라고요. 붙어서 참 다행입니다. 마지막으로Q. 전공과는 조금 다른 길을 선택했는데, 후회는 없나요?수민 : 음, 그래도 어반베이스는 건축이 바탕이 되어 있으니까요. 건축산업이 좀 더 유연하게 바뀌고, 기술이 많이 도입 된다면, 지금 제가 보내는 이 시간들이 굉장히 값진 시간이 될 거예요. 프로그래밍과 건축 베이스의 지식이 굉장한 무기가 될 수 있다고 생각해요. 윤아 : 저도 후회는 없어요. 요즘 데이터 분석은 어딜가나 쓰이니까요. 전공을 살려 의료 쪽 데이터를 다룰 수도 있지 않을까요? 그런 의미에서 전공지식이 무용지물은 아니라고 생각해요. 민진 : 저도 후회 안해요. 건축을 전공했기 때문에 지금 어반베이스가 하고 있는 일을 훨씬 잘 이해할 수 있었어요. Q. 어반베이스를 들어오고 싶은 사람들에게?수민 : 어반베이스는 기술 집약적인 기업이라 생각해요. 프로그래밍의 아주 초입자라면 어렵겠지만 업무가 적성에 맞다면 즐겁게 일할 수 있을 거에요.민진 : 미래산업에 관심이 있다면  더욱 흥미롭게 다가올 것 같아요. 현재 국내에서 쉽게 접할 수 있는 사업이 아니기 때문에 굉장히 도움이 될 거라고 생각해요. 인터뷰 Behind 1어반베이스의 좋은 점에 대해 이야기하며 어반베이스 복지문화 중 하나인 ‘어반테이스트’의 얘기가 나왔습니다. 수민 : 아, 그 어반테이스트도 가신 분들 엄청 부러워요. 그 쓰리쁠 등심.. 나도 먹어보고 싶다. 윤아 : 나는 어반 테이스트 뽑히면 스시먹어야지. 수민 : 오마카세..!민진 : 아, 갑자기 배고프네. 다들 좋아하는 음식 있어요?윤아 : 아무거나 다 잘 먹어요.수민 : 저는 라멘이 먹고 싶네요.윤아 : 수민님 며칠전부터 라멘 얘기하셨어요. (웃음)민진 : 그럼 오늘 점심 때 먹으러 가요. 빨리 선릉역 라멘 맛집 찾아봐요. 선릉역 라멘집 호타루인터뷰 하다말고 맛집을 검색하더니 곧 우리의 행선지가 결정되었습니다! 점심으로 라멘을 먹고 셋이서 아주 뿌듯했다는 이야기. (ㅎㅎ) 인터뷰 Behind 2윤아 : CTO님과 면접보다가, 나중엔 자소서 잘 쓰는 법도 알려 주셨어요. 그래서 '아, 날 뽑지 않고 자소서 잘 써서 다른데 지원하라는 의미구나.' 싶었어요. 그래서 떨어질 줄 알았는데, 합격 전화가 와서 깜짝 놀랐어요. (웃음)수민 : 원래 공대생들이 글을 잘 못쓰잖아요. 모두 : 아, 완전 공감.선택한 길에 대해 후회는 없다는 인턴 3인방. 인터뷰를 하며 공통적으로 말했던 것은 ‘좋은 사람들과 멋있는 일을 할 수 있어 아주 즐겁고 재밌다!’는 것이었어요. 어반베이스도, 우리들도 더욱 발전할 수 있었으면 좋겠습니다. :) 어반베이스에 관심이 생기신 분들, 그래서 입사 지원을 하시는 분들 중 혹시 더 궁금한 점이 있다면 댓글에 남겨주세요. 담당자분에게 직접 물어봐 드릴게요.  그럼 이만 일하러 가보겠습니다 !출처: https://blog.naver.com/urbanbaseinc
조회수 1648

경험 부족한 스타트업의 devops 도입기 3편

칸반과 스크럼을 섞은 I/O 트렐로 보드코드리뷰코드리뷰를 말씀드리기 전에 I/O의 개발 프로세스부터 소개해 드리겠습니다. 저희 SW 엔지니어들은 칸반보드를 일주일 주기(sprint)로 진행해 나갑니다. devops 도입을 위해 이 개발 프로세스를 설계 하였는데요. Sprint 주기인 working day 5일 동안 이번 주안에 개발을 끝내야 하는 feature 1개와 지난 주에 개발을 마친 feature 1개의 알파테스트 그리고 지지난 주에 개발된 feature 1개의 베타테스트가 동시에 진행됩니다. 즉, 3개의 phase 가 매순간 공존하는 프로세스 입니다.코드리뷰 도구로는 bitbucket의 pull request를 사용하기로 했습니다. I/O에 있는 5명의 SW 엔지니어들은 각자 필수로 리뷰 받야할 짝꿍이 정해져 있습니다. Sprint동안 개발한 피쳐 혹은 hotfix를 merge(배포)하기 위해서는 반드시 pull request과정을 거쳐야합니다. 즉, 짝꿍을 포함한 최대 4명에게 pull request를 요청할 수 있습니다. Sprint동안 개발된 feature는 가급적 매주 목요일에 pull request하기로 하였으며 SW엔지니어들은 목요일엔 코드 리뷰 시간을 할애해 두기로 약속 했습니다.이러한 개발환경 아래 지난 2주간 제가 기억하는 pull request는 4개 였습니다. 총 review해야할 commit 수가 22개로 평균 pull request당 5.5개의 commit 을 리뷰해야 했습니다. 알파테스트에서 발생한 마이너한 hotfix는 pull request없이 merge된 걸로 알고 있어 제가 놓친 commit들도 존재 했습니다. Jira로 Ticket 관리를 안하다보니 위에 첨부된 이미지 처럼 Trello 카드링크가 카드의 제목(유즈케이스)으로 나오지 않아 조금 불편하기도 합니다.Pull reqest에 달린 Comment들.일단, bitbucket으로 코드리뷰를 2주간 진행 해보니 엔지니어간의 유대감이 생기는 느낌이 들었습니다. 그 전에는 구현상의 이슈를 이야기 나누는 수준에서 머물렀는데 이제는 서로가 직접 짠 코드를 공유하다보니 확실히 느낌이 달라졌습니다. 처음으로 목욕탕을 함께 다녀온 친구가 된 느낌이랄까요… 저만 그렇게 느꼈을 수도 있구요. 확실한 건 엔지니어마다의 개발 스타일을 파악할 수 있게되어 엔지니어와 대화할 때 상대방의 스타일에 맞춰서 낭비가 적은 커뮤니케이션을 수행할 수 있게 되었습니다.Exception Hadling feedbackMagic Number feeback뿐만아니라 위의 이미지 두 장 처럼 개발상의 안좋은 냄새를 리뷰과정에서 감지하여 개발자에게 바로바로 피드백해 줄 수 있었습니다. 물론, 좋은 개발 방식이나 설계내용을 배울 수도 있었구요.TDD(테스트주도개발)테스트주도개발의 개발 리듬 : 출처 : 구글 이미지 검색Sprint의 feature scope을 극단적으로 작게 줄여버리니 TDD 공부에 엔지니어들이 매진했습니다. 각자 포지션에 맞는 책을 하나씩 끼고 충분히 TDD을 깊게 파고 들어갔는데요. 결과적으로 안드로이드, iOS 엔지니어는 4주만에 TDD의 기본기를 확실하게 다질 수 있었습니다.안드로이드 엔지니어의 경우 최근 2주 동안 정말 놀랍게 성장했는데요. 지난 I/O diary 8에서 소개된 안드로이드의 switcher sorting 클래스는 SUT로 만들기 쉽지 않은 legacy class였습니다.그러나, 안드로이드 엔지니어가 켄트백의 TDD 책을 14장까지 정독하면서 상황을 완전히 뒤바꿔 버렸습니다. 예제로 나오는 통화 프로그램을 한 줄 한 줄 키보드로 직접 따라 쳐가며 긴호흡으로 책을 정독함으로써 자연스럽게 객체지향으로 변해가는 설계 리펙토링 원리를 피부로 체험할 수 있었는데요. 그덕에 지난 주에 진행된 소프트웨어 세미나에서 공개된 리팩토링된 switcher sorting 클래스 로직은 보기좋게 간결해졌습니다. 기존 코드의 test함수는 switcher sorting 클래스의 많은 기능을 1개의 테스트 함수에서 다 집어 넣고 검증하려다 보니 함수 길이가 50줄 이상 되어 가독성이 무척 떨어졌었는데요. 그러나, 리팩토링된 test class에는 약 5개의 test 함수(setup, teardown 제외)로 적절하게 나뉘어 리뷰어가 참 읽기 좋게 코드가 작성되었습니다. 각 test 함수도 적당한 길이로 짜여서 테스트 코드를 읽으면서 자연스럽게 설계의도를 파악할 수 있었습니다. 이렇게 단시간에 TDD를 체화한 엔지니어니어들을 보면 신기할 따름입니다.느낀점출처 : 구글 이미지 검색devops가 성공적으로 도입되려면 당분간은 완급조절이 핵심인것 같습니다. 새로운 것을 마구잡이로 도입하기보다 지금은 코드리뷰와 TDD에만 집중 할 수 있도록 팀환경을 만들어 줘야 할것 같습니다. 지난 6월 1주차에는 제가 scope 조절에 실패해서 개발 phase의 feature가 무지 무거웠습니다. 그로인해, 안드로이드 엔지니어는 테스트코드를 짤 여유가 없었습니다. 제 실수로 결국 기술부채가 쌓이고 말았습니다. 당분간 기술부채를 털어내기로 해놓고 말과 행동이 다른 사람이 되어버렸습니다. 6월 30일까지는 조바심 내지말고 TDD와 코드리뷰가 몸에 완전히 익을 때까지 feature scope가 충분히 작게 설정되도록 신중에 신중을 가해야할 듯합니다. 과도한 업무량에 좇겨 엔지니어들이 Test code coverage가 낮아지거나 코드리뷰 없이 코드가 배포되지 않도록 팀 완급조절에 지속적으로 관심을 쏟아야 겠습니다.#스위쳐 #Switcher #DevOPS #데브옵스 #개발 #개발자 #문제해결 #도입기 #인사이트
조회수 3161

야놀자 앱은 왜 자동실행 되나요?

pluu 04 JUL 2018저는 야놀자 CX서비스실의 Android 파트에서 레이아웃 깎기와 Kotlin과 새로운 Android 기술을 전파하는 노현석입니다. 야놀자에 합류하고서 경험한 가장 독특한 케이스에 대해서 이야기해 보려고 합니다.시작은 물음표부터언제부터인가 야놀자앱을 설치하거나 업데이트하면 앱이 자동으로 실행된다는 리뷰가 들어오기 시작했습니다.네?! 그게 무슨 말이에요?안드로이드 개발을 시작한 이래로 처음 들어보는 내용이라, 원인도 정확한 해결책도 떠오르지 않는 그런 리뷰였습니다. 그래서 자연스럽게 브라우저를 켜서 구글에 검색을 먼저 해봤습니다. Android, Auto Start, Install 등 다양한 검색 결과로 일정한 패턴의 내용을 확인할 수 있습니다.  Intent Action 관련 내용android.intent.action.PACKAGE_ADDEDandroid.intent.action.PACKAGE_CHANGEDetc.Broadcast Receiveretc.일반적으로 안드로이드 앱이 설치 및 업데이트될 때 발생하는 이벤트(이하 Broadcast)를 받는 방법에 대한 설명이 많습니다. Broadcast는 배터리 변화, 전화 여부, 와이파이 등 시스템의 상태 변화를 감지하거나 서비스 내부적에서 이벤트를 전달하기 위해 사용합니다. ???? 실질적인 해결책은 되지 않지만, 범위를 좁혀서 찾아볼 포인트로 Intent 의PACKAGE관련 액션을 포커스로 잡았습니다. 하지만, 야놀자앱에서는 마케팅 성과 측정을 위해com.android.vending.INSTALL_REFERRER를 광고 트래킹 SDK에서 사용하는 것 이외에는 별도의 작업을 하지는 않습니다. 그러나, 이를 알 리가 없는 사용자는야놀자 앱이 일으키는 문제라고 인지하기 쉽습니다.  일차적으로, 어느 경로를 통해서인지는 모르지만 누군가가 야놀자 앱을 실행하는 것이라고 생각했습니다.야놀자 앱 사용자의 기기에 설치된 모든 앱 리스트를 받아올 수도 있고, 리퍼럴에 따른 앱 실행경로를 모두 수집할 수도 있지만, 단순히 버그를 찾기 위해 사용자의 동의 없이 정보를 수집할 수는 없기 때문에 장기전으로 돌입하게 되었습니다. 하지만 동일한 리뷰는 계속되었고 여전히 뚜렷한 해결책이 없는 채로 시간이 흘러갔습니다.  저 재현되는데요증상이 나타나지만 재현은 되지 않고, 재현 경로를 단기간에 파악하기는 어려운 과제였습니다. 한두 명에 불과하던 제보가 시간이 지날수록 Android 파트의 목을 조르듯이 점점 유입되는 횟수가 늘어만 갔습니다. 그런데 어느 날, 다른 팀의 분께서저 재현되는데요라는 한 줄기의 빛과 같은 언급을 해주셨습니다.믿고 싶지 않은 일이 현실이 되었다네? 그게 … 정말로 일어났습니다.이제부터가진짜시작역시버그는재현이되어야제대로잡을수있겠죠! 저에게는재현되는 단말이 있어요!Android에서 디버깅을 할 수 있는 다양한 수단이 있습니다. 이번 사례의 경우는Log혹은Dump를 확인해보는 선택지가 있습니다.Log민감한 정보라고 판단되는 부분은 모자이크했습니다.앱 설치 후 광고 SDK가 수집하는 것으로 보이는 Log에는 다양한 항목들이 나열되는 것을 볼 수 있습니다. 이때 설치한 앱의 정보가 SDK를 통해 특정 API로 전송되는 것도 확인할 수 있습니다. 하지만 Log는 Log일 뿐입니다.  Dumpsys이렇게 Log만으로 추적이 어려울 때, 추가적으로 시스템의 상태를 얻어내 디버깅 할 수 있는 방법이 있는데 바로dumpsys입니다. dumpsys는 Android 단말에서 실행되며 시스템 서비스에 대한 다양한 정보를 제공하는 도구입니다. ADB(Android Debug Bridge)를 사용하여 dumpsys를 호출 시 해당 단말에서 실행 중인 모든 시스템 서비스에 대한 정보를 가져올 수 있습니다. 간단하게 말하면 배터리의 잔량, 메모리 소비량, 네트워크 통신 상태 등을 명령어로 확인할 수 있습니다. dumpsys의 기능에 대해서는 방대한 설명이 필요하므로, 자세한 내용은 아래 링크로 대체합니다.  Android Developers ~ dumpsyshttps://android.googlesource.com/platform/frameworks/native/+/master/cmds/dumpsys/dumpsys.cppActivity DumpDumpsys 에서 좀 더 Activity 와 관련된 정보를 얻기 위해서는 아래의 명령어를 적용해볼 수 있습니다.// Activity Log Dump adb shell dumpsys activity activities 결과를 확인해봅니다. 아래와 같은 Activity 의 활동 이력을 얻을 수 있습니다.Activity Dump에 나타난mCallingPackage값으로 야놀자 앱을 시작시킨 앱의 패키지를 확인할 수 있습니다. 해당 패키지를 실제 Play Store에서 확인해본 결과, 사진 보정 필터앱으로 유명한카메라 앱중 하나였습니다.???? 야놀자와는 전혀 연관성이 없는 앱인데, 호출하고 있네요… ????Process ID// 애플리케이션의 Process ID 취득 adb shell ps Activity Dump에서 확인한mCallingUid는u0a423였는데, 이는 Activity를 호출한 uid 값을 가리킵니다. 실제로 Process 가 호출되는 Application ID도 카메라 앱에서 호출한 ID 정보와 일치합니다.대상 앱 자료 분석단순하게는 APK 를 분석하여 추측하는 방법이 있습니다. Android Studio 에서 제공되는Analyze APK기능을 이용하여 해당 앱에서 사용되는 서비스의 정보를 파악할 수 있습니다. 이 방법을 이용하여 문제의 앱이 사용하는 광고 SDK 서비스에서 패키지 설치/제거 관련 Broadcast Receiver를 수집하는 것을 확인 할 수 있습니다.패키지 관련 Broadcast인android.intent.action.PACKAGE_ADDED, android.intent.action.PACKAGE_REMOVED를 앱이 사용하는 것은 잘못된 것이 아닙니다. 예를 들어 런처 앱의 경우 단말기 내부의 앱 정보가 변경되었다는 이벤트를 이용하여 화면 렌더링 및 동작을 변경하는 처리를 할 수 있습니다 해당 광고 SDK의 경우에는 앱을 설치 및 실행하는 것으로 사용자에게 포인트 및 여러 혜택을 제공할 것이라고 예상할 수 있습니다.개인적인 의견으로는 사용자의 액션과 상관없이 동작하는 부분에 대해서는 분명히 Android 의 개선도 필요하다고 생각됩니다. 이런 정상 동작과 어뷰징은 아슬아슬한 경계에 있지만, 자칫 어뷰징으로 이어지는 경우 서비스의 품질이 떨어지게 되면서 사용자와 개발사 모두에게 좋지 않은 경험을 줄 뿐입니다.설마 이것도 되려나?동일 패키지명이번 포스팅을 작성하게 된 카메라 앱과 야놀자 서비스 사이에 특별한 관계가 없다면, 왜 이런 현상이 발생하는지 고민해봤습니다. SDK도 연결하지 않았다면, 앱을 추적할 수 있는 유일한 키는패키지명이지 않을까라는 생각으로 패키지명만 야놀자 앱과 동일한 샘플 앱으로 테스트해봤습니다.동일 재현 성공!!그럼… 해결… 끝?많은 사람들에게 이름이 널리 알려진 여러 서비스에서조차 이번 포스팅에서 다룬 내용과 같은 현상이 발생하고 있습니다. 발생 유무에 따른 차이점이나 현상의 인과 관계를 명확히 판단하기엔 아직 정보가 많이 부족합니다. 그리고 이번 분석에서 발견한 문제의 앱을 비롯하여 또 다른 제2, 제3의 앱들이 등장할 거란 가능성도 배제할 수 없는것이 현재 상황입니다. 슬프게도 아직 이 현상은 지금도 계속되고 있으며, 불편을 호소하는 리뷰가 등록되어 서비스 전체의 이미지와 평점을 갉아먹고 있습니다. 안드로이드 생태계가 사용자 및 서비스 제공자에게 더 유익한 방향으로 나아갔으면 하는 바람을 담아 작성했습니다.도움 주신 분동일 증상을 발견하고, 단말을 빌려주신 R&D SF팀 전호숙님같이 추적해주신 R&D CX 서비스실 유관종님Dump/Log 관련 조언을 주신 Wind River의 차영호님 (????????????)국어가 많이 부족한 저를 도와주신 리뷰어 ???????????? R&D CX 서비스실 강미경님, 송요창님, 유관종님, 유용우님, 이미혜님이번 현상 추적에 도움을 주신 분들에게 감사함을 전합니다.#야놀자 #개발자 #개발팀 #문제해결 #버그수정 #안드로이드 #인사이트 #경험공유
조회수 1434

원하는 정보를 5초 안에 인지할 수 있게 하자

우리나라에서 웹 서비스가 아이디어에서 출발해 출시되기까지 여러 단계를 거치게 되는데 크게는 기획, 디자인, 개발의 3단계를 거치게 된다고 볼 수 있다. 각 단계별로 세분화된 역할들이 있어도 결국은 각각 기획자, 디자이너, 개발자로 분류된다. 어니스트펀드에서는 그들이 제품개발팀을 이루고 있다.어니스트펀드 제품개발팀나는 그중 개발자로 속하고 퍼블리싱 & 프론트 개발을 하고 있다. 퍼블리싱은 디자이너가 그린 디자인된 화면을 웹페이지용 프로그래밍 언어라고 할 수 있는 HTML과 CSS로 웹 문서화하는 것이고, 프론트 개발은 HTML과 CSS로 만들어진 웹문서를 사용자의 의도/목적에 따라 기능이 동작하도록(주로 데이터 입출력, 예를 들자면 네이버 검색창의 자동 완성이나, 네이버 메인의 다음 뉴스 보기 등) 기능을 개발하는 것이다.어니스트펀드에서는 팀원들이 자신의 지식/경험을 공유하는 브런치 글을 돌아가면서 쓰고 있고 나도 함께하기로 결정하였다. 내가 가치 있게 공유할 수 있는 내용이 무엇인지를 고민하면서 나의 과거 경험들을 생각해보았다.나는 2002년 웹 디자인을 시작으로 퍼블리싱 업무를 겸하다 2004년부터 퍼블리싱 업무를 본격적으로 했고 2011년부터 스타트업에 합류하면서 기획 및 프론트 개발까지 제품 개발에 있어서 서버 개발을 제외한 사용자와 접하는 모든 업무를 두루 경험하였다. 보통 디자인 전공자들은 기획파트로 전업하는 경우가 많지만 나는 프로그래밍 언어로 코드를 작성하는 것이 재미있어 기회가 닿을 때마다 업무 영역을 넓혀왔다.따라서 기획과 디자인, 퍼블리싱, 프론트 개발에 이르는 사용자와 접점이 많은 다양한 업무를 해오면서 경험한 것을 바탕으로, 서비스를 구성하고 화면을 개발하는 데 있어 도움이 되는 유용한 내용을 공유하고자 한다.1. 많을 땐 나눠서 해결하자정보가 많다는 것은 정리 정돈할 물건이 많다는 것과 비슷하게 생각할 수 있다. 물건이 목적에 맞게 정리되지 않으면 찾기 어렵고 정리해놓더라도 쉽게 어질러질 수 있다. 정보도 마찬가지로 목적에 맞게 정리가 안되어 있을 때 이해가 어렵게 되고, 이해가 어려워서 이해를 돕기 위한 불필요한 설명이 덧붙여지다보면 더욱 이해하기 어려운 결과를 낳게 된다. 그렇게 되면 결국 설명하는 말만 늘어나고 고객의 이해는 저편에 남게 된다.웹페이지가 뜨는데 1초, 훑어보는데 3초, 원하는 정보를 캐치하는데 5초로 충분해야 한다. 사용자가 원하는 정보를 5초 안에 캐치하지 못할 정보의 양이라면 정보를 나누는 것이 좋다. 2. 제목을 생략하지 말자목적으로 나누어진 정보를 사용자가 빠르게 캐치할 수 있도록 돕는 가장 중요한 요소는 바로 제목이다. 제목은 본문을 다 읽지 않아도 내용을 어느 정도 짐작할 수 있게 한다. 따라서 훒어보는데 3초라는 의미는 한 페이지의 메뉴와 제목을 훑어보는데 필요한 시간이다. 이런 제목의 중요성 때문에 제목은 직관적이어야 하고 되도록 생략하지 말아야 한다. 생략을 할 때는 제목이 없어도 이해가 가능하며, 생략된 제목을 누구나 유추할 수 있을 경우가 아니면 제목의 생략을 피하도록 한다. 위 캡쳐화면은 네이버 메인 콘텐츠의 일부를 캡처한 이미지다. 네이버 메인 중 제목이 생략된 예는 왼쪽 하단 영역인 '주제형 캐스트'뿐이다. 다른 영역들은 '뉴스스탠드', '쇼핑' 등 제목을 생략하지 않고 노출시키고 있다. 메인 페이지처럼 목적이 다양한 페이지일수록 콘텐츠의 성격을 분명히 알 수 있게 하는 제목은 짧은 시간 안에 원하는 정보를 찾는데 도움을 준다.3. 한눈에 중요 정보를 읽을 수 있게 하자그다음으로는 정보의 배치이다. 해당 정보가 발생한 원인, 결과 등 고객이 인지하는 과정에 기반한 그룹으로 나누는 것이 좋다. 정보를 배치할 때는 개별 정보의 중요도 순서와 왼쪽에서 오른쪽, 위에서 아래로 흘러가는 흐름대로 배치고 중간에 역행하는 구성이 없는 것이 좋다. 국내 대형 인터넷 쇼핑몰의 상품 목록을 보면서 위 설명을 이해할 수 있다.정보 배치에 정답이 있는 것은 아니지만 마치 정답이 있는 것처럼 상품, 제목, 할인율, 가격, 현재 판매현황에 이르는 순서대로 나열하고 있다. 이는 선두업체를 따라 흉내 낸 것이 아니라 이와 같은 구성이 인지하기에 용이하기 때문에 모두 이와 같이 구성했다고 생각한다.   4. 어렵지 않게 보이도록 하자서비스에 대한 정보를 전달하고 나서 우리가 기대하는 바는 고객이 서비스를 이해하고 우리 서비스를 이용하게 하는 것이다. 쇼핑몰에서는 주문을 받는 것일 것이고, 어니스트펀드의 경우는 대출이나 투자를 신청하는 경우이다. 서비스를 이용하게 하려면 고객의 정보를 필수적으로 입력을 받아야 한다. 어니스트펀드의 경우는 대출 및 투자에 대한 금융서비스이기 때문에 더욱 많은 정보를 고객에게 요청한다. 고객의 정보를 웹 상에서 입력을 받을 때는 "폼"이라는 일종의 정형화된 웹페이지 구성항목을 이용하게 되는데 이것은 정형화되어있기 때문에 남들과는 다른 개성적인 방식을 이용하기는 어렵다. 금융서비스의 입력 폼이 아주 쉽지는 않다는 것을 고객들은 여러 다른 서비스를 이용하면서 어느 정도 알고 있다. 그러나 고객이 중간에 포기하지 않고 제대로 서비스 이용을 완료할 수 있도록 어렵지 않게 만들어야 하고, 언제나 경쟁사의 서비스를 확인하고 경쟁사보다는 어려워 보이지 않도록 만들어야 한다.5. 순서는 반드시 지키자순서는 여러 가지가 있다. 입력해야 할 항목이 무엇인지를 알려주는 입력항목 및 입력하는 창(=입력 필드), 입력하는데 필요한 도움말, 입력해야 할 항목들을 나열하고 전송/입력완료 버튼까지의 순서가 곧 정보의 순서이다. 이 중 쉽게 놓치는 부분은 첫 입력 필드에서 입력완료 버튼까지의 여정 중에 연관이 없는 링크나 버튼을 추가하는 경우이다. 이 순서는 디자인상으로는 잘 구분되지 않을 수 있지만, 웹코드 상으로는 100% 지켜져야 하는 순서이고 디자인과 웹코드의 순서가 일치하면 가장 좋은 결과이다.'다음'과 '네이버'의 로그인 영역을 비교해보자면 두 포탈 서비스 모두 메인 검색창에서 탭키로 아이디 입력 칸까지 이동할 수 있지만, 아이디 입력 후 비밀번호를 입력하고 로그인 버튼을 누르기까지의 탭키 이동 경로가 다르다. 다음 로그인 화면네이버 로그인 화면다   음 : 아이디 입력 -> 비밀번호 입력 -> 로그인 버튼 -> 로그인 상태 유지 순서로 이동한다.네이버 : 아이디 입력 -> 비밀번호 입력 -> 로그인 상태 유지 -> IP보안 선택여부 -> 로그인이다.탭키로 입력필드를 이동하는 경우가 곧 웹코드상에서의 각 입력 필드의 순서가 되는데, '다음'과 같은 경우는 아이디/비밀번호 입력 후 로그인에 대한 옵션을 키보드로 선택하기 위해서는 로그인 버튼을 지나쳐야 선택할 수 있다. 로그인에 대한 옵션은 로그인 버튼을 선택하기 전에 나오는 것이 더 자연스럽지 않을까? 눈에 보이는 순서도 중요하지만 각 입력필드의 논리적 우선순위를 지키는 것 또한 중요하다.6. 틀린 부분을 즉시 명확하게 알려주자고객이 언제나 우리가 기대한 값을 입력해주지는 않는다. 이 경우 너무너무 명확하게도 오류가 발생한 시점에 오류가 발생한 지점을 알려주는 것이 필요하다. 10개의 입력필드가 있는데 입력완료 버튼을 누르자마자 10개 항목 구구절절이 맞고 틀리고를 알려주는 것보다는, 오류가 발생한 시점에 알려주는 것이 훨씬 인지가 빠르다. 따라서 오류 항목을 보여주어야 하는 곳은 해당 입력필드의 다음이고 전송 버튼이나 후속 작업 이전이 되는 것이다. 위 캡쳐화면은 어니스트펀드에서 대출을 받고자 할 때 이름과 생년월일을 입력하는 부분이다. 필자는 생년월일 부분에 5월 32일이라고 없는 날짜 정보를 넣었고, 이와 같은 입력 실수는 사용자가 실수를 했다는 것을 시스템이 "정확한 정보를 입력해 주세요"라고 즉시 알려주고 있어 사용자가 입력을 실수하지 않도록 돕고 있다. 웹 페이지를 보는 고객들은 아무런 도움 없이 해당 서비스를 이해하고 이용할 수 있어야 한다. 똑같은 정보라고 하더라도 어떤 순서로 어떻게 보여주느냐에 따라서 인지와 인식은 크게 개선될 수 있다. 하물며 정보까지 가공을 하게 되면 더욱 큰 개선을 이끌어 낼 수 있다. 각자가 맡고 있는 서비스에서 5초 안에 고객이 원하는 정보를 웹 페이지 내에서 바로 인지할 수 있는지를 생각해보고 아니다면 테스트해보고 개선해보자.#어니스트펀드 #개발자 #개발팀 #UX개발 #철학 #인사이트
조회수 1117

레진 기술 블로그 - AWS Auto Scalinging Group 을 이용한 배포

레진코믹스의 서버 시스템은 잘 알려진대로 Google AppEngine에서 서비스되고 있지만, 이런저런 이유로 인해 최근에는 일부 컴포넌트가 Amazon Web Service에서 서비스되고 있습니다. AWS 에 새로운 시스템을 셋업하면서, 기존에 사용하던 PaaS인 GAE에서는 전혀 고민할 필요 없었던, 배포시스템에 대한 고민이 필요했습니다. 좋은 배포전략과 시스템은 안정적으로 서비스를 개발하고 운영하는데 있어서 필수적이죠.초기에는 Beanstalk을 이용한 운영에서, Fabric 을 이용한 배포 등의 시행착오 과정을 거쳤으나, 현재는 (스케일링을 위해 어차피 사용할 수밖에 없는) Auto Scaling Group을 이용해서 Blue-green deployment로 운영 중입니다. ASG는 여러 특징 덕분에 배포에도 유용하게 사용할 수 있습니다.ASG를 이용한 가장 간단한 배포는, Instance termination policy 를 응용할 수 있습니다. 기본적으로 ASG가 어떤 인스턴스를 종료할지는 AWS Documentation 에 정리되어 있으며, 추가적으로 다음과 같은 방식을 선택할 수 있습니다.OldestInstanceNewestInstanceOldestLaunchConfigurationClosestToNextInstanceHour여기서 주목할 건 OldestInstance 입니다. ASG가 항상 최신 버전의 어플리케이션으로 스케일아웃되게 구성되어 있다면, 단순히 인스턴스의 수를 두배로 늘린 뒤 Termination policy 를 OldestInstance 로 바꾸고 원래대로 돌리면 구버전 인스턴스들부터 종료되면서 배포가 끝납니다. 그러나 이 경우, 배포 직후 모니터링 과정에서 문제가 발생할 경우 기존의 인스턴스들이 이미 종료된 상태이기 때문에 롤백을 위해서는 (인스턴스를 다시 생성하면서) 배포를 다시 한번 해야 하는 반큼 빠른 롤백이 어렵습니다.Auto scaling lifecycle 을 이용하면, 이를 해결하기 위한 다른 방법도 있습니다. Lifecycle 은 다음과 같은 상태 변화를 가집니다.기본적으로,ASG의 인스턴스는 InService 상태로 진입하면서 (설정이 되어 있다면) ELB에 추가됩니다.ASG의 인스턴스는 InService 상태에서 빠져나오면서 (설정이 되어 있다면) ELB에서 제거됩니다.이를 이용하면, 다음과 같은 시나리오로 배포를 할 수 있습니다.똑같은 ASG 두 개를 구성(Group B / Group G)하고, 그 중 하나의 그룹으로만 서비스를 운영합니다.Group B가 라이브 중이면 Group G의 인스턴스는 0개입니다.새로운 버전을 배포한다면, Group G의 인스턴스 숫자를 Group B와 동일하게 맞춰줍니다.Group G가 InService로 들어가고 ELB healthy 상태가 되면, Group B의 인스턴스를 전부 Standby로 전환합니다.롤백이 필요하면 Standby 상태인 Group B를 InService 로 전환하고 Group G의 인스턴스를 종료하거나 Standby로 전환합니다.문제가 없다면 Standby 상태인 Group B의 인스턴스를 종료합니다.이제 훨씬 빠르고 안전하게 배포 및 롤백이 가능합니다. 물론 실제로는 생각보다 손이 많이 가는 관계로(특히 PaaS인 GAE에 비하면), 이를 한번에 해주는 스크립트를 작성해서 사용중입니다. 대략 간략하게는 다음과 같습니다. 실제 사용중인 스크립트에는 dry run 등의 잡다한 기능이 많이 들어가 있어서 걷어낸 pseudo code 입니다. 스크립트는 사내 PyPI 저장소를 통해 공유해서 사용 중입니다.def deploy(prefix, image_name, image_version): '''Deploy specified Docker image name and version into Auto Scaling Group''' asg_names = get_asg_names_from_tag(prefix, 'docker:image:name', image_name) groups = get_auto_scaling_groups(asg_names) # Find deployment target set future_set = set(map(lambda g: g['AutoScalingGroupName'].split('-')[-1], filter(lambda g: not g['DesiredCapacity'], groups))) if len(future_set) != 1: raise ValueError('Cannot specify target auto scaling group') future_set = next(iter(future_set)) if future_set == 'green': current_set = 'blue' elif future_set == 'blue': current_set = 'green' else: raise ValueError('Set name shoud be green or blue') # Deploy to future group future_groups = filter(lambda g: g['AutoScalingGroupName'].endswith(future_set), groups) for group in future_groups: asg_client.create_or_update_tags(Tags=[ { 'ResourceId': group['AutoScalingGroupName'], 'ResourceType': 'auto-scaling-group', 'PropagateAtLaunch': True, 'Key': 'docker:image:version', 'Value': image_version, } ]) # Set capacity, scaling policy, scheduled actions same as current group set_desired_capacity_from(current_set, group) move_scheduled_actions_from(current_set, group) move_scaling_policies(current_set, group) # Await ELB healthy of instances in group await_elb_healthy(future_groups) # Entering standby for current group for group in filter(lambda g: g['AutoScalingGroupName'].endswith(current_set), groups): asg_client.enter_standby( AutoScalingGroupName=group['AutoScalingGroupName'], InstanceIds=list(map(lambda i: i['InstanceId'], group['Instances'])), ShouldDecrementDesiredCapacity=True ) def rollback(prefix, image_name, image_version): '''Rollback standby Auto Scaling Group to service''' asg_names = get_asg_names_from_tag(prefix, 'docker:image:name', image_name) groups = get_auto_scaling_groups(asg_names) def filter_group_by_instance_state(groups, state): return filter( lambda g: len(filter(lambda i: i['LifecycleState'] == state, g['Instances'])) == g['DesiredCapacity'] and g['DesiredCapacity'], groups ) standby_groups = filter_group_by_instance_state(groups, 'Standby') inservice_groups = filter_group_by_instance_state(groups, 'InService') # Entering in-service for standby group for group in standby_groups: asg_client.exit_standby( AutoScalingGroupName=group['AutoScalingGroupName'], InstanceIds=list(map(lambda i: i['InstanceId'], group['Instances'])) ) # Await ELB healthy of instances in standby group await_elb_healthy(standby_groups) # Terminate instances to rollback for group in inservice_groups: asg_client.set_desired_capacity(AutoScalingGroupName=group['AutoScalingGroupName'], DesiredCapacity=0) current_set = group['AutoScalingGroupName'].split('-')[-1] move_scheduled_actions_from(current_set, group) move_scaling_policies(current_set, group) 몇 가지 더…Standby 로 돌리는 것 이외에 Detached 상태로 바꾸는 것도 방법입니다만, 인스턴스가 ASG에서 제거될 경우, 자신이 소속된 ASG를 알려주는 값인 aws:autoscaling:groupName 태그가 제거되므로 인스턴스나 ASG가 많아질 경우 번거롭습니다.cloud-init 를 어느 정도 최적화해두고 ELB healthcheck 를 좀 더 민감하게 설정하면, ELB 에 투입될 때까지 걸리는 시간을 상당히 줄일 수 있긴 하므로, 단일 ASG로 배포를 하더라도 롤백에 걸리는 시간을 줄일 수 있습니다. 저희는 scaleout 시작부터 ELB에서 healthy 로 찍힐 때까지 70초 가량 걸리는데, 그럼에도 불구하고 아래의 이유 때문에 현재의 방식으로 운영중입니다.같은 방식으로 단일 ASG로 배포를 할 수도 있지만, 배포중에 혹은 롤백 중에 scaleout이 돌면서 구버전 혹은 롤백 버전의 인스턴스가 투입되어버리면 매우 귀찮아집니다. 이를 방지하기 위해서라도 (Blue-green 방식의) ASG 두 개를 운영하는게 안전합니다.같은 이유로, 배포 대상의 버전을 S3나 github 등에 기록하는 대신 ASG의 태그에 버전을 써 두고 cloud-init 의 user-data에서 그 버전으로 어플리케이션을 띄우게 구성해 두었습니다. 이 경우 인스턴스의 태그만 확인해도 현재 어떤 버전이 서비스되고 있는지 확인할 수 있다는 장점도 있습니다.다만 ASG의 태그에 Tag on instance 를 체크해 두더라도, cloud-init 안에서 이를 조회하는 경우는 주의해야 합니다. ASG의 태그가 인스턴스로 복사되는 시점은 명확하지 않습니다. 스크립트 실행 중에 인스턴스에는 ASG의 태그가 있을 수도, 없을 수도 있습니다.굳이 인스턴스의 Lifecycle 을 Standby / InService 로 전환하지 않고도 ELB 를 두 개 운영하고 route 53 에서의 CNAME/ALIAS swap 도 방법이지만, DNS TTL은 아무리 짧아도 60초는 걸리고, JVM처럼 골치아픈 동작 사례도 있는만큼 선택하지 않았습니다.물론 이 방법이 최선은 절대 아니며(심지어 배포할때마다 돈이 들어갑니다!), 현재는 자원의 활용 등 다른 측면에서의 고민 때문에 새로운 구성을 고민하고 있습니다. 이건 언젠가 나중에 다시 공유하겠습니다. :)
조회수 1341

웹 서비스 개발자가 APM을 사용해야 하는 이유

백엔드 서비스를 만들고 운영하는 개발자라면, 지금 바로 APM 서비스를 사용해 보세요. 와탭의 APM은 국내 수많은 Enterprise 기업에서 자사의 서비스를 분석하기 위해 사용되고 있으며 많은 효과를 보고 있습니다. 북미에서는 이미 수많은 스타트업이 DevOps의 기본 도구로 APM을 선택하고 있습니다. APM은 원래 대규모 서비스를 운영하는 분들이 전문적으로 사용하고 있었지만 최근 트렌드는 운영자에서 개발자로 이동하고 있는 서비스 이기도 합니다. 특히 와탭의 APM은 개발자 분들을 위한 스택 분석 기능이 있습니다. 개발자라면 와탭 APM 서비스가 제공하는 아래의 3가지 스택 분석 기능을 꼭 사용해 보세요. 유니크 스택탑 스택액티브 스택많은 개발자들이 자신이 만든 서비스가 어떻게 동작하는지 또는 웹 서비스에 어떤 영향을 주고 있는지 알지 못합니다. 하지만 와탭 애플리케이션 성능 모니터링(APM) 서비스를 사용하면 메소드가 애플리케이션에서 어떻게 사용되는지 얼마나 사용되는지 알수 있습니다. 와탭은 다른 APM 서비스와 다르게 10초에 한번씩 활동중인 트랜잭션을 검사하여 트랜잭션에 콜스택정보를 저장하고 있습니다. 그리고 이렇게 저장된 스택정보를 가지고 3가지 형태로 가공하여 보여주는데, 이 것이 유니크 스택 / 탑 스택 / 액티브 스택입니다. 먼저 유니크 스택은 가장 많이 사용된 스택 정보를 보여주는 방식입니다. 트랜잭션에서 실행되고 있는 메소드가 A 이고 이를 호출한 메소드가 모두 일치하는 스택을 유니크 스택이라고 합니다.1. A() ← C()2. A() ← C()3. B() ← D()4. B() ← E()5. B() ← F()위와 같은 경유 유니크 스택은 아래와 같이 통계를 내어 보여 줍니다. 40% A()    A()    C()20% B()    B()    D()20% B()    B()    E()20% B()    B()    F()이렇게 콜스택 정보 전체를 기준으로 분석을 하는 경우에는 성능에 영향을 주는 기능 단위의 분석이 가능합니다. 하지만 성능에 영향을 많이 주는 메소드를 알고 싶을 때가 있습니다. 이런 경우에 사용하는 것이 탑 스택 분석입니다. 아까와 같은 상황을 예를 들겠습니다.1. A() ← C()2. A() ← C()3. B() ← D()4. B() ← E()5. B() ← F()이런 상황에서 탑 스택 분석은 아래와 같이 가장 많이 사용되느 메소드를 알려줍니다. 60% B()    33% D()    33% E()    33% F()40% A()    100% C()유니크 스택에서는 A() ← C() 가 가장 많이 사용된 스택이라는 것을 알려주지만 탑 스택에서는 B() 메소드가 가장 많이 사용된 메소드라는 것을 알려줍니다. 이 두가지 내용을 통해 가장 많이 사용되는 메소드의 집합가 가장 많이 호출되는 메소드를 알아 낼 수 있습니다. 만일 서비스를 메소드 단위에서 개선하고 싶다면 이 정보를 기반으로 개선 작업을 진행하면 많은 도움을 받을 수 있습니다. 위에 화면에서 메소드를 선택하면 메소드를 호출한 스택들의 정보를 확인 할 수 있습니다. 마지막으로 액티브 스택입니다. 액티브 스택은 WAS 서버와 URL 그리고 발생 시간을 기준으로 저장된 콜스택의 정보를 보여줍니다. 서비스 성능이 떨어진 시간대의 콜스택 정보를 확인 함으로써 메소드 구간에서의 튜닝 정보를 제공합니다. 액티브 스택은 핵심 기능이 하나더 있습니다. 바로 서비스가 동작하는 스탭정보에 통합됨으로써 문제를 바로 확인할 수 있는 기능입니다. 와탭의 APM에서만 분석가능한 기능이며 특허로 등록되어 있습니다. 액티브 스택은 통계 관점이 아니라 실행 관점에서 문제를 바라보고 있습니다. 우리가 만든 웹 어플리케이션을 고객에 입장에서 보면 아래와 같이 동작합니다. 고객 → 웹 서비스 요청 → 서버 접속 → 서비스 접속 → 애플리케이션1 → 메소드 1 → DB 1접근 → Query 1 → Query 2 → 메소드 2 → 파일 접근 → 메소드 3 → 결과 취합 → WAS 통과 → 웹 서비스 결과 반환 일반적으로 애플리케이션 모니터링은 이런 상항을 아래와 같이 보여줍니다. 서비스 접속 → Query 1 → Query 2 → 파일 접근 → 트랜잭션 종료와탭의 애플리케이션 모니터링은 수집된 콜 스택 정보를 기반으로 아래와 같이 보여줍니다.  서비스 접속 → Query 1 → 메소드 2 → Query 2 → 파일 접근 →메소드 3 → 트랜잭션 종료위에 상황은 트랜잭션에서 메소드 2와 메소드 3이 수집된 경우에 트랜잭션의 스탭의 실행시간에 맞쳐서 정보를 재구성하는 것을 보여주고 있습니다. 이렇게 확인하게 된다면 메소드에서 발생하는 성능 문제를 확인 할 수 있습니다. APM 서비스는 와탭 / 뉴렐렉 / 데이터 독과 같은 서비스들을 통해서 2주에서 한달간 언제든 무료로 사용가능합니다. 다만 메소드에 대한 분석 기능은 와탭의 APM에서만 제공하는 기능들이 많습니다. 개발자라면 한번쯤 와탭의 APM 서비스를 통해 자신이 만들고 운영하고 있는 서비스에서 가장 많이 사용되는 메소드가 무엇인지 확인 해 보시기 바랍니다. Tip!! APM은 개발시에 사용하는 디버깅 도구라기 보다는 막대한 량의 트랜잭션이 발생하는 운영과정에서 사용되는 도구입니다. 트랜잭션 자체가 적다면 원하는 데이타가 안 나올 수 도 있습니다. 와탭으로 모니터링 하기 - 목차 바로가기#와탭랩스 #개발자 #개발팀 #인사이트 #경험공유 #일지 #서비스소개
조회수 1057

제니퍼 개발 이야기(UI/UX)_ 좀 더 쉽고 빠르게 더 멋지게 모니터링하자.

APM ,변화의 시작기업용 소프트웨어의 UI는 어렵다. 특히 애플리케이션 성능 관리(Application Performance Management, 이하 APM) 제품의 경우 더욱더 그렇다. APM은 애플리케이션의 성능 모니터링과 장애 예측을 통해 최적의 애플리케이션 상태를 보장하고 관리하는 일련의 시스템 관리 체계다. 사용자들은 애플리케이션의 성능을 모니터링하고 경우에 따라 발생할 수 있는 장애를 신속히 감지 및 예방해, 기업이 보유하고 있는 정보시스템의 성능을 최적의 상태로 유지하기 위해 APM을 구매하여 사용한다.  그런 이유로 초기 APM은 특정 부서나 특정 분야의 전문가만 다룰 수 있는 제품이었다. 사용법이 복잡하고 데이터의 분석을 통해 장애의 원인을 수동적으로 찾아야 하는 까닭에 APM 제품은 애플리케이션 모니터링 담당자나 개발자 등 전문가만 이해할 수 있는 영역으로 인식돼 왔다. 이런 APM이 최근 여러 현업 부서에서 사용하기 시작하면서 APM의 UI/UX에도 변화가 시작되었다. 기업 내 비즈니스가 다양해지고 복잡해 지면서 기업이 운영하고 관리하는 서비스에 대한 안정성 확보가 중요한 화두로 떠올랐다. 특히 APM은 서비스 지연이나 장애를 감지하고 대처하기 위한 영역으로 확장되고 있는데 모바일 등의 서비스를 통한 비즈니스 기회와 수익이 높아지고, 시장 경쟁이 더욱 치열해지면서 사용자 응답 지연이나 서비스 에러와 같은 문제들은 고객들에게 바로 다른 서비스로 전환을 하게 만드는 원인을 제공하게 된다. 이는 비즈니스 관점에서 매출이나 고객 충성도에 많은 영향을 미칠 수 있기 때문에 기업 내 IT 부서나 사용자 중심적인 서비스 관리 또한 중요한 관리 영역이 되고 있다.< 제니퍼소프트 개발자들이 만든 UI Framework인 JUI, 오픈소스로 공개하였다>APM, 사용자 만족을 위해 UI/UX를 더 쉽고 직관적으로 설계 제니퍼소프트의 APM 솔루션인 「제니퍼(JENNIFER)」는 이해가 어려운 제품을 사용자들이 좀 더 쉽게 이용하게 할 수 없을까 하는 고민에서 출발한 제품이다. 대게 APM 제품은 모니터링 제품의 특성상 이용자들이 모니터링 화면을 전광판으로 띄워 놓고 보거나 데스크에 서브 모니터를 두어 애플리케이션의 운영상태를 상시 모니터링한다. 만약 APM 의 UI/UX가 복잡하여 가시성 확보가 어렵거나 사용하기 어렵다면 중요한 정보를 즉각적으로 파악할 수 없다. 이런 이유로 제품의 UI가 보여주는 데이터의 시각화는 비전문가라 할지라도 애플리케이션의 성능 이상을 인지할 수 있도록 설계되어야 한다.제니퍼는 이런 모니터링의 중요한 본질을 담아 설계하였다. 2005년부터 사용자가 직관적으로 모니터링할 수 있는 뷰에 관심을 기울였는데, 이때만 해도 엔터프라이즈 제품은 UX/UI에 신경을 쓰지 않던 시기였다. 대부분의 APM 제품은 분석적인 요소가 강한 외산 제품이 출시되어 사용되고 있었고 사용자들은 사후 분석 요소가 강한 APM의 UI/UX에 아쉬움을 느꼈다.APM은 문제가 발생한 시점에 이를 직관적으로 인지하고, 분석하여 문제 해결에 실질적인 도움을 주고 이를 통해 얼마나 빠른 장애 대응을 할 수 있냐가 가장 중요한 관건이다. 제니퍼는 제품에 이런 기능의 의미와 가치에 대한 중요한 요소를 놓치지 않았다. 핵심적인 기능을 하나 추가하거나 화면의 적절한 유기적 배치, 심지어 그래프 색감을 선택하는 디자인적 고려에서 조차도, 요건이나 형식 맞추기에 급급하지 않았다. 해당 기능의 본질적인 의미와 가치와 쓰임새를 찾아 담기 위해 노력했다. 제니퍼 출시 이후, 국내 고객은 사후 분석에 치중한 해외 제품을 쓰지 않고 있다. APM 경쟁 업체들 또한 UI/UX에 많은 고민을 하고 있으며, 제품에 이를 반영하고 있다. 그리고 그 중요성은 점점 더 커지고 있다.  사용자의 폭이 넓어지고 관리해야 하는 시스템이 많아지면서 좀 더 쉽고 빠르게 혹은 직관적으로 문제를 파악하고 해결할 수 있는 UI/UX 제품을 선호하게 된 것이다.  이는 사용자에게 좋은 경험을 주는 것이 제품의 경쟁력을 가질 수 있는 중요한 요소임을 반증하는 것이 아닐까 한다. 제니퍼 개발 이야기 _ 2편 <제니퍼 제품 UI/UX 특징>
조회수 2166

안드로이드와 자동화 툴

모바일은 플랫폼의 생태계와 규모에 비해 개발자들이 처리해야 할 것이 매우 많습니다.서버나 타 플랫폼들 또한 개발자들의 영역이 많지만 그 영역들이 세분화되고 전문화되어 가고 있습니다. 데이터베이스, 백엔드, 프론트웨어, 인프라, DevOps 와 같이 점점 분야별로 심화되고 독립성을 갖추어 가고 있습니다.하지만 모바일은 각 플랫폼의 개발자들이 전체적인 아키텍쳐, 프론트, 내부용 데이터베이스, 리소스 관리, 배포 등이 해당 플랫폼의 소수의 개발자들에게 광범위하게 공존합니다. 다양한 분야가 전문화되기엔 변화가 잦고 규모가 점 형태로 구성이 된 경우가 많기 때문입니다.그렇기 때문에 반복적이고 불필요하게 비용이 소모되는 작업일수록 자동화 해서 최대한 코드 작성 본연에 업무에 집중할 수 있도록 환경을 구성하는 것이 중요합니다.토스랩 안드로이드 팀은 2015년 초부터 조금씩 자동화 환경을 구성하여 현재는 아래와 같습니다.다국어 문자 관리 자동화이미지 관리 자동화CI다국어 문자 리소스 자동화1. 다국어 글로벌 담당자의 원본 문서토스랩은 다국어 지원을 위해 글로벌 번역 문서를 관리하고 있습니다. 문서는 Google Drive 를 통해서 관리되고 있으며 기획/개발 파트에서 다국어 지원을 위한 리소스를 기입하면 각 언어의 담당자들이 해당 언어를 번역하고 있습니다.구성은 아래와 같습니다ABCDEFGH영어한국어일본어중국어-간체중국어-번체웹키ios 키안드로이드 키2. 기존 작업기존에는 해당 언어의 번역 데이터를 추가하기 위해 개발 파트에서 수동으로 각 언어의 리소스 파일에 추가하는 형태로 진행하였습니다.이러한 작업의 단점은 언어별 리소스 파일에 키-값 형태의 문자 리소스를 추가하는 작업을 반복적으로 해야 한다는 것입니다. 또한 반영이 된 후에 수정된 문자에 대해서 반영하기가 매우 어렵고 실수도 빈번하게 발생합니다.이러한 가능성을 최소화 하기 위해 자동으로 문자 리소스를 갱신하는 작업을 진행하였습니다.3. 안드로이드 파트를 위한 별도 필터 파일 추가|A|B|C|D|E|F| |—-|—-|—-|—-|—-|—-| |영어|한국어|일본어|중국어-간체|중국어-번체|안드로이드 키|가급적 원본 파일에 대한 조작을 피하기 위해 안드로이드용으로 Read-Only SpreadSheet 를 별도로 생성하였습니다.해당 작업을 위해 Google SpreadSheet Script 를 사용하였습니다.4. 자동화 툴 작업자동화 툴의 역할은 크게 3가지였습니다.안드로이드용 필터 파일을 다운로드한다.Spread-sheet를 분석해서 다국어용 자료구조로 변환한다.다국어용 자료구조를 XML 파일로 변경한다.툴은 Python 스크립트로 작업하였습니다.5. Gradle Task 로 추가별도의 Python 파일을 실행해도 되지만 Gradle Task 로 추가하여 Android Studio 에서도 Task 를 실행할 수 있도록 하였습니다.개발팀에서 안드로이드 키를 원본 문서에 추가한 후 Gradle Task 실행하면 바로 반영되도록 하였습니다. 기존의 방식과 가장 큰 차이점은 Merge 시 충돌 이슈에 대해서 더이상 관여하지 않아도 된다는 것입니다. 가장 최근 시점을 기준으로 자동화 Task 를 실행하면 모든 리소스가 최신화되기 때문에 충돌이 난다하더라도 무시하고 새로 Task 를 실행함으로써 충돌에 의한 이슈를 완전히 배제하고 작업할 수 있다는 장점이 생겼습니다.더 나아가 현재는 Android 용 리소스 Key를 기획 팀에서 기획시 적용하도록 하기로 현재 논의되고 있습니다. 이러한 논의가 반영된다면 더이상 리소스 관리에 있어서 개발파트에서 관리 할 필요가 없어지므로 다국어 리소스에 반영해야할 리소스 또한 최소화 될 것이라 기대하고 있습니다.이미지 리소스 자동화1. 기존 작업앱에 사용되는 디자인 리소스는 이슈 트래커와 JANDI 의 디자인 토픽을 통해서 전달 받아 작업을 하였습니다.이런 작업 형태는 이미지 관리가 분산 될 뿐만 아니라 일관성 있는 전달 방식이 아니기 때문에 누락건이 언제든지 존재할 수 있습니다.그래서 디자인 리소스에 대한 관리를 디자인 팀이 주도적으로 하며 개발팀에서는 빠르고 편하게 이미지를 전달 받을 수 있도록 하기 위해 자동화 툴을 만들었습니다.2. 개선 작업토스랩의 디자인 팀에서 사용하는 저장소는 권한에 따라 접근이 가능하도록 API 를 제공하고 있습니다. Read-Only 권한을 부여받은 후 API 를 통하여 이미지를 다운로드하도록 툴을 구성하였습니다.툴은 Python 스크립트로 구성하였습니다.3. Gradle Task 로 추가문자 리소스와 마찬가지로 별도로 Gradle 로 툴을 이용할 수 있도록 하기 위해 별도의 Task 를 정의하여 사용하도록 하였습니다.자동화된 리소스의 관리문자와 이미지를 자동화로 관리한다 하더라도 개발자가 필요에 따라 임의로 추가/수정하는 리소스가 존재 할 수 있습니다.이를테면 다운로드한 이미지 리소스를 활용한 Selector-Drawable 과 같은 것들입니다.이에 따라 자동화 처리된 리소스들은 별도의 관리를 위해 추가적으로 ResourceSet 을 만들었습니다. android { // ...중략 sourceSets { main.res.srcDirs += ${별도의_리소스_경로} } } 이러한 방식을 통해서 자동화된 리소스와 추가적한 리소스를 분리하여 발생할 수 있는 문제를 최소화 하였습니다.지속적 통합 (Continuous Integration, CI)자동화와 관련되어서 결코 빠질 수 없는 내용입니다. 빌드, 테스트, 배포, 리포팅에 이르기까지 이 모든 과정에 있어서 자동화 되지 않았다면 상상하기 어려운 작업들입니다.토스랩에서는 Jenkins 를 활용하여 빌드-테스트-리포팅을 하고 있습니다.1. 빌드 대상빌드의 의미는 최소한 컴파일 오류가 발생하지 않는 코드들이 최종 상태로 관리되고 있음을 의미합니다. 그러기 때문에 언제나 중앙 저장소에 반영되었거나 반영될 예정의 소스들은 항상 빌드 대상이라고 볼 수 있습니다.안드로이드 팀은 내부적으로 빌드 대상이 되는 브랜치를 아래와 같이 정의하였습니다.개발된 이슈가 최종적으로 반영된 브랜치 (develop)Github 에서 코드에 변경이 발생하면 이를 Jenkins 로 통보하여 해당 브랜치를 빌드합니다.개발 브랜치에 반영을 위해 코드리뷰 중인 브랜치 (features, fixes)Github 에 새로운 Pull-Request 가 발생하면 Jenkins 로 통보하여 해당 브랜치를 빌드합니다.테스트와 리포팅은 이 시점부터 발생한다고 볼 수 있습니다.2. 빌드빌드를 하는 과정에 기본적인 정적 분석을 사용하고 있습니다. 코드의 Convention 이나 복잡도 등을 측정하고 이를 분석하여 수정할 부분을 파악하기 위해서입니다.3. 테스트안드로이드팀은 작년 중순까지 Robolectric 이라는 Test Framework 을 사용하였으나 여러가지 이슈로 인하여 현재는 Android Test Support Library 를 사용하고 있습니다. ATSL 은 에뮬레이터를 필요로 하기 때문에 Jenkins 서버에 에뮬레이터를 구동하여 Test-Bed 를 구성하였습니다.빌드 과정에서 정적 분석이 완료되면 테스트 코드를 동작 시킵니다.테스트 된 결과는 JUnit Test Report 와 Jacoco Coverage Report 를 받고 있습니다.4. 결과 리포트빌드, 테스트 결과는 Jenkins 에서 별도로 관리되고 있지만 모든 동작들은 자동화 되어 관리되기 때문에 별도의 장치가 없다면 알아채기 어렵습니다.좀 더 빠른 피드백을 받기 위해 JANDI-Webhook 기능을 이용하여 결과 리포팅을 바로 받아 확인 할 수 있도록 하였습니다. 또한 Github Pull-Request 화면에서 Build-Status 연동하여 코드리뷰 하는 과정에서 잠재적 오류를 찾을 수 있도록 하였습니다.※ 빌드된 결과물의 배포는 내부적인 정책으로 현재는 하지 않고 있습니다만, 현재 가용 가능한 리소스 안에서 해결 방안을 찾고 있습니다.총평자동화의 가장 큰 목적은 반복적이지만 시간을 소요하기엔 가치가 떨어지는 작업을 단순화 하기 위함이었습니다. 여기서 오는 가장 큰 의미는 관리에 소요되는 시간을 최소화함으로써 생산성을 향상 시켰다는 데에 있습니다.특히 다국어 리소스와 이미지 리소스를 자동화 하기 위한 작업은 소요된 시간이 극히 미미하지만 그 효과는 매우 긍정적이라 할 수 있습니다.CI 는 초기 설정뿐만 아니라 관리가 매우 어려운 작업입니다. 해당 시스템을 총체적으로 알고 있다는 가정에서 해야 하며 정책적으로 규정해야 하는 것들도 있습니다. 하지만 결과물 그 자체에 대한 관리를 위해서는 없어서는 안되는 도구이며 정적분석과 자동화 테스트 등 다양한 효과를 얻을 수 있기 때문에 많은 개발자들에게 권장하고 싶습니다.#토스랩 #잔디 #JANDI #개발 #효율 #자동화툴 #업무환경
조회수 1741

서비스 중단 없이 Amazon EKS로 옮긴 이야기 - VCNC Engineering Blog

Amazon EKS는 AWS의 관리형 Kubernetes 서비스입니다. 2017년 11월 AWS re:Invent에서 프리뷰 버전이 출시되었고, 2018년 6월에 상용(GA) 버전이 미국 리전에만 출시되었습니다. 그래서 서울 리전을 사용해야 했던 타다 프로젝트에서는 Kubernetes 클러스터를 직접 kops로 설치하여 운영할 수 밖에 없었습니다.2019년 1월, 오랜 기다림 끝에 드디어 서울 리전에 EKS가 출시되어 기쁜 마음으로 EKS로 옮겨가게 되었습니다. 이 글에서는 직접 구축한 클러스터 대비 EKS의 특징에는 어떤 것이 있는지 살펴보고, 서비스 중단 없이 EKS로 옮기기 위한 전략을 공유하고자 합니다.EKS 서울 리전 출시를 염원하던 한국인(?)들EKS는 뭐가 다른가요?AWS에서 마스터 노드를 관리해줍니다.Kubernetes 클러스터는 마스터 노드와 워커 노드로 구성되어 있습니다. EKS는 이 중에서 마스터 노드를 직접 EC2로 띄울 필요 없이 AWS에서 관리해주는 서비스입니다. RDS를 사용할 때 직접 DB 인스턴스를 생성하지 않는 것과 비슷합니다. 별도의 설정 없이도 알아서 여러 가용 영역에 마스터 노드를 실행하여 HA(고가용성) 구성을 해주고, 비정상 마스터 노드를 자동으로 감지하고 교체합니다. 또한 자동화된 버전 업그레이드 및 패치를 지원합니다. EKS를 사용하더라도 워커 노드는 직접 EC2 인스턴스를 생성·관리해야 합니다.EKS 클러스터의 요금은 2019년 2월 현재 시간당 $0.20입니다. 타다에서는 기존에 t2.medium 3대를 마스터 노드로 사용하고 있었기 때문에 관리를 직접 하지 않는 대신 비용이 약간 증가하게 되었습니다.AWS IAM 기반 인증을 사용합니다.VCNC에서는 기존에 Kubernetes API에 접속할 때 가장 간단한 basic auth 인증 방식을 사용했습니다. 그 대신 외부 네트워크에서 접근할 수 없게 해두고 필요한 경우 Bastion 호스트를 통해 SSH 터널링하여 접속했습니다.EKS의 API 서버는 인터넷에 노출되어 있으며, 별도로 네트워크 접근 제한 설정을 할 수 없고 AWS IAM으로 사용자를 인증합니다. (물론 공개망에 노출되어 있으면 Kubernetes API 서버에 보안 취약점이 발견되는 경우 안전하지 않을 수 있는 단점이 있습니다. 앞으로 PrivateLink가 지원되면 해결될 것입니다.)IAM은 인증에만 사용되고, 특정 작업을 할 수 있는 권한은 Kubernetes 기본 RBAC로 관리됩니다. IAM 사용자나 역할을 RBAC 그룹에 매핑할 수 있습니다.EKS 인증 흐름도워커 노드 당 Pod 개수 제한이 있습니다.예를 들어 c5.large 인스턴스에는 29개의 Pod을 띄울 수 있습니다. (표 참고) 그러므로 기존 클러스터에서 노드 당 Pod이 몇 개나 되는지 미리 확인할 필요가 있습니다. 왜 이런 제약이 있을까요?Kubernetes에서는 네트워킹 플러그인으로 Pod 사이에 네트워크 통신하는 방식을 다양하게 설정할 수 있습니다. EKS는 기본적으로 amazon-vpc-cni-k8s를 사용합니다. 이 네트워킹 플러그인은 VPC 상에서 유효한 실제 IP를 Pod에 할당합니다.그러기 위해서는 하나의 EC2 인스턴스에서 여러 개의 IP를 받아와야 하고, 이를 위해 추가적인 네트워크 인터페이스(ENI)를 붙입니다. 그런데 인스턴스 타입에 따라 추가할 수 있는 ENI 수와 ENI 당 IP 수에 제한이 있습니다. 따라서 이 제한이 워커 노드 하나에 띄울 수 있는 Pod 개수 제한이 됩니다.flannel 등 오버레이 네트워크 기반의 다른 네트워크 플러그인을 사용하면 이러한 제약을 피할 수 있습니다. 하지만 EKS에서 기본 제공하는 방법을 그대로 사용하는 것이 좋고, Pod을 엄청나게 많이 띄워야 하는 상황이 아니어서 시도하지 않았습니다.EKS로 중단 없이 넘어가기개요타다의 Kubernetes 클러스터에서 돌아가는 서비스들은 모두 영속적인(persistent) 상태를 가지고 있지 않습니다. 따라서 EKS 클러스터 위에 동일한 서비스를 띄우고 외부 트래픽을 옮겨주기만 하면 특별히 데이터를 옮기지 않고도 이전이 가능했습니다. 또한 거의 대부분의 Kubernetes 리소스는 Helm 차트로 생성한 것이기 때문에 새로운 클러스터에 동일한 서비스를 띄우는 작업도 쉽게 할 수 있었습니다.이전 작업은 다음과 같은 순서로 진행했습니다.EKS 클러스터를 만들고 워커 노드를 생성모든 서비스 다시 설치트래픽을 새 클러스터로 보내기이전 클러스터 제거EKS 클러스터를 만들고 워커 노드를 생성타다의 AWS 환경은 거의 모두 Terraform으로 정의되어 관리되고 있습니다. EKS 클러스터와 워커 노드도 HashiCorp Learn의 문서를 참고해서 Terraform으로 생성했습니다. 해당 문서에 설명이 잘 되어 있어서 거의 그대로 따라할 수 있었습니다.EKS 클러스터 설정은 재사용 가능하도록 Terraform 모듈로 만들었습니다. 덕분에 테스트용 클러스터와 실서비스용 클러스터를 동일한 모듈로 변수만 바꿔서 설정할 수 있었습니다.모든 서비스 다시 설치타다의 Kubernetes 리소스는 Helm 차트로 관리되고 있어서 기존 차트를 거의 그대로 설치할 수 있었습니다. 사용자에게 직접적인 영향을 덜 주는 워커 서비스를 먼저 설치해서 제대로 동작하는 것을 확인한 뒤, 마지막으로 프론트엔드 서비스를 설치하였습니다.트래픽을 새 클러스터로 보내기타다의 모든 트래픽은 NLB로 들어온 뒤 NGINX를 거쳐 다시 적절한 Pod에 라우팅됩니다. 그러므로 타다의 모든 도메인은 NLB를 가리키고 있습니다.타다는 Route 53을 DNS 서버로 사용합니다. Route 53에는 가중치 기반 DNS 레코드를 설정할 수 있습니다. 이를 이용하여 일부 트래픽만 새 클러스터의 NLB로 보낼 수 있습니다. 처음에는 아주 적은 트래픽만 새 클러스터로 보내다가 문제 없이 작동하는 것을 확인한 다음 조금씩 트래픽을 늘려나갔습니다.DNS 가중치 설정으로 일부 트래픽만 새 클러스터의 NLB로 보낼 수 있습니다.DNS 설정에서 이전 클러스터로 가는 레코드를 완전히 제거한 뒤에도, DNS 캐시 등의 이유로 일부 클라이언트가 이전 클러스터에 접속할 수도 있습니다. 따라서, 이전 클러스터 NLB에 새 클러스터의 노드들을 붙여서 아직 DNS를 따라오지 못한 클라이언트들의 요청을 처리하였습니다.이전 클러스터 제거가장 신나면서 조심해야 하는 작업입니다. 먼저 이전 클러스터로 트래픽이 전혀 들어오지 않는 것을 확인하였습니다. 그 다음에는 Terraform에서 이전 클러스터 리소스에 대한 참조를 제거한 뒤, terraform destroy 명령으로 이전 클러스터와 관련된 리소스를 한번에 삭제할 수 있었습니다.맺음말Kubernetes는 깔끔한 추상화를 통해 컨테이너 기반 배포를 간단하게 만들어주지만, 직접 클러스터를 관리해야 하는 부담이 있었습니다. Amazon EKS는 이러한 부담을 많이 덜어주는 좋은 서비스입니다. 앞으로 EKS의 무궁한 발전을 기원합니다.VCNC에는 오랫동안 쌓아온 AWS 인프라 운영 경험이 있습니다. 타다에서는 그동안의 경험과 비교적 최근에 시작한 프로젝트의 이점을 살려 컨테이너, Infrastructure as Code 등 업계 표준의 인프라 관리 방법론을 적극 도입하려고 노력하고 있습니다. 앞으로도 이에 관해 기술 블로그에 더 자세히 공유할 계획이니 기대해주세요. 또한 저희와 함께 안정적인 서비스를 만들어나갈 좋은 분들을 기다리고 있으니 VCNC 채용에도 많은 관심 부탁드립니다.
조회수 2216

ZOYIFUL TALK (1) 사무실이 마음에 들어 왔다가 개발에 재미 들렸죠

유저 반응을 볼 때가 즐겁다는 프론트엔드 엔지니어 인턴 Mino조이에서 소프트웨어 엔지니어 인턴으로 살아간다는 것이 어떤지 궁금해 하시는 분들이 많아 4개월차 소프트웨어 엔지니어 인턴 미노(본명 천민호)를 Zoyiful Talk 첫 번째 주자로 모셨습니다.ZOYI: 미노 안녕하세요! 인턴으로 조인하신지 벌써 4개월이 지나셨다면서요. 우선 간단한 소개부터 해주세요. 회사에서 무슨 일을 하고 있나요?MINO: 안녕하세요, 채널(Channel)이라는 조이 신규 서비스를 개발하고 있는 엔지니어 미노입니다. 채널은 소비자와 커머스 기업을 연결해주는 소통 창구 같은 서비스인데요, 저는 그 중에 웹 프론트엔드를 개발하고 있습니다.ZOYI: 프론트엔드가 뭔가요? 좀 더 설명해 주세요.MINO: 프론트엔드는 흔히 ‘웹 개발자’라 하는데요, 웹이나 앱에서 서비스 이용자가 경험하는 부분을 개발합니다. 이용자에게 더 좋은 시각적 효과를 주고, 더 편리한 경험을 제공하기 위해 기술을 이용하죠. 이를 구현하기 위해 자바스크립트라는 언어를 사용하고, react.js를 프레임워크로 사용하고 있습니다.ZOYI: 원래부터 프론트 개발을 많이 하셨었나요?MINO: 프론트엔드는 HTML 작성할 수 있는 정도? 아니면 레일즈로 간단한 홈페이지 게시판 만드는 정도였어요. 자바스크립트는 조이에서 처음 배워봤고요.사실 개발 시작한 것 자체가 작년 9–10월이니 이제 반 년 좀 넘었네요. 코딩은 2년 전부터 시작했었는데 거의 알고리즘 공부가 위주였고 최근에야 제대로 개발을 한 것 같아요ZOYI: 조이에는 어떻게 조인하게 되신 거예요?MINO: 대학 개발 동아리 회장을 할 당시 대회 후원사가 필요해서 레드(CEO)한테 컨택한 적이 있거든요. 후원을 받고 나서 레드의 권유로 회사에 한 번 놀러왔는데, 사무실이 생각보다 좋더라고요. (웃음)스타트업 하면 좁은 공간에 다닥다닥 붙어있는 모습을 생각했었는데… 깔끔한 공간이 인상깊었어요.높은 천장과 통유리 채광을 자랑하는 조이 사무실에 반했다고 합니다.ZOYI: ㅎㅎㅎ 직접 일해보니 어때요? 실제로도 깨끗하던가요?MINO: 레드의 책상이 좀 더럽긴 하지만…은 농담이고요, 실제로 일해보니 더 좋은 것 같아요. 책상도 넓고… 제가 이렇게 하얀 느낌을 좋아하거든요.ZOYI: 조이에서의 4개월을 지내보니 어때요?MINO: 음… 4개월 지나고 나니, 이제야 내가 뭘 모르고 뭐가 부족한지를 알 수 있게 된 것 같아요. 잘한다고 말하긴 아직 부끄럽지만, 적어도 구글링으로 뭘 찾아야 할지는 알 수 있게 됐어요.ZOYI: 안해본 것들을 했잖아요, 주로 어떻게 습득을 했어요?MINO: 사람마다 좀 다를 수 있는데 저는 그냥 시간 날때마다 조이 오픈소스 프로젝트들을 하나하나 열어보면서 이게 어떻게 동작하나를 봤어요. 그래도 모르면 물어보면서 Follow up 받고… 동료들한테 부담없이 물어볼 수 있어서 좋았어요. 촉진제같은 역할을 해 준 것 같아요.한 번은, 전혀 새로운 분야이고 처음 접해보는 언어를 다루는 거라 익숙치 못해 하루종일 구글링을 한 적이 있어요. 그런데도 오늘 커밋 했냐, 뭐했냐 이런 얘기가 없고… 당신의 성장을 그냥 지켜보겠다는 태도인 거예요. 처음엔 익숙하지가 않았는데, 그런 분위기 덕분에 결과적으로 리서치를 잘 하고 일을 성공적으로 마무리 할 수 있었어요.ZOYI: 동료들과 교류가 많은 편인가요?저는 프론트엔드를 하다보니 주로 개발팀 멤버들과 많은 시간을 보내는데요, 업무 외적으로도 되게 재미있어서 친하게 지낼 수 도 있고 그래요. 꾸준히 소통하려 하는 게 느껴져요. 나를 막연히 6개월 후 나가는 인턴이 아니라, 함께 성장해 가는 동료로 생각하고 있구나. 하는 기분이 들죠.ZOYI: 푸스볼 중독이라는데?MINO: 푸스볼도 ZOYI에서 처음 배웠는데, 이건 정말, 최고의 레져인 것 같습니다 (목소리 톤 올라감). 가격 대비 효율이 최고예요. 하루 한 번 이상 꼭 하고 있습니다.10분만 해도 맥박이 빨라진다는 엄연한 스포츠, 푸스볼ZOYI: 본인의 푸스볼 랭킹은?MINO: 글쎄요, 디케이(하드웨어 디자이너)보단 잘하지 않을까요? ㅎㅎZOYI: 인턴 끝나면 생각나겠어요, 그러고 보니 인턴도 이제 두 달 남았네요. 돌아가면 하고싶은 일이 있나요?MINO: 아직 고민중이예요. 사실 조이 들어오기 전에는 프론트, 웹 개발자는 정말 안하겠다고 생각했었는데 지금은 이게 재미있다는 생각이 들어요.초반에 누가 “잘 하게 되면 점점 재미있어 질거다”라고 말해준 적이 있는데, 그 말이 공감이 돼요. 점점 배워가면서 지금은 어느정도 의도한 대로 구현이 되니까…이젠 재미있는 거예요. 새로운 분야를 알게 된 느낌? 그래서 앞으로 프론트엔드 개발자로 일해도 좋고, 뭐든 최대한 많은 경험을 하고 많은 지식을 습득해 보고 싶어요.ZOYI: 좋은 계기가 되었네요, 인턴 생활은 만족스러워요?MINO: 네, 생각하던 것 이상으로 좋았어요. 주도적으로 일을 해 나갈 수 있다는 점과, 하나하나 해 나갈 때마다 내가 성장하고 있는 느낌이 좋아요. 사실 처음 입사할 땐 단순히 반복작업만 할 줄 알았거든요. ZOYI엔 뭔가 ‘네 꿈을 펼쳐봐라~’하는 태도가 있는데, 저는 거기에 잘 맞았던 것 같아요.ZOYI: 그렇다면 향후 ZOYI 지원을 고민하시는 분께 어떤 조언 한마디 해주시겠어요?MINO: 주변에 많은 친구들이 ‘난 안될거야’라고 생각하고 지원조차 안하는 경우가 많은데, 저는 일단 지원해 보라고 말해주고 싶어요. 저도 지원할 당시 굉장히 걱정을 했었거든요. 나는 알고리즘 공부밖에 못해봤고, 서버도 용어 하나도 모르는데 내가 잘 할 수 있을까?하는 생각.막상 회사에 들어오고 난 지금은 생각이 많이 달라졌어요. 인턴에게 중요한 자질은 완벽함보다 가능성인 것 같아요. 그 가능성이란 게 대단한 스펙이 아니라, 기초를 탄탄히 가지고 있는 거예요. 그리고 나면 회사에 와서 충분히 성장할 수 있어요.그 좋은 사례가 션(CTO)인 것 같아요. 함께 일하면서 CTO가 되어가는 모습을 곁에서 보는 게 참 좋았어요. 내부에서 우리가 성장해 더 큰 역할을 맡을 수 있는 조직이란 게 참 좋아요.ZOYI: 조언 감사합니다. 남은 기간 ZOYI에서 기대하는 점이 있다면?MINO: 이번 주부터 시작될 개발팀 위클리 세션이 기대돼요. 각자가 알고 있는 기술을 다른 멤버들과 공유하는 시간인데요, 조이가 워낙 다양한 기술을 다루다 보니 제가 담당하지 않는 분야에 대해서는 잘 모르는 게 많거든요. 같이 일하는 사람들은 어떤 분야에 대해 일하고 있는지 기술적으로 알아보고 싶어요.ZOYI: 좋은 시도네요. 마지막으로 글 읽으시는 분들께 한마디 하시겠어요?MINO: ZOYI는 잘하는 사람들이 와서 더 잘하게 되는 곳이 아니라 가능성 있는 사람들이 와서 잘하게 되는 곳이라고 생각해요. 누구에게나 열려 있으니 편히 찾아와 주셨으면 좋겠어요 ^^#조이코퍼레이션 #개발팀 #개발자 #개발환경 #업무환경 #팀원인터뷰 #팀원소개 #팀원자랑

기업문화 엿볼 때, 더팀스

로그인

/