스토리 홈

인터뷰

피드

뉴스

조회수 8245

AWS Lambda에서 메모리 설정값과 CPU 파워의 관계

안녕하세요. 데이블 백엔드 개발팀 최형주입니다.이번에 말씀드릴 내용은 서버 없는 컴퓨팅(Serverless Computing)의 널리 사용되는 AWS(Amazon Web Service)의 Lambda에 대한 내용입니다. AWS Lambda는 메모리 설정값에 따라 CPU 파워가 결정되는데, 그 메모리 설정값에 따라 CPU 파워가 어떻게 변화하는지에 대한 실험 내용을 설명하겠습니다. 처음에 AWS Lambda가 무엇인지 간략하게 소개를 하고 왜 이번 실험을 하게 되는지 배경 설명을 드릴 것입니다. 그다음 메모리 설정값에 따른 CPU 파워는 어떻게 결정되는지를 규명하고 마지막으로 이번 포스트를 간략히 요약겠습니다.목차1. AWS Lambda란?2. 실험배경3. 메모리 설정값과 CPU 파워의 관계4. 요약AWS Lambda란?AWS Lamba의 웹사이트AWS Lambda는 이벤트에 응답하여 코드를 실행하고 자동으로 기본 컴퓨팅 리소스를 관리하는 서버 없는 컴퓨팅 서비스입니다. 즉 코드를 업로드 하기만 하면 높은 가용성과 확장성을 보장하는 Lambda 플랫폼에서 코드를 실행합니다.AWS Lambda를 사용의 장점은 서버관리 불필요(Serverless), 지속적인 조정(Scaling), 밀리 초 단위의 측정 및 과금(Demand-based Pricing)입니다. 즉 서버를 프로비저닝(Provisioning)하거나 관리할 필요 없이 AWS Lambda에서 코드를 자동으로 실행하기 때문에 코드를 작성하고 AWS Lambda에 업로드하기만 하면 됩니다. 또한, 각 트리거에 대한 응답으로 코드를 실행하여 애플리케이션을 자동으로 확장하거나 축소합니다. 즉 코드는 병렬로 실행되고 각 트리거는 개별적으로 처리되어 정확히 워크로드(Workload) 규모에 맞게 조정됩니다. 과금 방식은 100밀리 초 단위로 코드가 실행되는 시간 및 코드가 트리거 되는 회수를 기준으로 요금이 부과됩니다. 코드가 실행되지 않을 때는 요금이 부과되지 않습니다.실험 배경AWS Lambda의 과금은 요청 요금과 컴퓨팅 요금의 합으로 계산됩니다. 요청 요금은 Lambda 함수를 호출한 총 요청 수에 대해 요금을 부과하고, 컴퓨팅 요금은 사용자가 업로드한 코드를 실행한 시간을 계산하여 100ms당 요금을 부과합니다. 컴퓨팅 요금은 사용자가 설정한 메모리 크기에 선형 비례하여 다르게 부과됩니다. 예를 들어 128MB 메모리에서는 100ms당 0.000000208$이고 256MB는 128MB의 약 두 배인 0.000000417$입니다. 그리고 512MB에서는 256MB의 두 배인 0.000000834$입니다. 또한, 더 큰 메모리를 사용할수록 더 큰 CPU 파워를 제공합니다.가장 큰 메모리 설정값을 사용하면 좋겠지만, 비용적인 측면을 고려해볼 때 사용자 입장에서의 사용 목적은 AWS Lambda로부터 최소한의 요금으로 최대한의 계산 효율을 뽑아내는 것입니다. 이 목적을 달성하기 위해서는 Lambda 함수를 실행할 때 메모리의 크기와 CPU의 파워(코어 수, 연산능력)를 명확하게 규명할 수 있어야 합니다. 메모리 크기는 사용자가 설정할 수 있습니다. 하지만 아쉽게도 아마존에서는 CPU 용량은 설정한 메모리 크기에 비례하여 결정된다고만 설명되어 있고 어느 정도의 성능을 가졌는지 명시하지 않고 있습니다.하지만 데이블의 백엔드 개발팀에서, 실험을 통하여 AWS Lambda에서 메모리 설정값에 따라 CPU 파워가 어떻게 변하는지 규명해냈습니다. 이제 그것을 이 포스팅을 통해 설명해 드리고자합니다.메모리 설정값과 CPU 파워의 관계"설정한 메모리 크기와 CPU 파워는 지수적 감쇠 관계(Exponential Decay)를 보인다"앞서 "CPU 파워는 메모리 설정한 값에 비례하여 증가한다”라고 했습니다. "그러면 어느 정도로 어떻게 비례하는가?”, “당연히 선형관계 아닌가?"라는 질문이 자연스럽게 나올 것입니다. 저희는 이 질문에 대답하기 위해 각 메모리 설정값별로 100만 번의 덧셈연산을 하여 각 설정 별 처리시간을 계산해 보았습니다. 다음 [그림 1]은 100만 번의 덧셈 연산을 했을 때 처리시간을 나타낸 그래프입니다. X축은 할당한 메모리의 크기를 나타내고 Y축은 처리시간을 초 단위로 측정한 것입니다. 보시는 바와 같이 처리시간은 메모리 크기에 따라 지수적으로 감소함을 알 수 있었습니다. 그러므로 AWS Lambda에서는 설정한 메모리 크기와 CPU 파워는 지수적 감쇠 관계(Exponential Decay)를 보인다고 결론을 내릴 수 있습니다. 예를 들면 현재 설정한 메모리보다 2배 높은 CPU 파워를 사용하고 싶으면 2배로 큰 메모리 용량을 설정해야 합니다.[그림 1] 메모리 설정값에 따른 처리시간필요로 하는 메모리 크기와 사용하는 응용에 따라 다르겠지만, 일반적으로 메모리의 크기에 상관없이 사용하는 비용이 거의 같다고 얘기할 수 있습니다. [그림 2]는 앞서 100만 번 덧셈 연산을 1만 번 호출했을 때의 각 메모리 설정값 별 요금을 나타낸 것입니다. X축은 설정한 메모리 크기이고 Y축은 각 메모리 설정값 별 요금입니다. 보시는 바와 같이 분포가 급격히 변하지 않고 대체로 균일한 것을 알 수 있습니다.[그림 2] 메모리 설정값에 따른 요금하지만 프로그램의 실행 시간은 단순히 CPU 파워로만으로 처리 시간이 결정되지 않기 때문에 다양한 요인을 검토해야 합니다. 알고리즘의 시간복잡도, 메모리의 크기와 접근 횟수, 네트워크 비용 등 다양한 것들이 처리 시간에 영향을 미치기 때문에 단순히 메모리 설정값을 늘려서 사용하는 방법은 옳지 못합니다. 그러므로 위 자료를 참고 용도로만 사용하셔서 하고자 하는 목적에 맞게 가장 최적의 메모리 설정값을 설정하시면 됩니다.요약AWS Lambda는 대표적인 서버 없는 컴퓨팅 서비스입니다. AWS Lambda에서 뛰어난 가성비를 얻고자 할 때는 각 설정값에 따라 제공하는 자원을 예측할 수 있어야 합니다. 여러 설정값 중 가장 성능에 큰 영향을 미치는 것은 사용하고자 하는 메모리 크기인데 이 크기에 따라 CPU 파워가 결정됩니다. 하지만 각 메모리 설정값에 따른 CPU 파워 정보를 아마존에서 제공해 주지 않고 있으므로 실험을 통해서 확인하였습니다. 실험 결과 설정한 메모리 크기와 CPU 파워는 지수적 감쇠 관계(Exponential Decay)를 규명했습니다. 이 규명은 단순한 프로그램에서만 확인한 것이기 때문에 최고의 효율을 가지는 AWS Lambda를 사용하기 위해서는 그 밖의 다양한 것들을 고려하여 설정해야 합니다.  기타머신 성능 및 정보- 사용하는 CPU는 Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz, 코어의 개수는 2개, 그리고 캐시의 크기는 25600 KB 임(사용하는 Microcode는 바뀔 수 있음)- 메모리는 약 3.67GB를 가짐실험에 사용한 Lambda 함수import osimport multiprocessingimport timeimport subprocessdef lambda_handler(event, context):mem_bytes = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES')mem_gib = mem_bytes/(1024.**3)num_cores = multiprocessing.cpu_count()#start_time = time.time()print subprocess.check_output ('vmstat -s', shell=True)sum = 0for i in range(1000000):sum += iif sum 000 == 0:print subprocess.check_output ('vmstat -s', shell=True)print subprocess.check_output ('vmstat -s', shell=True)hostname = subprocess.check_output ('hostname', shell=True)cpuinfo = subprocess.check_output ('cat /proc/cpuinfo', shell=True)meminfo = subprocess.check_output('cat /proc/meminfo', shell = True)print hostnameprint '--------------------------------------------------------------\n\n'print 'CPU Information'print cpuinfoprint '--------------------------------------------------------------\n\n'print 'Memory Information'print meminfoprint '\n\n\n\n'참고 자료https://aws.amazon.com/ko/lambda/details/#데이블 #개발 #개발자 #인사이트 #꿀팁 #AWS #조언
조회수 1704

MobX + React 10분 튜토리얼

* 이 글은 MobX의 MobX and React 튜토리얼을 번역한 글입니다.** 오역 및 오탈자가 있을 수 있습니다. 발견하시면 제보해주세요!개요MobX은 간단하고 확장 가능하며 테스트를 거친 상태 관리 솔루션입니다. 이 튜토리얼은 10분 안에 MobX의 중요한 컨셉들을 모두 소개합니다. MobX는 독립적인 라이브러리지만 대부분의 사람들은 React와 함께 사용합니다. 그래서 이 튜토리얼은 MobX와 React의 조합에 중점을 두고 설명합니다.The core idea상태는 각 애플리케이션의 핵심입니다. 버그를 만드는 관리가 되지 않는 애플리케이션을 만드는 가장 빠른 방법은 주변의 로컬 변수들과 동기화 되지 않는 상태나 일관성 없는 상태를 만드는 것입니다. 그래서 많은 상태 관리 솔루션들이 상태를 변할 수 없게 만드는 식으로 상태를 수정할 수 있는 방법들을 제한하려고 합니다. 하지만 이 방법은 새로운 문제들을 생성합니다. 데이터를 표준화 해야 하고 참조 무결성이 보장되지 않으며 프로토타입과 같은 유용한 컨셉들을 활용하지 못하게 됩니다.MobX는 일관성 없는 상태를 만들 수 없도록 주요 문제를 해결하여 상태 관리를 간단하게 만들었습니다. 이를 위한 전략은 간단합니다. 애플리케이션 상태로부터 파생될 수 있는 모든 것들을 자동으로 파생되도록 하는 것입니다.개념적으로 MobX는 애플리케이션을 스프레드시트로 간주합니다.1. 가장 먼저 애플리케이션 상태가 있습니다. 애플리케이션의 모델을 채우는 객체, 배열, 원시, 참조의 그래프입니다. 이 값들은 애플리케이션의 "데이터 셀"입니다.2. 둘째로 파생 값이 있습니다. 기본적으로 애플리케이션으로부터 자동으로 계산될 수 있는 모든 값들입니다. 이 파생 값이나 계산된 값들은 완료되지 않은 todo들의 수와 같이 간단한 값부터 todo의 시각적 HTML 표현과 같은 복잡한 내용까지 다양합니다. 스프레드시트 용어로는 애플리케이션의 공식이나 차트가 있습니다.3. 리액션은 파생 값과 매우 비슷합니다. 주된 차이점은 값을 생성하지 않는 함수라는 점입니다. 대신 자동으로 특정 작업들을 수행시킵니다. 대체로 I/O와 관련된 작업입니다. 리액션은 적당할 때에 자동으로 DOM이 업데이트되거나 네트워크 요청을 하도록 만듭니다.4. 마지막으로 액션이 있습니다. 액션은 상태를 변경하는 모든 것들을 말합니다. MobX는 모든 사용자의 액션으로 발생하는 상태 변화들이 전부 자동으로 파생 값과 리액션으로 처리되도록 합니다. 동기화되고 결함이 없습니다.간단한 todo store이론은 충분합니다. 위의 내용을 유심히 읽는 것보다 실제 예시를 보는 것이이해하기 아마도 더 쉽습니다. 아주 간단한 ToDo store을 가지고 시작해봅시다. 아래의 모든 코드 블록들은 수정이 가능하므로 run code  버튼을 클릭하여 실행시킬 수 있습니다. 아래의 코드는  todo 목록이 포함된 매우 직관적인 TodoStore입니다. MobX는 아직 포함되지 않았습니다.우리는 todos 목록이 있는 todoStore 인스턴스를 이제 막 만들었습니다. 어떤 객체들로 todoStore을 채울 시간입니다. 변경 사항들을 보기 위해 각 변화 이후에 todoStore.report를 호출하고 로그를 남깁니다. 레포트는 의도적으로 항상 첫 번째 할 일만 출력합니다. 이 때문에 예시가 좀 인위적이지만 아래에서 볼 수 있듯이 MobX의 의존성 추적이 동적임을 잘 보여줍니다.결과:반응형으로 만들기지금까지 이 코드에서 특별한 것은 아무것도 없었습니다. 그러나 report를 명시적으로 호출할 필요가 없다면 어떨까요? 각 상태가 변할 때마다 report가 호출되길 원한다고 선언할 수 있습니까? 그러면 report에 영향을 줄 수도 있는 모든 코드에서 report를 호출해야 합니다. 최신의 report가 출력되기를 원하지만 그것을 모두 작성하고 싶지는 않습니다.운이 좋게도 이것은 MobX가 여러분을 위해 동작하는 것입니다. 자동으로 상태에 연관되어 있는 코드를 실행합니다. 그래서 report 함수는 스프레드시트의 차트와 같이 자동으로 업데이트 됩니다. 이를 위해 TodoStore를 관찰할 수 있어야 MobX가 모든 변경 사항들을 추적할 수 있습니다. 이를 수행하도록 클래스를 변경해봅시다.또한 completedTodosCount 속성은 자동으로 todo 목록에서 파생될 수 있습니다. @observable과 @computed 데코레이터를 사용하여 객체에서 관찰할 수 있는 속성들을 생성할 수 있습니다.이게 끝입니다! 시간에 따라 변할 수 있는 값들을 MobX에게 알려주기 위해 @observable를 표시했습니다. 계산은 상태로부터 파생될 수 있는 것들을 확인하기 위해 @computed를 사용하여 표시됩니다.pendingRequrests와 assignee 속성들은 지금까지 사용되지 않았지만 앞으로 이 튜토리얼에서 사용됩니다. 이 페이지의 모든 예시들을 짧게 만들기 위해 ES6와 JSX 그리고 데코레이터를 사용합니다. MobX의 모든 데코레이터들은 ES5 부분들을 가지고 있으니 걱정하지 마세요.생성자에 report를 출력하는 작은 함수를 만들고 autorun으로 감쌌습니다. Autorun은 한 번 동작되는 리액션을 만들고 함수 안에서 사용되는 관찰 가능한 모든 데이터들이 변경될 때마다 자동으로 다시 실행합니다. report는 관찰 가능한 todos 속성을 사용하기 때문에 적절할 때 레포트를 출력합니다. 이것은 다음 리스트에서 설명됩니다. 실행 버튼을 눌러보세요:report은 자동으로 동시에 중간 값을 빼먹지 않고 출력하였습니다. 유심히 로그를 보면 새로운 로그에서는 4번째 줄이 없는 것을 발견할 수 있습니다. 뒤의 데이터가 변경되는 것으로 report가 실제로 변경되지 않기 때문입니다. 반면에 첫 번째 할일의 이름이 바뀐 것은 report에서 실제로 사용되는 이름이기 때문에 report를 업데이트 하였습니다. 이것은 todos 배열이 autorun에 의해 관찰되는 것이 아니라 todo 아이템들 안에 있는 개별적인 속성을 관찰하고 있다는 것을 잘 설명해줍니다.반응형 React 만들기지금까지 바보 같은 report를 반응형으로 만들었습니다. 이제 이 store에서 반응형 유저 인터페이스를 만들 시간입니다. React 컴포넌트들은 이름값을 못하고 반응형이 아닙니다. mobx-react 패키지의 @observer 데코레이터는 React 컴포넌트 render 함수를 autorun으로 감싸 자동으로 상태에 따라 컴포넌트가 동기되도록 만듭니다. 개념적으로 이전에 report를 가지고 했던 것과 다르지 않습니다.다음 코드는 몇 개의 React 컴포넌트를 정의합니다. 이 안의 MobX는 @observer 데코레이터 뿐입니다. 이것으로 충분히 데이터가 변경될 때 각 컴포넌트가 개별적으로 다시 렌더링하도록 만들 수 있습니다. 더이상 setState를 호출할 필요가 없으며 설정이 필요한 셀렉터나 상위 컴포넌트를 사용하는 상태의 적절한 부분을 찾을 필요도 없습니다. 기본적으로 모든 컴포넌트들은 더 똑똑해졌지만 아직 부족합니다.아래의 코드를 보기 위해 run code 버튼을 클릭하세요. 코드는 수정이 가능하므로 자유롭게 동작시킬 수 있습니다. 예를 들어 @observer 호출을 모두 지우거나 TodoView의 데코레이터만 지워보세요. 오른쪽의 미리보기에서 숫자들은 컴포넌트가 렌더링될 때마다 표시합니다. 다음 코드는 다른 작업을 수행하지 않고 데이터를 변경해야 한다는 것을 잘 보여줍니다. MobX는 자동으로 store의 상태에 따라 유저 인터페이스의 적절한 부분들을 다시 파생하고 업데이트합니다.참조 사용하기 지금까지 관찰가능한 객체(프로토타입과 일반 객체 둘 다)와 배열, 원시를 만들었습니다. MobX에서 참고를 다루는 방법에 대해 궁금하지 않나요? 상태가 그래프를 형성할 수 있나요? 이전 코드에서는 todos의 assignee 속성이 있는 것을 알았을 것입니다. 또 다른 "store"을 생성하여 assignee에 포함되는 사람들의 값을 전달하고 그들에게 할일이 할당해줍시다.두 개의 독립적인 store이 있습니다. 하나는 사람들이 있고 하나는 할 일들이 있습니다. 사람 store의 사람을 assignee에 할당하기 위해 참조를 할당했습니다. 변경사항들은 TodoView에 의해 자동으로 선택됩니다. MobX를 사용하면 데이터를 표준화할 필요가 없고 업데이트될 컴포넌트들을 지정하기 위해 셀렉터를 작성할 필요가 없습니다. 실제로 데이터가 어디에 저장되는지는 중요하지 않습니다. 오랫동안 객체들은 관찰가능하게 만들어졌고 MobX는 그것들을 추적할 수 있습니다. 실제 JavaScript 참조가 동작합니다. MobX는 파생과 관련이 있으면 자동으로 그것들을 추적합니다. 테스트 해보기위해 다음의 인풋 박스에 이름을 변경해보세요. (먼저 위의 Run code 버튼을 클릭했는지 확인해보세요)위의 인풋 박스의 HTML은 간단합니다:비동기 액션작은 Todo 애플리케이션에 있는 모든 것들은 상태로부터 파생되기 때문에 언제 상태가 변화하는지는 중요하지 않습니다. 비동기 액션을 만드는 것은 매우 수월합니다. 새로운 할일 아이템을 비동기적으로 로드하려면 아래의 버튼을 여러번 클릭하세요.코드는 매우 직관적입니다. UI가 현재 로딩되는 상태를 반영하도록 store의 pendingRequests 속성을 업데이트하는 것으로 시작합니다. 로딩이 끝날 때 store의 todos를 업데이트하고 pendingReqeust 카운터를 증가시킵니다. 이 스니펫을 이전 TodoList 정의와 비교하여 pendingRequests 속성이 어떻게 사용되는지 확인하세요.개발자 도구mobx-react-devtools 패키지는 화면의 오른쪽 최상단에서 찾을 수 있고 모든 Mobx+ReactJS 애플리케이션 내에서 사용할 수 있는 개발자 도구를 제공합니다. 첫 번째 버튼을 클릭하면 각 다시 렌더링되는 @observer 컴포넌트가 표시됩니다. 두 번째 버튼을 클릭하고 미리보기에서 해당 컴포넌트 중 하나를 클릭하면 해당 컴포넌트의 종속성 트리가 표시되므로 주어진 순간에 관찰중인 데이터 조각을 정확하게 검사할 수 있습니다.결론끝났습니다! 관용구는 없습니다. 완전한 UI를 형성하는 간단하고 선언적인 컴포넌트들입니다. 그리고 상태로부터 완전하고 반응형으로 파생됩니다. 여러분의 애플리케이션에서 mobx와 mobx-react를 사용하기 시작할 준비가 되었습니다. 지금까지 배운 것들을 짧게 요약하였습니다:1. MobX가 객체들을 관찰할 수 있도록 @observable 데코레이터 또는 observable(객체 혹은 배열)을 사용하세요.2. @computed 데코레이터는 상태로부터 자동으로 파생되는 함수를 만들기 위해 사용될 수 있습니다.3. 관찰 가능한 상태에 의존하는 함수들을 자동으로 실행하기 위해 autorun을 사용하세요. 로깅하거나 네트워크 요청하기에 유용합니다.4. React 컴포넌트를 진짜 반응형으로 만들기 위해 mobx-react 패키지의 @observer 데코레이터를 사용하세요. 자동으로 효율적으로 업데이트합니다. 심지어 많은 양의 데이터가 있는 아주 복잡한 애플리케이션에서도 사용됩니다.위의 수정 가능한 코드 블록을 사용하여 조금만 더 만져보면 MobX가 모든 변경 사항에 어떻게 반응하는지 기본적인 느낌을 얻을 수 있습니다. 예를 들어 언제 호출되는지 보기 위해 report 함수에 로그를 추가하거나 report를 출력하지 않고 이것이 TodoList 렌더링에 어떤 영향을 주는지 확인하세요. 아니면 특정 상황에서만 출력하세요...MobX는 상태 컨테이너가 아닙니다사람들은 종종 MobX를 Redux의 대안으로 사용합니다. MobX는 기술적인 문제를 해결하는 라이브러리일 뿐이며 아키텍처나 상태 컨테이너가 아닙니다. 그러한 의미에서 위의 예시들이 고안된 것으로 메서드에서 로직을 캡슐화하거나 store나 컨트롤러에서 구성하는 것과 같은 적절한 엔지니어링 기법을 사용하는 것이 좋습니다. 또는 HackerNesw의 누군가는 이렇게 말했습니다:"MobX는 많은 곳에서 언급되었지만 나는 마냥 좋다고 말할 수 없습니다. MobX로 작성하는 것은 컨트롤러/디스패처/액션/슈퍼바이저 또는 다른 형태의 데이터 흐름을 관리하여 애플리케이션의 요구 사항을 패턴화할 수 있습니다."#트레바리 #개발자 #안드로이드 #앱개발 #MobX #React #백엔드 #인사이트 #경험공유
조회수 1161

“매일매일 새로운 도전으로 채워지는 자리”

“매일매일 새로운 도전으로 채워지는 자리” – 패스트캠퍼스에서 일하는 콘텐츠 마케터 이야기“마케팅 중 유효한 것은 콘텐츠 마케팅 뿐이다.” – 세스 고딘<보랏빛 소가 온다>를 쓴 세계적인 마케팅 구루 세스 고딘의 말처럼 콘텐츠 마케팅은 마케팅의 주류로 자리잡으며 전통적인 광고의 입지를 위협하고 있습니다. 그런데 콘텐츠 마케팅은 범주가 넓어 기업 특성에 따라 실무에서 담당하는 업무가 다양한데요. 이번 글에서는 패스트캠퍼스의 콘텐츠 마케터들은 무슨 일을 어떻게 하는지 자세히 알려드리고자 프로그래밍팀 시니어 콘텐츠 마케터 김하림님과 파이낸스팀 콘텐츠 마케터 이유나님을 모시고 인터뷰를 진행했습니다.안녕하세요 하림님 유나님, 오늘 인터뷰에 응해 주셔서 감사합니다. 간단하게 자기소개 부탁드려도 될까요? 안녕하세요, 프로그래밍팀 시니어 콘텐츠 마케터 김하림입니다. 지난주에 막 입사한 지 1년이 되었어요.안녕하세요, 저는 파이낸스팀 콘텐츠 마케터 이유나라고 합니다. 패스트캠퍼스에서 일한 지 이제 9개월 째고요. 두 분께서는 패스트캠퍼스에 합류하기 전 무슨 일을 하셨는지, 어떤 계기로 패스트캠퍼스 콘텐츠 마케터로 입사하게 되셨는지 궁금합니다. 패스트캠퍼스에 오기 전에는 웹디자인 일을 하고 있었는데, 회사 규모가 작아 세금계산서 발행부터 제안서 작성까지 회사 운영의 전과정에 참여해야 하다 보니 웹디자인에만 몰두할 수 있는 환경은 아니었어요. 전문성을 가지고 한 가지 일에 좀 더 집중하고 싶어 회사를 그만두었습니다. 그러다 채용공고를 살펴보던 중 패스트캠퍼스의 콘텐츠 매니저(지금은 콘텐츠 마케터로 직함이 바뀌었죠) 자리를 발견하게 되었고요. 제가 할 수 있는 다양한 일들을 업무 역량으로 발휘할 수 있을 것 같아 지원했어요. 저는 지금 마지막 학기를 보내고 있는 대학생이에요. 경영을 전공했고, 교육 분야에도 관심이 있어 국어교육학과를 복수전공하고 있었어요. 제가 흥미를 느낀 이 두 분야를 접목해 할 수 있는 일을 찾다 교육업에 있는 마케터 일이 저에게 딱 맞을 것 같아 지원서를 넣었던 기억이 납니다. 인턴으로 입사했다 정직원으로도 계속해서 함께하는 중이예요. 유나님께서는 인턴 기간이 종료된 후에도 이곳에서 일하고 계신데, 패스트캠퍼스를 선택하신 이유가 무엇일까요? 패스트캠퍼스에서는 인턴이라도 정직원과 같은 일을 하면서 눈치 보지 않고 자기 의견을 낼 수 있던 것이 좋았어요. 저에게는 자기발전을 계속할 수 있는지가 직업을 선택할 때 중요한 기준인데 여기에 맞고, 사회 초년생으로서 일을 배우기에도 좋은 환경인 것 같아 정직원으로 계속 일하고 있습니다. 제가 막 입사했을 때, 당시 팀장님께서 제 직무에 대해 설명해주셨던 것이 기억에 남아요. “프로덕트 매니저가 오프라인에서 기획을 하는 사람이면 콘텐츠 마케터는 온라인에서 기획을 하는 사람이다”라는 말이었는데 저희는 고객분들이 온라인에서 접하는 모든 콘텐츠를 기획·제작하고 글을 쓰는 만큼 일리가 있는 것 같아요. 기획자, 제작자, 에디터의 역량을 모두 발휘해야 하는 사람이 콘텐츠 마케터라고 생각합니다. 하림님의 말씀에 더해, 우리 회사 콘텐츠 마케터가 맡는 특별한 일 중 하나는 상세페이지를 기획 및 디자인해 고객을 설득하는 글쓰기를 한다는 것이에요. 마케터라 하면 광고 크리에이티브를 제작하는 데 업무의 초점이 맞춰져 있다는 느낌이지만, 여기서는 기획 역량까지 발휘해야 하는 점이 특징이죠. 콘텐츠 마케터로서 다양한 일을 하고 계시는데, 어느 정도 정해진 일과가 있을까요? 하루 일과를 딱 잘라서 말하긴 어렵습니다. 그때그때 담당하는 일의 중요도가 달라져서요. 우선 프로덕트 매니저 분이 새로운 강의 기획을 완성하시면 신규 상세페이지를 제작하고, 기존 강의를 업그레이드해 오시면 그에 맞게 기존 상세페이지의 내용을 수정합니다. 홍보 진행이 원활하지 않으면 팀원들과 트러블 슈팅을 통해 상세페이지나 광고 크리에이티브를 손보기도 하고 강사 인터뷰, 수강생 인터뷰 혹은 블로그 게시물이나 카드뉴스 형태의 오가닉 콘텐츠를 발행하기도 합니다. 업무 진행에 있어 큰 틀은 있겠지만 그때그때 업무의 우선순위가 달라져요. 일이 많아 야근할 때도 종종 있고요. 패스트캠퍼스 콘텐츠 마케터 직무, 입사 전 생각했던 것과 실무를 진행하는 것에 차이가 있나요? 저는 비슷한 것 같아요. 간단한 퍼블리싱, 마크업(HTML/CSS로 코딩을 하는 것)을 할 수 있는 사람으로서 이런 스킬들이 상세페이지 제작 업무에 도움이 될 거라고 생각했거든요. 입사 전 필수적으로 갖춰야 할 스킬은 아니었지만 업무를 진행하다 보니 마크업을 알아서 더 도움이 되는 게 많았어요. 그런데… 트러블 슈팅이 이렇게 많을 줄은 몰랐네요. 하하. 저는 하림님과 반대예요. 콘텐츠 마케팅이 이렇게까지 다양한 능력을 요구하는 일인 줄 전혀 몰랐어요. 업무 스킬은 물론 담당하는 강의에 대한 지식적인 부분까지도요. 깊게 파고들 필요는 없지만 얕고 넓은 지식이 필요한 일이더라고요.물론 하림님처럼 업무와 관련된 스킬을 가지고 입사하시면 실무에 확실히 도움 되는 부분이 있어요. 포토샵이나 HTML/CSS 같은 것들요. 하지만 저의 경우에는 포토샵도 못 다룰 만큼 아무것도 모르는 상태로 일을 시작했는데도 필요한 것들을 배워 가며 일할 수 있는 환경이라 괜찮았어요. 그 과정에서 성장하고 있는걸 스스로도 느낄 정도에요.지금 패스트캠퍼스에서는 프로그래밍, 데이터 사이언스, 마케팅, 외국어 등 다양한 팀에서 콘텐츠 마케터를 채용 중인데요. 팀별로 콘텐츠 마케터가 갖춰야 할 배경지식, 선호하는 스킬셋이 다를까요? 크게 차이는 없는 것 같아요. 합류하는 팀에 따라 만들게 되는 콘텐츠의 성격은 달라질 수 있지만 배경지식이 필수는 아니거든요. 프로덕트 매니저 분들이 작성하신 기획 문서를 읽고 핵심이 되는 부분을 짚어 콘텐츠로 만들어낼 수 있으면 됩니다. 이해하기 어려운 부분은 프로덕트 매니저 분들께 물어보면 어느 팀에서건 친절하게 알려주실 거예요. 맞아요. 저도 파이낸스 분야를 공부하며 콘텐츠를 만들고 있는데, 아는 게 점점 많아지고 있는 것 같아 뿌듯합니다. 콘텐츠 마케터는 끊임없이 새로운 것들을 배워야 하는 직무 같은데요. 패스트캠퍼스에서 콘텐츠 마케터로 일하며 가장 힘든 점은 무엇인지 솔직하게 말씀해 주신다면? 하나의 콘텐츠에 오랜 시간을 투입할 수 없는 점? 일주일에 새로운 상세페이지를 세 개씩 만들 때도 있다 보니 한 가지 업무만 집중해서 파고들 시간적 여유가 없어요. 특히 트러블 슈팅이 많이 발생하다 보면 업무 시간이 절대적으로 부족하죠. 유나님 말씀에 더해, 강의마다 특징을 가장 잘 보여줄 수 있는 상세페이지를 만들기 위해 고민하는 게 재밌으면서도 어려운 일 같아요. 이런 부분에 대해 어떤 도움을 드릴 수 있을까 다른 시니어 분들과 함께 고민 중이고요. 그리고 솔직히 말하자면, 일이 정말 많아요. 그게 제일 힘들죠. 업무 과다로 고생이 많으신데, 힘든 점들이 있음에도 이 일을 계속하게 만드는 원동력은 무엇인가요? 일은 많지만 업무 방식에 제한은 없어서 이것저것 새로운 시도를 해 볼 여지가 있다는 게 좋아요. 상세페이지를 수정했거나 새로운 광고 크리에이티브를 만들었는데 효율이 좋다거나, 오가닉 콘텐츠를 발행했는데 커뮤니티 등에 업로드되는 등 좋은 반응을 얻었다거나 하면 보람도 있고요. 틀에 박힌 일을 하지 않는다는 점이 재밌어요. 맞아요. 새로운 시도에 대한 제재가 없으니 할 수 있는 게 많아서 좋죠. 성과에 따른 연봉협상도 유연하게 이뤄지고요. 어떤 콘텐츠 마케터를 동료로 맞이하고 싶으신지 궁금합니다. 새로운 시도에 대한 거리낌이 없으신 분. 새로운 일이 주어졌을 때 ‘저는 이거 못하겠어요’가 아니라 ‘이것도 저것도 해 볼게요’라고 말할 수 있는 분! 팀원들과 협업을 잘할 수 있는 분. 프로덕트 매니저, 퍼포먼스 마케터의 의견을 반영해 콘텐츠를 제작하고 배포하기 때문에 커뮤니케이션 능력이 좋다면 일을 잘할 수 있을 것 같아요. 거기에 하나 더, 자신의 의견만 고집하기보다 다른 사람의 의견을 잘 받아들일 수 있는 분. 서로의 잘잘못을 따지기보다 더 나은 방향을 위해 협업하고 있다는 걸 잊지 않는 분이면 좋겠어요. 쓰는 걸 두려워하지 않는 분이면 정말 좋고요. 맞아요. 포토샵이나 워드프레스 스킬들은 모르셔도 괜찮아요. 저희가 알려드릴게요! 마지막 질문입니다. 두 분께 패스트캠퍼스란 어떤 곳일까요? 매일매일 변화무쌍한 곳. 틀에 박힌 일을 하지 않아요. 오늘, 지금입니다. 오늘이 쌓여서 내일이 되고 매일이 되는데, 그 오늘이 매일매일 새로워요.* 패스트캠퍼스 콘텐츠 마케터는? *  패스트캠퍼스 고객들이 접하게 되는 모든 접점을 컨트롤하는 역할을 담당합니다. 기획 과정에 참여하는 것은 물론 교육 콘텐츠 상세페이지를 제작하고, 매력적인 광고 크리에이티브를 만들고, 강사와 수강생들의 목소리를 전달하기도 합니다. 즉, 패스트캠퍼스에서 만들어지는 모든 콘텐츠의 외모를 결정하고 그 톤앤매너를 관리합니다.
조회수 1516

Database를 왜 사용할까요?

개발자들이 Database 프로그램을 선택한 이유Database(이하 DB) 프로그램을 처음 접한 건 Dos에서 사용하는 Database III plus였습니다. 이때는 학생이었기 때문에 프로그램 개발에 관심이 많았지만 대량의 데이터를 다룰 일은 없었습니다. 다음으로 접한 건 clipper였습니다. 과거 C언어를 하던 사람이면 자료 처리를 위해 한 번쯤은 접해봤을 겁니다. 이때까지는 Dos를 주로 사용했고, 간단한 자료를 다루었기 때문에 File 처리만으로도 충분한 결과를 얻을 수 있었죠.그렇다면 DB는 다중 사용자 환경이 되고 바로 사용하게 되었을까요? 예전에 다중 사용자들이 사용했던 걸 꼽자면 PC 통신과 Web이 있을 것입니다. 초창기의 Web은 PHP, ASP가 개발되기 전이었고 Java는 C보다 성능이 낮아 CGI를 C로 구현했으니 게시판이나 자료실 등도 C로 개발했습니다.규모가 큰 PC 통신은 DB를 사용했지만 사설 BBS나 01410 등에 들어가는 외부 업체는 File로 처리했습니다. 이 시기에 사설 BBS나 01410 서비스를 제공하는 업체들은 Workstation을 구입하거나 x86 계열을 구입해 운영체제 (SCO UNIX, Free BSD, Linux 등)를 사용했지만 이때 역시 C로 개발을 했었습니다. 이런 환경에서 점점 File 처리의 한계가 나타나기 시작했던 것이죠.C File lock 예)int iFd, iResult; iFd = open(“LockTest”,O_RDWR);  iResult = lockf(iFd, F_LOCK,10L); /* 필요한 작업 처리 */ close(iFd); 유저가 늘어나고 운영 체제 내부적으로 동시에 처리하는 프로세스가 증가하면서 자료가 깨지는 현상이 나타납니다. 개발자들은 어쩔 수없이 DB를 선택하기 시작했습니다.DB의 장점들DB를 도입하면 여러 가지 장점이 생깁니다. SQL 문장만 익히면 프로그램으로 일일이 구현해야 했던 것들을 명령어만으로 수행할 수 있고 자료의 무결성 또한 보장해 주며, 개발의 생산성까지 높입니다. 만약 특정 날짜의 자료들을 읽어와서 제목 순으로 보여줘야 할 경우, 프로그램으로 개발한 자료를 날짜 별로 읽어 배열에 담고 Quick sort 알고리즘을 적용해 정렬한 후 자료를 보여줘야 합니다. 하지만 DB에서 SQL 문장을 사용하면 간단하게 완성할 수 있습니다. SELECT * FROM TABLE WHERE DATETIME = 날짜 ORDER BY TITLE ; 조심 또 조심!하지만 DB 역시 만능은 아니기 때문에 모든 자료를 처리할 수는 없습니다. 예를 들어 문서(pdf, doc, hwp등) , 이미지(jpg, gif 등), 압축(zip,rar 등) 등의 바이너리 파일입니다. (물론 DB에서 BLOB 자료형을 지원하므로 하드웨어 자원과 성능만 받쳐준다면 불가능한 것은 아닙니다.) 하드웨어 자원과 성능에는 한계가 있기 때문에 DB로 해야 할 일과 하지 말아야 할 일을 구분해야 합니다. 만약 이를 생각하지 않고 DB에 모든 자료를 넣는다면 어떤 문제가 생길까요? 크게 두 가지가 있습니다.첫 번째는 바이너리를 파일을 읽고 쓸 때 발생하는 시간이 문제가 될 수 있습니다. 그 이유는 DB가 Connection Pool로 접속을 관장하는데, 이는 한정된 자원으로 최소한의 시간을 사용해야 많은 유저가 사용할 수 있기 때문입니다. 만약 바이너리 파일을 DB에 올리면서 오랜 시간 접속을 유지한다면 그만큼 다른 유저가 사용할 수 없을 테고, 결국은 DB에서 감당할 수 있는 유저의 수가 줄어들 것입니다.두 번째는 백업의 문제가 있습니다. 우리는 DB에 장애가 발생할 때를 대비해 DB 전체 백업을 합니다. 그런데 DB에 바이너리 파일이 들어가면 백업 시간이 많이 늘어나 원하는 시간 안에 백업을 하지 못하는 일이 발생할 수도 있습니다. 따라서 DB에 바이너리 파일을 넣을 때는 아주 적은 용량의 파일만 넣어야 합니다. 배치에 대하여: OLTP, OLAPDB 용량이 커지면 Query를 수행해도 원하는 결과를 볼 수 없고 DB에 부담을 많이 주는 Query가 발생합니다. 그래서 주기적으로 Query를 돌려 결과를 테이블에 넣고 필요할 때마다 이를 볼 수 있게 배치 처리를 하며 해결합니다. 일, 월, 년 단위의 집계 자료를 구축하면서 시스템에 부하를 줄 수 있기 때문에 보통 야간에 처리를 하죠. 그런데 만약 DB 용량이 너무 커져서 전일자 집계를 배치로 처리하지 못하는 일이 발생하면 어떻게 할까요?여기서 사용할 수 있는 것이 OLAP(OnLine Analytical Processing) DB입니다. 일반적으로 유저가 사용하는 건 OLTP(OnLine Transaction Processing) 입니다. 대표적으로 Oracle, MySQL PostgreSQL 등이 있습니다. 여기서 MySQL 을 제외하고 Oracle과 PostgreSQL 은 Partition, HASH 조인, Parallel을 지원하여 OLAP 환경에서도 어느 정도 사용 가능합니다.OLAP DB는 주로 DW 환경에서 사용하며 대표적으로 Teradata와 Oracle Exadata 등이 있습니다. OLAP DB 와 비교가 안 될 정도를 빠르게 배치 작업을 처리할 수 있습니다. (자세한 내용은 다음 글에서 설명하겠습니다.)Conclusion지금까지의 이야기를 정리하면 ‘여러 유저가 동시에 안정적으로 자료 처리를 하려면 DB를 사용하고, 자료의 양과 처리 형태(OLAP, OLTP) 에 따라 DB를 선택하면 된다’는 것이었습니다. 자세한 설명을 하자면 각 DB별 특성을 기술해야 하기 때문에 오늘은 전체적인 내용부터 살펴봤습니다. 다음 글에서는 유저가 사용하는 OLTP에 대해 살펴보겠습니다. 글한석종 부장 | R&D 데이터팀hansj@brandi.co.kr#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 2774

iOS 아키텍처 패턴(MVC, MVVM, VIPER)

Overview“글 한 번 써보실래요?” 입사하고 일주일이 지나 기술 블로그에 글을 써 보라는 제안을 받았습니다. 여러 고민 끝에, 아이폰 앱(이하 ‘iOS’) 주니어 개발자로서 프로젝트 경험과, 공부한 내용을 바탕으로 글을 쓰기로 했습니다. 적절한 짤이라고 생각하는 중iOS 개발자 사전 준비iOS 개발자의 길에 들어섰다면 이미 앱 개발과 개발 언어에 대해서는 알고 있을 겁니다. 개발 프로그램 Xcode와 프로그램을 지원하는 macOS 환경, 개발 언어 Swift 또는 Objective-C, iOS 앱 프로그래밍 등 iOS 앱을 개발하기 위해 필요한 내용까지도요. 우선 ‘iOS 주니어 개발자라면 꼭 알고 있어야 할 것’들을 아래 목록과 같이 정리했습니다. 글을 읽기 전, 목록 중에서 공부가 더 필요한 것이 있다면 꼭! 검색해보세요. Xcode, macOSApple Developer ProgramSwift or Objective-CCocoa TouchUIKitAuto Layout…iOS Architecture Patterns(아키텍처 패턴)“Viper 패턴 들어보셨어요?” Viper는 단순히 ‘독사’를 의미하는 줄 알았는데, MVC 패턴와 같이 디자인 패턴의 한 종류라는 건 입사하고 나서 알게 됐습니다. MVC와 SingleTon(싱글톤) 패턴은 익숙했지만 Viper 패턴은 생소했습니다. Viper 패턴을 3일 안에 분석하겠다는 저의 부끄러운 과거를 반성합니다... ㅜㅜ검색해보니 다양한 디자인 패턴을 찾을 수 있었습니다. iOS 개발자는 앱 프로젝트를 시작하기 전 또는 이미 진행되고 있는 프로젝트에서 개발을 시작한다면 우선 어떤 패턴으로 설계되어 있는지 파악해야 합니다. 그러므로 오늘은 iOS 개발에 주로 사용되는 패턴인 MVC, MVVM, VIPER를 간단하게 살펴보겠습니다.MVCMVC 패턴Model(모델), View(뷰), Controller(컨트롤러). Model에서는 애플리케이션에서 사용할 데이터들을 관리하고, View는 유저 인터페이스를 표현 및 관리합니다. Controller는 View와 Model의 다리 역할을 해 View의 입력을 Model이 반영하고, Model의 변화를 View에 갱신하는 역할을 합니다. 하지만, 애플의 MVC 패턴은 기존 MVC 패턴과 다릅니다. View와 Controller가 강하게 연결되어 있어 View Controller가 거의 모든 일을 합니다.1) 애플 MVC 패턴MVVMMVVM 패턴Model(모델), View(뷰), ViewModel(뷰모델). Controller를 빼고 ViewModel을 추가한 패턴입니다. 여기서 View Controller가 View가 되고, ViewModel이 중간 역할을 합니다. View와 ViewModel 사이에 Binding(바인딩-연결고리)가 있습니다. ViewModel은 Model에 변화를 주고, ViewModel을 업데이트하는데 이 바인딩으로 인해 View도 업데이트됩니다. ViewModel은 View에 대해 아무것도 모르기 때문에 테스트가 쉽고 바인딩으로 인해 코드 양이 많이 줄어듭니다.import Foundation // ViewModel var gameScore: Int? var gameScoreLabel: UILabel func updateGameScoreLabel() {   var text = ""   if let gameScore = gameScore, gameScore == 100 {       text = "Excellent!!"   } else if let gameScore = gameScore, gameScore >= 90 && gameScore < 100>       text = "Great Job!"   } else if let gameScore = gameScore, gameScore < 90>       text = "Not Bad~"   }   gameScoreLabel.text = text } // View Controller gameScoreLabel.text = viewModel.updateGameScoreLabel간단한 예를 들면, 게임 점수에 따라서 textView에 보여줄 내용을 담당하는 함수 등, View에서 변화가 일어나는 함수들이 View Controller에 정의되어 사용하는 경우가 많을 겁니다. 이런 함수들이 점점 많아지면 View Controller가 Massive, 많은 코드를 담게 됩니다. 그래서 이런 함수들을 ViewModel에 옮기고, 값들을 미리 세팅한 다음에 view controller에서 viewModel을 선언하고 viewModel의 함수를 불러오는 식으로 사용하면 됩니다. 매우 간단한 예제이기 때문에 대략 viewModel과 view controller에서 어떻게 사용하는지만 보시면 될 것 같습니다. 이 패턴은 주로 Reactive programming(ReactiveCocoa, RxSwift 등)을 할 때 많이 사용하는 패턴이어서 다음에 설명하겠습니다.VIPERVIPER 패턴View(뷰), Interactor(인터렉터), Presenter(프리젠터), Entities(엔티티), Router(라우터). MV(X) 패턴과 다른 패턴으로 MVC 패턴을 대체하기 위해 만들어진 패턴입니다. 먼저 Entity는 그저 모델 객체입니다. 단순하게 어떤 모델의 속성들만 있는, Dumb Model이라고 부를 수 있습니다. 이 모델 객체를 조작하는 것이 바로 Interactor입니다. 어떤 행동(behavior or use case)에 따라서 모델 객체를 조작하는 로직이 담겨 있습니다. 작업이 완료되어도 View에 아무런 영향 없이 오로지 데이터 작업만 합니다.Presenter는 데이터를 Interactor에서 가져오고, 언제 View에 보여줄지 결정합니다. View에 보여주기 전 내용을 준비하는 로직을 담당한다고 생각하면 됩니다. View는 Presenter에서 어떻게 보여줘야 할지 요청대로 디스플레이하고, 사용자의 입력을 받으면 다시 Presenter로 넘깁니다. Presenter는 View/ViewController, Interactor, Router와 상호작용합니다. Interactor로부터 조작된 데이터를 가져오고, 디스플레이하기 위해 데이터들을 준비한 다음 View/ViewController에 보냅니다.Router 또는 Wireframe은 화면 전환(navigation information)을 담당합니다. Presenter가 “언제” 화면을 전환해야 하는지 안다면, Router는 화면 전환을 “어떻게” 하는지 알고 있습니다. Router는 화면 전환 애니메이션을 구현하고, View Controller를 생성하여 Presenter와 연결합니다.항목내용ViewPresenter의 요청대로 디스플레이하고, 사용자 입력을 Presenter로 보내는 작업을 합니다.InteractorUse case에 따라서 Entity 모델 객체를 조작하는 로직을 담고 있습니다.PresenterInteractor로부터 데이터를 가져오고, View로 보내기 위해 데이터를 준비하여 “언제” View에 보여줄지를 결정합니다.Entity모델 객체. Dumb Model.Router(Wireframe)화면 전환(navigation information)을 담당하며, Presenter가 “언제” 화면 전환해야하는지를 안다면, Wireframe은 화면 전환을 “어떻게” 하는지를 알고 있습니다.하...지금까지 설명한 내용들은 막상 프로젝트 만들어 소스를 작성하려고 하면 막막해집니다. 역할이 잘 분할되어 있기에 앱의 기능을 하나 정하여 interactor, entity, presenter, view, router 만들고, 또 앱의 기능에 따라서 다시 interactor, entity,…. 고민을 많이 해야 해서 다시 MVC 패턴으로 돌아가고 싶은 마음이 생깁니다.크게 보면 Add Module와 List Module, 그리고 공통적인 모델(데이터)을 잘 분리한 앱 구조Conclusion도대체 우리는 왜 다양한 앱 디자인 패턴을 알아야 할까요? 그 이유는 바로 앱의 특성에 따라 적합한 설계를 가지고 작업해야 하기 때문입니다. 간단한 앱 프로젝트는 쉽게 개발하고 적용할 수 있는 MVC 패턴이 더 적합합니다. 반대로 MVVM 패턴이나 VIPER 패턴을 적용하면 점점 커지는 앱 프로젝트에 잘 대응할 수 있습니다. 또는 어떤 디자인 패턴이 적용된 앱 프로젝트에 참여하면, 그 디자인 패턴에 대해 알아야 앱 구조를 이해하고 기능을 추가하거나 수정할 수 있고, 작업하는 시간을 줄일 수 있을 겁니다.가장 좋은 패턴은 사람마다 차이가 있습니다. 패턴마다 장단점도 있습니다. 다만 어떤 패턴이든지 간에 구조화되고 정리된 코드는 쉽고, 직관적입니다. 이 글 하나만으로 앱 패턴을 완벽하게 마스터할 수는 없어도 패턴의 종류와 특징을 알게 되었다면 본전입니다. 다음 편도 기대해주세요! :-) 도움말 1) View Controller에서는 Controller가 View의 life cycle(라이프 사이클)에 관여하기 때문에 View와 Controller를 분리하기 어렵습니다. 개발자들 사이에서는 Massive View Controllers라고도 불립니다. 앱을 테스트할 때, Model은 따로 분리되어 테스트를 할 수 있어도 View와 Controller는 강하게 연결되어 있기 때문에 각각 테스트하기 어렵습니다. 참고문헌 iOS Architecture Patterns: Demystifying MVC, MVP, MVVM and VIPER글김주희 사원 | R&D 개발1팀kimjh3@brandi.co.kr브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유 #iOS
조회수 1704

덕질도 신박하게! R을 활용한 텍스트 마이닝 도전기

Overview대학원에서 소프트웨어 공학을 전공하고 있습니다. 이번 학기엔 ‘빅데이터 분석’ 과 ‘대용량데이터베이스관리론’ 과목을 수강하면서 생애 처음으로 R Studio 프로그램을 설치해봤는데요. 머신 러닝을 다뤄본 적도, 자연언어처리 분야를 개발한 적도 없지만 어느 날 텍스트 마이닝 관련 강의에서 불현듯 이런 생각이 떠올랐습니다. “내가 좋아하는 가수로 텍스트 마이닝을 하면 어떤 결과가 나올까?”머릿속으로 생각하는 것과 내가 직접 구현을 해보는 것은 절대 다른 법! 일단 도전해보기로 했습니다. 개발 3년과 덕질 10년의 실력을 쏟아 부을 겁니다.지금까지 예쁜 디자인이라고만 알고 있었던 WordCloudStep1. 트위터 Developer 에서 인증키 받기트위터 Developer (Twitter Developer Platform — Twitter Developers) 에 접속해서 개인 계정으로 로그인하고, 오른쪽 위의 Apply를 클릭합니다.Twitter standard APIs > Get started with standard access를 클릭합니다.등록된 개발자 앱이 없으면 Create an app의 apps.twitter.com을 클릭합니다.Create New App을 클릭합니다.각 항목을 입력합니다. 저는 Website 가 없기 때문에 로컬 호스트를 기재했습니다.약관에 동의한 후 Create your Twitter application을 클릭합니다.만약 어플리케이션 이름이 중복된다면 위와 같은 에러 메세지가 나올 겁니다. 정상적으로 어플리케이션이 등록되면 위의 화면과 함께 API Key를 발급받을 수 있습니다. Consumer Key (API Key) 옆의 내용 (캡쳐화면에는 비공개)을 클릭하면 API Key 뿐만 아니라 API Secret, Access Token 등 세부 내용을 관리할 수도 있습니다.Step2. R Studio 설치하기 (Mac OS 기준)구글에서 R for macOS를 검색을 하면 맨 위에 설치 페이지가 보입니다. 1)먼저 R 패키지를 설치해야, 나중에 R Studio를 설치했을 때 실행이 가능합니다.R Studio 홈페이지에서 R Studio를 다운받습니다. 다운로드 링크는 여기를 클릭하세요.RStudio가 정상적으로 실행이 된다면, 이제 준비는 끝났습니다! Step 3. 필요한 패키지를 먼저 설치하기따로 설치가 필요한 패키지는 RStudio에서 명령어로 설치할 수 있습니다.—한 개씩 설치하는 법install.packages(“packageName”)—여러 개의 패키지를 한 번에 설치하고 싶을 땐 위와 같이 설치할 수 있습니다.—여러 개를 한꺼번에 설치하는 법install.packages(c(“package1”, “package2”,”package3”))—설치를 했다고 해서 바로 사용할 수는 없습니다. 이 패키지를 사용하겠다는 명령어를 다시 입력해야 합니다.—설치한 패키지를 사용하기library(“packageName”)—이번 글에서는 아래와 같은 패키지들이 필요합니다.twitteRROAuthbase64enchttpuvtmSnowballCwordcloudRColorBrewerStep 4. 트위터 api와 연동하여 WordCloud 생성하기먼저 각자 API 관련 Key 들로 객체를 생성해주고, setup_twitter_oauth() 메소드를 사용하여 Twitter API에 접근합니다.searchTwitter 4) 라는 함수를 사용하면, 트위터 API 를 통해 관련 트윗 내용을 추출할 수 있는데요. 좋아하는 일본 아이돌 가수인 “아라시”를 키워드로 추출하려고 첫 번째 파라미터에 “Arashi”를 넣었습니다. 그 뒤의 내용은 영문으로 작성된 최근(Recent) 트윗을 최대 1500개까지 리턴 받겠다는 의미입니다. resultType에는 popular를 넣으면 가장 인기있는 트윗을 받을 수도 있습니다.데이터를 가져오면, 위와 같이 데이터가 추출된 것을 확인할 수 있습니다.이제 matchTweets에 있는 내용으로 분석가가 되어 마음대로 데이터를 가공할 수 있습니다. class 등으로 구조와 클래스를 확인할 수 있을 뿐만 아니라, nchar() 를 이용해 트윗당 문자 수를 계산할 수도 있습니다. 이번 글에서는 위와 같이 트윗을 20개 추출했습니다.각각의 트윗을 보면, 이상한 코드나 슬래시 등 필요 없는 데이터들이 포함되어 내려온 것을 확인할 수 있습니다. 이 부분들을 제거해 깔끔한 데이터로 가공해보겠습니다. 그리고 텍스트 집합이라고 볼 수 있는 Corpus를 생성한 후, WordCloud 까지 생성해볼게요.데이터를 Corpus 로 만들 때는 Corpus() 를 사용하면 됩니다. 저는 VectorSource 라는 명령어를 사용해 단어들을 Vector로 바꿔주었고, 데이터가 잘 들어갔는지 확인하기 위해 inspect() 를 사용했습니다.사람이 읽기 불편한 단어들을 제거하는 건 tm_map 함수 하나면 충분합니다.위의 이미지를 보면, 각 행마다 특정 특수문자들을 제거하기 위한 명령어가 있습니다. 중간 부분엔 stopwords 라는 단어가 있는데, 영어 문장에 들어가는 i.e 나 etc 같은 표현들을 제거할 수 있는 겁니다. 그 외에도 대문자를 소문자로 바꾸거나 번호를 제거하는 등의 옵션들이 이미 R에서는 제공되고 있기 때문에, 우리는 입맛에 맞게 가져다 쓰기만 하면 됩니다.이제 대망의 WordCloud를 만들 차례입니다.max.words는 최대 N개의 단어를 고르는 옵션이며, min.freq는 최소 N번 이상 나온 단어, random.order = FALSE는 제일 많이 나온 단어가 먼저 나오도록 지정하는 옵션입니다. colors는 지정하지 않으면 검정색으로만 나오지만, 알록달록 예쁘게 표현하고 싶다면 여러 옵션을 지정해서 Frequency 에 따라 다른 색이 나오도록 할 수도 있습니다. 5) 첫 번째 이미지가 이번 글의 예제로 얻은 결과인데요. 추출 언어를 영어로만 한정했더니 일본어 발음을 영문으로 표현한 데이터가 많았습니다. 기타 설정을 변경하여 다시 추출한 게 바로 두 번째 이미지입니다. 큼직큼직하게 나온 단어들을 보면 DVD 나 블루레이 출시와 관련된 트윗이 대다수인 것을 볼 수 있는데요, 검색 결과 최근 2017-2018 라이브 투어 ‘Untitled’가 출시된 것을 확인할 수 있었습니다. 기타 작게 표현된 단어들을 보면 아라시의 노래 제목들도 확인 가능한데, 이 노래들이 인기있다는 것도 예측할 수 있습니다.Conclusion지금까지 R을 이용해 트위터 API 와 연동한 텍스트 마이닝을 했습니다. 데이터를 WordCloud로 생성하는 것도 해봤고요. 이번 글에서는 기본적인 예제를 다뤘지만 텍스트 마이닝의 세계는 아주 깊고 넓습니다. 만약 이 글로 텍스트 마이닝에 조금이라도 흥미가 생겼다면 일단 도전해보세요! 좋아하는 것과 연관 지어서 따라 하다 보면 꽤 즐거운 시간이 될 겁니다.참고1) 18년 6월 6일 기준이다.2) Twitter Sentiment Analysis Tutorial3) Text mining: Twitter extraction and stepwise guide to generate a word cloud4) R 함수 관련 설명은 R Documentation 사이트에서 확인할 수 있다. 5) 색상 옵션이 궁금하다면 여기에서 참고할 수 있다. 6) 머신러닝 언어처리 - R로 WordCloud 만들어보기 - 데이터 사이언스 랩글김우경 대리 | R&D 개발1팀kimwk@brandi.co.kr브랜디, 오직 예쁜 옷만#브랜디 #개발자 #개발팀 #인사이트 #경험공유 #R #텍스트마이닝
조회수 895

DevOps 문화 안에서의 APM의 역할 [1] (DevOps+JENNIFER)

 DevOps의 시작언제나 그랬듯이 소프트웨어 개발 트렌드는 계속 변화하고 있다. A부터 Z까지 모든 것을 새롭게 개발했던 것과 달리 아키텍처나 사용하는 용도에 따라 개방형 플랫폼이나 오픈소스 등을 활용하여 원하는 소프트웨어를 쉽게 개발할 수 있게 되었다. 또한 클라우드로 인해 애플리케이션과 서비스 개발에 대한 새로운 패러다임이 나타나고 있다. 기존의 온-프레미스 환경에서는 물리적 서버 준비, 운영체제 설치, 서비스 배포 등에 수많은 시간이 걸렸지만, 클라우드를 활용하면서 단시간에 원하는 자원을 준비하고 배포할 수 있게 되었다.이러한 변화로 개발자의 영역이 좀 더 넓어지는 계기가 되었다. 이는 전통적인 비즈니스 환경에서 개발, 빌드, 테스트, 배포, 운영에 이르는 프로세스를 효율적으로 운용할 수 있게 되어 고객의 요구사항을 빠르게 반영할 수 있게 되었다. 이것이 바로 DevOps의 시작이다. 하지만 다양한 오픈소스의 탄생과 클라우드 환경의 확산 등으로 인해 정말로 새로운 기능에 대한 개발이 빨라졌을까? 그렇다면 이에 따른 문제는 없을까? 개발 프로세스의 병목 구간DevOps의 필수 조건인 테스트 및 배포의 자동화가 이뤄지면 운영 단계에서는 반영된 사항들에 대해 주기적으로 모니터링을 해야 한다. 만약에 반영된 소스코드에 장애를 발생시킬 수 있는 잠재적 버그가 존재한다면 이를 어떻게 운영 단계에서 찾을 수 있을까? 예를 들어 특정 서비스의 피크타임에 부하가 급증한다면 앞서 말한 상황에 대한 버그가 발생할 확률이 상대적으로 높아진다. 하지만 장애의 원인이 될 수 있는 요소는 매우 다양하기 때문에 단순히 트래픽 문제로 속단할 수는 없다.직접 개발한 소프트웨어만의 문제가 아닐 수도 있으며, 제품 개발시 생산성 향상을 위해 도입된 다른 종류의 오픈소스에서 문제가 될 수도 있다. 실은 이런 류의 프로젝트들은 상용 제품이 아니므로 문제가 발생하면 상당히 곤란한 경우가 생기곤 한다. DevOps를 위한 환경이 구성되고, 고객의 요구사항을 빠르게 반영할 수 있는 시스템이 갖춰졌더라도 결국에는 앞서 말한 다양한 종류의 잠재적, 환경적인 문제들로 인해 병목이 발생할 수 있다.  모니터링 단계에서 APM의 역할개발 프로세스의 마지막 관문인 모니터링 단계는 DevOps에서 매우 중요한 역할을 한다. 하지만 안타깝게도 이미 반영된 실제 서비스에서 모니터링을 성공적으로 마치고 피드백 수집 단계로 넘어가기 위해서는 앞서 말했던 장애의 원인을 빠르게 진단해야 한다. 경우에 따라 많은 시간이 소모되기도 하기도 하며, 이는 바로 생산성 저하로 이어진다. 또한 새로운 프로세스 진행을 더욱더 보수적으로 만드는 원인이 된다.DevOps를 완벽하게 실현하기 위해서는 모니터링 단계에서 서비스 배포 이후의 서버에 들어오는 트랜잭션에 대한 상태를 배포 전과 비교할 수 있어야 하며, 응답을 지연시킬만한 요소들을 빠르게 인지할 수 있어야 한다. 그리고 배포된 소스코드로 인해 서비스 장애가 발생하는 상황이 온다면 이를 처리하기 전까지 어떻게든 서비스 장애를 지연시켜야만 한다. 이러한 이유로 DevOps 진영에서는 APM의 역할은 매우 중요한 이슈이다. 우리는 제니퍼를 통해 앞서 말한 기능들을 활용하는 방법에 대해 알아볼 것이다. 모니터링 프로세스모니터링 단계는 아래 그림과 같이 문제의 발견 및 조치, 문제해결시 재배포 단계로 나눌 수 있다.  제니퍼 대시보드를 통해 액티브서비스 상태와 트랜잭션 변화 추이를 모니터링 할 수 있는데, 만약에 새로 배포된 소스코드에 문제가 있다면 처리 중인 액티브서비스가 쌓이게 되고 , 트랜잭션 분포도 차트는 기존에 그려졌던 패턴과 다르게 보여지게 된다.이런 시점에 운영에서는 설정 여부에 따라 이벤트를 발생 시킬 수 있다. E-Mail이나 SMS, Slack과 같은 메신저 등으로 각각의 담당자들에게 서비스 상태를 알려줄 수 있으며, 담당자에게 이벤트 메시지가 전달되었다면 제니퍼를 통해 두가지 조치를 할 수 있게 된다. 먼저 개발자는 스마트 프로파일링 기능을 통해 원인분석을 하고, 운영에서는 서비스가 최악의 상태가 되기 전에 트랜잭션 유입을 차단하여 다른 화면으로 리다이렉트 시켜주는 PLC 기능을 사용할 수 있다.제니퍼에서는 서버에서 하나의 요청에 대한 처리가 끝나면 곧바로 수집되는 데이터를 트랜잭션이라하며, 현재 수행 중인 상태에 대한 실시간 데이터를 액티브서비스라고 정의한다.   모니터링 기준 값 설정서비스를 배포하기 전에 모니터링 단계를 원활하게 수행하기 위해서는 제니퍼 관리 화면에서 몇가지 설정을 해야한다. 먼저 서비스 장애 발생시 이벤트 알림 및 서비스 부하량 제어 설정의 기준이 되는 값인 전체 에이전트의 평균 액티브서비스 개수를 알아야 한다. 하지만 서비스가 운영되는 환경에 따라 기준 값이 너무 다르기 때문에 어느 정도 안정적으로 서비스가 운영되고 있다고 생각하는 시점에 대략적으로 기준 값을 정하면 된다.에이전트란 모니터링 대상 애플리케이션에 기생하여 성능 데이터를 수집하고, 이를 서버로 전송하는 역할을 하는 모듈을 말한다. 참고로 모니터링 대상 애플리케이션은 플랫폼 환경에 따라 차이가 있을 수 있는데, 일반적으로 WAS(Web Application Server)나 웹 서버를 말한다.  액티브서비스는 처리가 완료되지 않은 상태이므로 서비스 장애의 원인분석을 위한 데이터로는 적합하지 않다. 그렇기 때문에 액티브서비스 개수는 기준 값이 될 수 없으며, 개발자는 처리가 완료된 트랜잭션 데이터의 응답시간을 기준 값으로 제니퍼의 프로파일링 관련 설정을 해야 한다. 설정된 값을 기준으로 트랜잭션 분포도 차트에서 가상의 선을 긋고, 그 선 위에 있는 트랜잭션을 대상으로 스마트 프로파일링 기능을 수행할 수 있다.  본문에서는 모니터링 단계에서 직면하게 되는 문제점과 이를 해결하기 위한 APM의 역할과 필요성 대한 이야기를 했다. 다음 편에서는 본격적으로 제니퍼를 활용하여 모니터링 프로세스를 어떻게 수행하는지에 대해 알아볼 것이다.2편에서 계속...
조회수 1220

AWS Rekognition + PHP를 이용한 이미지 분석 예제 (1/2)

OverviewAWS Rekognition은 딥 러닝 기반의 이미지, 동영상 분석 서비스입니다. Rekognition API를 사용하면 서비스에서 객체, 사람, 텍스트, 장면 및 동작을 식별하고 부적절한 콘텐츠를 탐지할 수 있습니다. Rekognition은 딥 러닝 기술을 기반으로 하고 있기 때문에 지금 이 순간에도 새로운 데이터를 통해 끊임없이 학습하고 있고, AWS에서도 새로운 레이블과 얼굴 인식 기능을 추가하고 관리합니다. 이번에는 AWS S3 Bucket에 업로드한 이미지로 이미지 분석 결과를 볼 수 있는 예제 사이트를 통해, Rekognition과 친해지는 시간을 갖도록 하겠습니다. 저는 예제 사이트를 개발하기 위해 PHP 프레임워크인 CodeIgniter 3, MAMP, Bootstrap을 사용했습니다.1. AWS Rekognition SDK 설치하기1-1) AWS Rekognition 사이트에 접속해 Download SDKs 를 클릭합니다.1-2) AWS 에서 제공하는 다양한 언어의 SDK를 확인할 수 있습니다. 저는 PHP를 사용할 것이므로 PHP 의 Install을 클릭하겠습니다.1-3) AWS SDK 를 설치할 수 있는 방법은 여러가지가 있습니다. 이 중에서 저는 Composer를 이용해 설치했습니다.curl -sS https://getcomposer.org/installer | php php -d memory_limit=-1 composer.phar require aws/aws-sdk-php 1-4) 짠! 짧은 명령어 2줄로 SDK 설치가 완료되었습니다 :)2. AWS S3 Bucket 에 업로드된 이미지를 분석하기2-1) 여기에 임의로 만든 예제 사이트가 있습니다. [이미지 선택] 과 [S3에 이미지 업로드하기] 를 통해 이미지 파일을 등록하면, 백단(Back-end) 에서는 해당 파일을 특정 S3 Bucket 에 업로드 한 후 Rekognition 에게 이미지 분석을 요청하도록 짜여있습니다. 관련 코드는 아래와 같습니다.{     "Image": {         "S3Object": {             "Bucket": "bucket",             "Name": "input.jpg"         }     },     "MaxLabels": 10,     "MinConfidence": 80 } 위의 코드 블록은 AWS Rekognition 개발자 안내서에 나와있는 예제 포맷이고, 아래의 코드는 예제 포맷을 PHP 에서 요청할 수 있는 방식으로 코딩한 것입니다.detectLabels 메소드 를 이용해 분석할 이미지가 저장되어 있는 S3 Bucket 과 이미지의 Name 을 전달해줍니다. 1) MaxLabels : 응답 받을 최대 Label 수 2) MinConfidence : Label 에 대한 최소 신뢰성 여기서 Label 이란 ‘이미지에서 발견되는 객체, 장면 또는 개념’ 이라고 생각하면 됩니다. 예를 들어 해변에 있는 사람들을 촬영한 사진에는 ‘사람’, ‘물’, ‘모래’ (객체) 및 ‘해변’ (장면) 그리고 ‘야외’ (개념) 등이 Label 이 될 수 있습니다. 자, 우주 사진을 한 번 분석해볼까요? array(3) {     ["Labels"]=>     array(8) {       [0]=>       array(2) {         ["Name"]=>         string(9) "Astronomy"         ["Confidence"]=>         float(96.8987350464)       }       [1]=>       array(2) {         ["Name"]=>         string(5) "Earth"         ["Confidence"]=>         float(96.8987350464)       }       [2]=>       array(2) {         ["Name"]=>         string(5) "Globe"         ["Confidence"]=>         float(96.8987350464)       }       [3]=>       array(2) {         ["Name"]=>         string(11) "Outer Space"         ["Confidence"]=>         float(96.8987350464)       } ...     } Rekognition이 업로드한 우주 사진을 분석하여 정확히 연관된 Label들만 반환한 것을 확인할 수 있습니다. 이 Label을 가지고 이미지 태그를 간단하게 구현했습니다.참 쉽죠 ?Conclusion이번 시간에는 AWS Rekognition 을 이용하여 기본적인 이미지 분석을 해보는 시간을 가져봤습니다. 다음 시간에는 ‘얼굴 감지 및 분석’ 기능을 응용하여 Collection 을 생성해보고, 얼굴 검색을 해보는 시간을 갖겠습니다. 참고놀라운 무료 이미지 · Pixabay핀터레스트 스타일 레이아웃 만들기 (masonry) - 생활코딩이미지에서 레이블 감지 - Amazon Rekognition글김우경 대리 | R&D 개발1팀kimwk@brandi.co.kr#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 1915

외부 서비스 이용을 장려해서 개발력을 아끼자.

2017년 목표 중 하나인 Product Management에 관한 weekly 포스팅의 네번째 포스팅입니다. 원래는 weekly 포스팅이었는데..어느덧 biweekly 포스팅이 되고 있습니다. 이번에는 제가 Product Manager로서 “팀 내부 직접 개발 vs 외부 서비스 이용”에 대해서 어떻게 생각하는지에 대해서 정리할까 합니다. 이번에도 confidential한 내용은 생략했습니다.이거 한 달이면 만들어요.제품 개발을 하다보면 Core feature는 아니지만 더 나은 사용자 경험을 위해 필요한 기능을 추가해야 하는 경우가 있습니다. 그리고 이 feature가 개발하기에 쉽지 않다고 예상되는 경우가 있습니다. 이런 상황이 오면 PM, 제품 담당자(혹은 기획자, 대표)은 내부에서 개발할지 아니면 외주를 줄 지, 아니면 외부 서비스를 이용할 지 등을 고민합니다. 그리고 판단을 돕기 위해 기획자/개발자가 모여서 이런 대화를 나눕니다.이거 다 만드는데 얼마나 걸릴 것 같아요?이거 한 달이면 만들어요.그렇습니다. 저 대화가 바로 나중에 개발자가 “내가 이걸 왜 하고 있죠?”라고 얘기하는 그 순간의 시초입니다.하지만 기간은 두 배가 걸린다.하지만 직접 개발에 들어가면 기간(UX, UI디자인 포함해서)은 점점 늘어집니다. 십중팔구 안 됩니다. 되는게 더 이상한 법이에요.헛된 꿈을 꾸었다기간이 두 배가 되는 이유는 딱 하나입니다.  우리에겐 그 분야의 전문성이 없기 때문입니다. 물론 그런 일을 한 경험이 있는 사람들은 좀 더 낫습니다. 하지만 이 사람이 파편적인 경험(혹은 기억)만 가진 경우에는 똑같습니다. 별 차이가 안 나요.-_-;일단 제품의 개발 범위 결정이 안 됩니다. 이게 가장 크리티컬한 이유입니다. 처음에는 앞단에 보이는 것만 생각하고 시작하면서 역기획으로 풀어냅니다. 하지만 기획 단계에서 고려해야 할 요소들은 점점 추가되고 이 중에서 뭘 버리고, 뭘 해야 하는지 정확한 판단이 안 됩니다. 그럴 수 있는 데이터도 적고요.  거기에 디테일하게 개발하는 과정에서 고려해야 할 요소들이 빠지는 경우도 비일비재 합니다. 추가로 각종 정책 결정 이슈도 존재합니다. 이런저런 일들이 계속 추가되고, 해보지 않은 일을 하면서 업무 효율도 떨어집니다. 그러면서 기간은 계속 늘어납니다.결국 사람은 지치고, 일은 계속 늘고, 시간을 쓰게 됩니다. 그리고 그 과정에서 진짜로 에너지를 써야 할 일에 집중을 못 하게 됩니다.그냥 외부 서비스 쓰자!푸른밤의 PM으로서 저 스스로 가지고 있는 원칙이 있습니다.(사실 이건 예전에 프라이베리 때도 지키려고 했던 노력입니다.)기회를 놓치지 않는다.팀의 시간을 헛되이 쓰지 않는다.사람들의 에너지가 낭비되게 하지 않는다.좋은 역량을 가진 사람들은 제품의 core feature에만 집중한다.기회, 시간, 사람, 돈 중에서 가장 가치 없는 것은 돈이다.위 5가지 원칙을 준수하고자 하면, 대부분의 경우 그냥 외부 서비스를 이용하게 됩니다. 예를 들어서 서버 쪽에서 약간 낭비되는 코드가 있더라도 어떤 순간에는 그냥 돈을 더 써서 서버를 늘리는 것을 선택합니다. 메일 서버를 직접 구축해서 각종 마케팅용 메일을 직접 하는 것도 좋지만 그냥 메일침프를 씁니다. 요근래 저와 대표가 함께 부산에 미팅을 다녀왔는데..이것도 비슷한 맥락입니다. 제품 내에 꽤 중요하지만 서비스의 Major급 feature라고 하긴 좀 애매한 기능을 붙여야 하는 상황이었습니다. 개발팀에서는 1개월 정도면 될 것 같다고 했지만 그것보다는 전문적으로 이 일만 하는 곳의 제품을 이용하는 것이 좋다고 판단해서 부산에서 관련 사업을 하는 팀을 찾아갔습니다.“어설프게 우리가 하는 것보다, 인생을 건 사람들의 제품을 쓰는 것이 훨씬 좋다.”는 생각을 가지고 있습니다. 특히 제가 관리하는 제품들도 이런 생각을 가진 사람들이 돈을 쓰기 때문에 운영될 수 있는 제품이라서 다른 사람들보다 거부감이 낮을 수도 있습니다.외부 서비스 선택의 기준추가로 외부 서비스를 선택할 때는 이런 기준을 가지고 판단합니다.우리가 원하는 것이 어느 수준 정도로 충족되는가: 이게 제일 중요합니다. 원하는 것이 안 채워지는데도 돈을 쓸 필요는 없습니다.ㅠ어느 정도 커스텀이 가능하고, API가 제공 범위는 어떻게 되는가: 기존 시스템과 붙이기 얼마나 편하고, 우리 개발팀이 에너지를 어느 정도로 써야 하는지를 판단하기 위해 필요합니다. 덕분에 요즘은 API 문서 읽는 것이 일입니다.-_-;;(마케터, 운영팀 등이 쓰는 경우)개발자/디자이너가 꼭 붙지 않아도 사용할 수 있는가: 전 푸른밤의 모든 사람들이 코딩을 기초적인 수준으로는 했으면 합니다만 (진짜 잘하면 SQL까지도.) 그렇지 못 한 경우가 더 많고 그 과정에 역시 에너지/기회/시간 낭비가 좀 있다고도 생각합니다. 그래서 위 조건도 꽤 중요하게 봅니다.우리가 지금 쓰고 있는 다른 외부 서비스들과 연동이 어느 정도 되는가? 직접 연동이 안 되더라도 다른 방식으로 연동할 수 있는가: 가장 중요합니다. 세상 제일 중요합니다. 저희 같이 외부 서비스 연동을 하나씩 하나씩 하다보면 어느 순간부터 매월 SaaS 툴에만 $1000 넘게 쓰게 됩니다.(정말이에요.) 일단 가장 중요한 데이터 분석 툴과 연동되는지를 봅니다. 그리고 각 부분에서 core한 툴과 연결되는지 봅니다. 예를 들어서 마케팅 오토메이션 단계에서는 유입 관련 데이터 분석 툴과 연결되는 것이 핵심입니다. 제품 관련해서 외부 서비스 쓸 때도 메인 분석툴인 GA와 어떻게 붙는지가 핵심입니다.유기적인 연결이런 복잡한 기준을 잡으면서 외부 서비스 선택을 합니다.우리가 새로 만들자.하지만 이런 힘든 과정 거쳐서 외부 서비스 선택해서 잘 사용하다가 다시 직접 개발하게 될 때도 있습니다. 커스텀의 한계가 오거나, 외부 서비스 회사가 망하거나(ㅠㅠ), 서비스의 오픈 API 범위나 정책이 바뀌거나, 의외로 이 feature의 중요도가 크거나 하면 이런 의사결정을 할 수 있지 않을까 싶습니다. 하지만 아직 제가 이런 경험을 한 적은 없어서..향후에 이런 일이 발생하면 꼭 공유하겠습니다.정리하며스타트업에서 가장 부족한 것이 뭐냐는 질문을 하면 대체로 돈과 사람이라고 답할 것 같은데요. 여기에 기회, 시간이라는 것도 변수로 추가하길 권합니다. 그러면 어떤 경우에도 내 사업의 core가 되는 일들, 내 사업의 core랑 직결되는 제품 관련 과업들, 디자인/개발 관련 과업들만 생각하게 되고 여기에만 집중하게 됩니다.물론 돈이 부족한 것도 알고 있습니다만..정말 인생을 걸고 하는 사업에서 가장 아쉬운 것은 기회와 시간이라고 생각해서 외부 서비스 주구장창 이용하는 PM 안창영이었습니다.푸른밤 안창영#푸른밤 #알밤 #개발 #운영 #개발자 #PM #업무프로세스 #인사이트 #일지 #경험공유
조회수 1436

2017 NDC 리뷰) 크립돈 퓨처 미디어와 하츠네미쿠

 이번글은 덕력이 솟구친다는!!!은 아니고요(진짜 아니에요), 혹시 "하츠네 미쿠"라는 캐릭터를 보신 적 있으신가요?하츠네 미쿠! 설마 처음보는 분들이 계신가요?? 출처: https://ec.crypton.co.jp/pages/prod/vocaloid하츠네 미쿠는 VOCALOID(보컬로이드)로서, 간단히 설명하면, 야마하에서 만든 음성 엔진입니다(자세한 내용은 링크를 확인!). 해당 엔진을 기반(자세히는 VOCALOID2인데... 아, 저는 잘 몰라요 진짜예요...)을 기반으로 크립톤 퓨처 미디어사가 아티스트를 만들고, 이를 지적 재산권(이하 IP라고 하겠습니다)으로 창출해 낸 사례입니다! 해당 세션은 이 보컬로이드가 성공할 수 있게 된, 창작자들에게 프로그램 번들 시디를 팔던, 크립톤 퓨처 미디어사가 새로운 미디어와 아트의 중심에 설 수 있게 된 이유를 들을 수 있게 된 좋은 시간이었습니다. 앞으론 말이 매우 딱딱하니 이점 히해해 주세요~! 시작하겠습니다!씨디파는 회사가 인터넷 시대를 맞이하며 겪게 된 위기, 그리고 해결방안. 앞서 말씀드렸든, 크립톤 퓨처 미디어(이하 크립톤이라고 하겠습니다)는 창작자들을 위한 서비스(또는 프로그램)를 번들 또는 디스크 형식으로 판매하는 회사였습니다. 그리고 새로운 세대로 들어서면서, 해당 사업이 사양되고 있고(디스크 판매> 콘텐츠 다운로드의 변화), 특히 음악 제작 서비스의 경우, 작은 시장의 규모 때문에 비즈니스에 대한 한계를 느끼고, 새로운 사업 영역을 펼쳐나가기 위해 방향 모색하기 시작했다고 합니다. 그리고 크립톤이 생각할 수 있는 "자사가 가장 잘할 수 있는 것"을 생각해 보았을 때, "소리"라는 콘텐츠를 방점으로 서비스를 응용해 나가면서 스팩트럼을 넓히자!라는 생각을 했다고 합니다. 그래서 시작한 것이 바로, 보컬로이드!라는 것이었죠.보컬 합성 기술(보컬로이드) + IP의 도입은 처음부터 성공적이진 않았습니다. 처음 크립톤은 야마하의 보컬로이드 기술을 기반, Leon과 Lola라는 소프트웨어를 제작,  당사에서 유통을 시작했을 때에는, 타깃 유저를 잡는데 실패해 매출에 전혀 도움이 되지 않았다고 합니다(아래 사진을 보면 왠지 알 거 같...)첫 보컬로이드 레온과 로라입니다..... 음... 입술이 매력적 이네요.... 출처: http://vocaloid.wikia.com/wiki/Forever_(Zero-G_song) 그 이유는 해당 서비스를 사용할 것이라고 타게팅한 아티스트들의 경우, 목소리에 관해 리얼함을 추구하는 데, 해당 소프트웨어는 하드웨어로 조정하는 음과 음성들이 리얼함이 다소 떨어져 전혀 니즈가 없었던 것이죠.그래서 트립톤은"해당 서비스를 진짜 사용하는 유저들은 어떤 사람들 일까?"에 대한 고려를 기반으로,"메이코"라는 일본어로 노래하는 보컬로이드를 제작, 흥미를 끌 수 있도록 캐릭터를 모티브로 하는 커버 디자인 작업 시작(안드로이드 아니 보컬로이드 이니깐요!)이제는 버전 쓰리가 된 메이코! (출처:http://vocaloid.wikia.com/wiki/MEIKO) 첫 출시 당시, 거부감도 있었지만, 당시 KPI 목표인 500개를 훌쩍 넘어 3,000개의 판매 성공을 거뒀고, 성공의 요인은 패키징 디자인과 단순한 아티스트뿐만이 아닌, 다양한 콘텐츠에 관심을 가지는 다양한 유저들을 유저들을 이끌 수 있는 요소들이 있어서 라고 판단하였다고 합니다. (서비스를 사용할 것이다 라는 사용자의 경험에 대한 고려를 더 많이 한 포인트라고 생각되는 부분이지요!)메이코 이후 드디어 그분을 만들어 내는 것을 준비합니다.크립톤은 이때부터 정말로 사용자들이 무엇을 원하는가에 대한 생각을 많이 한 것 같다고 보이는 포인트입니다. 메이코의 등장 이후, "하츠네 미쿠"라는 캐릭터 산업으로 만들어 내는 것을 준비합니다. 그리고 해당 캐릭터를 하나의 "사업전략"으로 생각해 낸 이유는 메이코의 KPI달성도 있겠지만, "사람의 목소리와 극히 다른 목소리로 노래를 부르게 된다면, 이상하지 않을까?라는 부분을 오히려 역으로 기획, "인간이 아닌 다른 안드로이드가 하는 노래"라는 새로운 존재로서 IP를 만들어 버린 것이죠!또,  캐릭터를 기반으로 다양한 성격을 가질 수 있도록 "성우"라는 시스템을 집어넣어 "특별한 존재"라는 특징 성을 추가하였고, 기존의 보컬로이드는 "인간의 가수를 대체하는 것"이었으나, 하츠네 미쿠는 "안드로이드 가 부르는 진짜 보컬로이드"라는 접근을 통해 새로운 존재를 만들고, 메이코 디자인을 기반으로, "아이돌 라이즈 된 새로운 사이버 가수"를 만든 것이죠!아아.... 이제 고인이 되신 사이버 가수 아담... (http://beautinaru.tistory.com/196 또한, 해당 콘텐츠를 기반으로 음악을 만들었던 유저들에게 레트로 한 마크들을 집어넣어서 예전에는 이랬었지 라는 향수를 불러일으키고, 해당 콘텐츠를 기반으로 다시 작업을 할 동기를 줄 수 있도록 유저들의 의견을 듣고 반영하는 일들을 굉장히 많이 했다고 합니다!그리고 하츠네 미쿠의 진정한 아이덴티티를 생성합니다. 그것은 바로 Chain of Co-creation!!!하츠네 미쿠가 이렇게 성장할 수 있었던 이유는 저는 하나만 꼽으라 라고 한다면 이쁘잖아요! 가아니라... "확산 가능 여부"에 대한 많은 고려가 있었기에 가능했다고 생각합니다.인터넷 덕분에 음악 등을 만드는 사람들이 쉽게 업로드하고 공유할 수 있는 많은 플랫폼들이 생성되는 현실.덕이 많은 분들이 공유를 통해 자아실현을 하는 공감대를 형성할 수 있는 움직임이 확산.콘텐츠가 콘텐츠를 만들고 퍼져나가는 순기능적인 부분들이 늘어나는 현상들을 확인하고,2차 3차 저작물을 통한 확산> Chain of co-creation의 순선환 적인 기능들이 생겨나는 것이죠!! 그리고 그런 상황을 기반으로, 궁극적으론,모든 사람들이 제작자가 될 수 있는 현실 상황을 받아들이고,제작할 수는 있지만,  저작에 관련한 법률 등에서 막히는 상황을 막기 위해, 창작자들의 창작활동을 돕고, 실제 업로드된 콘텐츠를 기반으로, 실제 사업이 일어날 수 있는 방향으로 전개합니다!그리고 수익화를 통해서 창작자들이 창작활동 = 수익활동이 될 수 있도록 플랫폼 화를 추진한 것이죠!그래서 처음 하츠네 미쿠가 나온 2007년부터 10년이 지난 지금까지도 "보컬로이드"의 선두 주자로 전 세계적으로 콘서트를 다니며 성공적인 투어를 하고 있습니다.투어는 계속된다. (출처: http://mikuexpo.com/) 저는 하츠네 미쿠가 단지 덕후들의 승리라고 요만큼도 생각하지 않습니다.하츠네 미쿠를 성장시킬 수 있었던 건 "우리가 제공하는 서비스가 어떤 유저들에게 더 많은 강점이 있고, 해당 유저들은 어떤 행동을 통해서 자아를 성찰할 수 있을까? 그리고 해당 행동을 통해 유저가 얻는 궁극적인 이익들이 잇을까?"를 생각했던, 크립톤의 유저를 생각하는, 유저의 직접적인 경험을 서비스에 반영하려고 하는 강한 의지가 해당 서비스를 성공시킬 수 있게 한 요인이라고 생각해요. 그런 의미에서 저에겐 정말로 뜻깊고 즐거웠던 세션이었습니다!P.S.: 이제 슬슬 NDC2017 영상들이 올라오기 시작하네요! 관심 있는 분들은 https://ndc.nexon.com/main에서 확인해 보세요~오늘도 긴 글 읽어주셔서 감사합니다! 다소 글이 엉망진창이라도 이해해 주세요! #코인원 #블록체인 #기술기업 #암호화폐 #스타트업인사이트
조회수 2183

데이블 주니어 개발자 직무 인터뷰

오후 두 시의 회의실. 개발자들의 스터디하는 소리로 뜨겁다. 국내 최고의 추천 기술을 보유했다는 데이블. 10년 이상의 경력을 가진 노련한 시니어 개발자들 사이에서, 스쳐 지나가는 단어 하나하나 놓치지 않으려 귀 기울이고 있는 주니어 개발자들을 만났다.안녕하세요? 간략한 소개와 두 분의 업무에 관해 설명해주세요.형주: 안녕하세요? 저는 데이블 개발팀 최형주입니다.저는 백앤드 개발팀의 신입 개발자로서 데이블의 인프라 관리, 백앤드 개발 그리고 가끔 데이터 분석을 하고 있습니다. 주로 사용하는 서버는 클라우드 플랫폼인 AWS(Amazon Web Service)과 Nodejs 이고, MySQL, Redshift, Python을 사용하여 데이터 처리와 분석을 하고 있어요.성현: 안녕하세요. 저는 데이블 개발팀 이성현입니다.제 메인 업무는 데이블 위젯의 스타일링과 관련 문제 해결입니다. 고객사 페이지를 분석해서 위젯 디자인을 만들고, 추천 결과가 안 나오는 경우에 문제를 수정하는 작업입니다. 특별한 기능이 필요한 위젯이 있으면 스크립트 작업도 하고요. 작업 도구는 회사 내부 시스템이 있어서 그 안에서 직접 작업하고, CSS로 작성합니다.위 업무가 메인이지만 다른 영역과 겹칠 때도 잦아서 회사에서 사용하는 여러 시스템을 만질 수 있어야 합니다. 도구는Html+CSS+js 외에 Node, gulp, react, angular angularJS, PHP, 젠킨스, AWS, MYSQL, git를 사용하고 있습니다.두 분 다 신입 개발자이신 만큼 회사를 선택하는 데 있어 신중했을 것 같아요.데이블을 선택한 이유는 무엇인가요?형주:  저는 대학원에서 빅데이터 처리관련 연구를 주로 했었어요. 졸업할 때쯤 제 전공과 관련된 회사에 지원했었고 많은 면접을 보았습니다. 여러 회사에서 면접을 봤지만 데이블에서 봤던 면접 경험이 만족스러웠고 특히 개발자들의 실력과 내공이 느껴져 신입으로서 많은 것을 배우고 싶어서 입사하게 되었습니다. 복지 또한 여느 알려진 회사들에 비해 부족하지 않아서 굉장히 만족하고 있습니다.성현: 처음 데이블에 호감을 느끼게 된 건 기술 중심 스타트업이라는 점이었습니다. 도전하는 자세, 유연한 사고, 성장 가능성, 복지 등 여러 가지 기준들이 있겠지만, 내가 재미를 느낄 수 있는가, 개발자로서의 성장 이 두 가지로 압축되었어요. 저 같은 경우에는 블로그를 보면서 회사 분위기를 대략 파악했던 것 같네요. 자유로운 분위기도 잘 느껴지고, 서로를 배려하면서 열심히 일하는 것을 간접적으로 경험할 수 있었어요. 면접 보러 갔을 때, 블로그에서 보던 사람들이 블로그 글과 비슷한 느낌으로 편하게 얘기하는 걸 보면서 마음을 굳히게 됐어요.데이블의 분위기는 어떤가요?형주: 분위기는 실제로 굉장히 수평적입니다. 서로 존댓말을 사용해서 존중받는 기분이 들어요.성현: 저는 데이블 오기 전에 잠시 다른 회사에 있었는데, 거기서는 과한 예절이나 눈치를 보는 분위기가 있었어요. 데이블은 수평적인 분위기이다 보니 스트레스 받지 않고 일에 집중할 수 있어 좋아요.형주: 저 같은 경우, 잠에 굉장히 민감한 편인데 출퇴근이 탄력적이어서 지각에 대한 스트레스가 없어서 좋아요. 그래서 저는 보통 9시 넘어서 일어나서 10시쯤 출근하고 7시쯤 퇴근하는 편입니다. 그리고 식대도 지원해주고 있어요~성현: 매일 4시쯤 회사가 지원하는 간식 타임이 있어요. 오랜 시간 앉아서 일하다 보면 집중력 떨어질 때 쯤 다 같이 모여 대화를 나누면서 간식을 같이 먹습니다. 만약 생일이 있으면 간식 타임과 더불어 생일 파티를 해요.형주: 간식과 음료수가 항상 냉장고에 갖춰져 있어서 먹을 것을 좋아하는 사람에게 최고인 것 같아요. 저는 살이 잘 안 찌는 체질인데 입사 후 2킬로가 쪘어요.성현: 거의 슬랙과 트렐로 위주로 업무를 하는데 간식 타임에는 여러 사람과 대화를 할 수 있어 좋습니다. 서로 대화도 같이하고, 같이 활동할 수 있는 시간을 마련하기 위해 ‘플레이 데이’ 도 2개월에 한 번씩 열고 있어요! 회사-집, 집-회사를 반복하다가 다 같이 뭔가를 하니 신선했어요. 업무 외적으로 같이 활동하면서 사람들과 친밀감을 느낄 수 있어서 좋았어요.데이블을 선택했던 이유 중 개발자로서 성장 가능성도 있었는데 이것은 어떻게 채워지고 있나요?성현: Dabler, Be The Expert 프로그램(이하 BTE 프로그램)이 있고 업무 관련 스터디도 활발히 진행하고 있어요.자세히 설명해주세요. 성현: BTE 프로그램의 경우 장기목표를 정하고 반기별로 관련 학습 계획을 세워요. 그 안에서 책도 사고 강의도 신청하고 하는 거지요. 스스로 목표를 잡고 자유롭게 계획을 세울 수 있어서 좋아요. 본인이 정말 원하는 것을 배울 수 있고, 필요한 자금은 회사가 지원하는 거죠. 단, 업무에 관련된 성장 계획이어야 한다는 가이드라인이 있어요.이 외에도 백엔드 개발자들과 함께 AWS 사용법을 주제로 스터디도 해요! 보통 프론트엔드를 담당하지만, 백엔드 영역도 경험할 수 있어요. 본인 스스로 영역을 넓히기 위해 공부하고 능력이 된다면 활동 범위가 굉장히 넓어져요. 회사 차원에서도 그런 시도를 장려해요. 빨리 성장해야겠다는 욕심이 있어요.형주: 전 회사에서 일주일에 2번 모여서 스터디도 하고 있고 MOOC 강의를 수강하거나 책을 사고 싶을 때 눈치 볼 필요 없이 신청하면 돼요. 그리고 반기별로 자기 개발을 잘한 직원에게 인센티브를 줘요.※BTE 프로그램이란?그럼 두 분은 BTE 프로그램을 통해 어떤 것들을 배우고 계시는가요?형주: 저는 Coursera에서 Recommender System 수업을 듣고 있어요. 아무래도 우리 회사의 핵심기술이 추천 기술이다 보니까 이쪽 분야를 깊게 공부해야겠다는 생각이 들었습니다.성현: 저는 웹을 능숙하게 다루고 싶어서 상반기에는 인프라, 자바스크립트, 웹 표준, node 등 기본을 다시 챙기고 하반기에는 웹 최신 기술을 공부하려고 해요.지금은 자바스크립트 관련 책 3권과 강의 2개를 신청해서 주로 퇴근 후 또는 주말에 듣고 있어요. 업무와 관련된 것을 공부하고 나서 코드를 작성하면 대충 넘어갔던 부분들이 보여요. 그 부분을 놓치지 않고 수정하고 개선하다 보면 예전보다 나은 결과물이 나오고 뭔가 아는 게 늘었구나! 하는 보람을 느낍니다.데이블에서 개발자로 일하며 느끼는 점형주: 저의 경우에는 신입 개발자 관점에서 경험 많은 개발자분의 피드백을 통해 노하우를 전수하는 점이 좋았어요. 그러면서 기존에 놓치고 있던 부분이나 실무와 이론 사이의 괴리감을 좁히는 경험이었습니다. 저도 학부, 대학원 시절 많은 코딩을 했지만 제가 작성한 코드가 잘 작성된 코드인지 잘 읽히는 코드인지는 스스로 공부하기 힘들었는데 이러한 피드백을 통해 성장함을 느꼈습니다.어려웠던 점은 우리 회사는 애드테크 회사이다 보니 광고 용어를 굉장히 많이 사용하는데 광고에 관해 얘기할 때 처음에는 광고 용어를 몰라 답답했었는데, 스터디를 만들어서 어려운 점을 조금은 해소할 수 있었어요.성현: 자기만 할 수 있으면 얼마든지 여러 프로젝트에 참여할 수 있는 문화가 좋아요. 예를 들면 저는 위젯 담당이지만, 위젯 업무 틈틈이 데이블 시스템 페이지 수정을 할 수도 있고 내부 DB를 이용해서 사업팀에게 도움이 되는 통계 페이지를 만들기도 해요. 얼마 전에는 커뮤니티에 데이블 추천 기능을 직접 넣는 프로젝트를 했습니다. 보통 추천 연동은 고객사가 하고 저는 위젯만 만들고 있었거든요. 이번에 고객사 입장에서 서버 쪽을 만져본 거죠.미래의 데이블은 어떤 모습일까요?형주, 성현: 세계 No. 1 콘텐츠 디스커버리 플랫폼! 경영진이 자기 개발 지원이나 복지에 신경을 많이 쓰고 있어서 계속 나아질 것 같아요.데이블의 개발자가 되기 위해 어떤 것들이 필요할까요?형주: 제가 생각하기에 시니어 개발자분들이 가장 중요하게 여기는 부분은 CS 분야의 기본기였던 것 같습니다. 이 기본기를 통해 자주 사용하는 툴이나 오픈 소스가 내부적으로 어떻게 구성되어 있고 동작하는지에 대한 공부를 하면 도움이 될 것 같습니다.성현: 저는 주도적인 자세요! 스스로 일하고 배우는 자세가 필요합니다. 다른 개발자와 소통하면서도 자기 일의 진행 관리나 조율은 스스로 해야 해요. 다음 일을 직접 찾아야 할 때도 있고요. 또 전부를 물어볼 수는 없으니 어느 정도 혼자 찾아 공부하는 습관도 필요해요. 그리고 자기가 지원하는 포지션에서 사용하는 핵심 기술 하나는 능숙하게 사용할 수 있어야 해요. #데이블 #팀원 #개발자 #개발팀 #개발 #팀원소개 #인터뷰 #기업문화
조회수 1131

[인공지능 in IT] 맥락인식, 말하지 않아도 알아요

오전 6시 30분. 휴대전화 알람이 울리기 시작한다. 부랴부랴 샤워를 끝내고, 나갈 채비를 하고 있으니, 5분 후 집 앞 버스 정류장에 회사로 향하는 100번 시내버스가 도착한다는 메세지가 나타났다. 버스에 몸을 싣고 사무실 근처 정류장에 내려서 걸어가는 도중, 필자가 즐겨 마시는 커피를 맛있게 내린다는 동네 카페에 대한 정보를 받았다. 어느새 다가온 점심시간에는 어제 이태원에서 과음한 것을 어떻게 알았는지, 휴대폰 잠금화면에 주변 해장국집 추천이 뜬다.그저 영화 속 이야기가 아니다. 실제 사용자의 취향과 행동 등을 분석하고, 시간, 날씨, 교통 등과 같은 외부적 환경요소를 정교하게 더한 시나리오다. 각 개인에게 필요하고, 일상을 윤택하게 만들 수 있는 유의미한 정보를 제공하는 것. ‘맥락인식’ 혹은 ‘상황인지 기술’이라고 불리는 ‘Context Recognition’의 궁극적인 목표 중 하나다.맥락인식 기술은 여러 센서로부터 수집한 데이터를 통해 사용자의 상황을 인지하고, 실시간으로 맥락을 이해하는 데 초점을 맞춘다. GPS, 와이파이, RFID, 모션 센서, 소리 등 여러 시그널을 수집해 분석하며, 사용자의 일정, 문자 메시지나 행동 정보 등을 가져와 ‘사용자가 어떤 사람인지’, 그리고 ‘현재 어떤 상황인지’ 등을 추론한다. 이와 같은 맥락인식 기술을 구현하기 위해 필요한 몇 가지 주요기술은 다음과 같다.1. 상황정보 수집사용자 인터페이스 또는 센서, 센서 네트워크 등를 통해 사용자의 위치, 활동, 생활 패턴 등 다양하고 복잡한 정보를 수집하는 기술.2. 상황정보 모델링상황정보를 가공, 저장 및 공유하는 모델링 기술.3. 상황정보 융합 및 추론사용자의 상황정보를 다른 기술과 융합해 높은 수준의 추론 기능을 제공하는 기술.4. 상황정보 교환센서, 장치 및 객체와의 상호작용을 지원하기 위해 이벤트 기반의 통신 메커니즘을 제공하는 기술.5. 지능형 에이전트사용자의 단순한 의도뿐만 아니라 감정이나 감성을 고려해 전체 상황을 자율적으로 판단, 사용자에게 적합한 서비스를 제공하는 기술.기업 입장에서 생각했을 때, 맥락인식 기술은 소비자 개인에게 특화된 서비스를 제공할 수 있는 날카로운 검이다. 간단한 예로 맥락인식을 활용한 맞춤형 광고에 대해 알아보자. 소비자 A와 소비자 B는 서울에 사는 30대 남성이고 스포츠를 좋아한다. 일반적인 검색이나 구매 히스토리에 기반한 광고와 달리 맥락인식 기술을 활용하면, 이들의 라이프스타일이나 행동패턴을 바탕으로 더 깊은 디멘션까지 분석해 세분화된 광고를 제공할 수 있다. 두 소비자 모두 스포츠를 좋아한다고 가정했을 때, A는 한강 근처에서 매일 저녁 7시 정도에 조깅하는 것을 좋아할 수 있고, B는 남산에서 새벽 6시부터 등산하는 것을 좋아할 수 있다. 미묘한 차이겠지만, 분명 다른 카테고리의 소비자로 정의할 수 있는 것이다.스켈터랩스에서 진행하고 있는 맥락인식 기술 프로젝트를 예로 들어보자. 앞서 언급한 것처럼 다양한 기기로부터 측정하는 저레벨 데이터를 수집하는 것으로 맥락인식 프로세스는 시작된다. 측정 데이터는 서버에 전송되어 시간 순으로 변경 및 취합되고, 기계학습을 통해 필터링 후 수집되며, 고레벨의 맥락으로 추상화된다. 시간, GPS, 와이파이, 모션센서, 소리, 문자메시지, 일정 등 여러 데이터를 처리해 사용자의 맥락을 이해한다. 이러한 일련의 과정 역시 맥락인식 기술의 한 부분인지라 메시지 스트림 프로세서를 기반으로 확장할 수 있는 인프라를 설계, 구축했다.실시간으로 데이터를 처리할 수 있는 파이프라인이다. 처리한 데이터는 좀 더 상위 레벨의 이벤트와 행동으로 인식되어 ‘의미‘를 지니는 데이터로 표현되는데, 예를 들어 GPS 정보를 와이파이 및 시간 등과 같은 다른 데이터와 결합하고, 방문 장소와 행동반경 등을 포함해 사용자의 장소를 식별하는 방식이다. 이러한 사용자의 행동 히스토리는 패턴인식 기술을 활용해 사용자 특정 행동을 학습하고, 이를 기반으로 ‘언제 집으로 돌아갈지‘, 혹은 ‘언제 식사를 하는지’ 등 행동을 예측할 수 있다. 결국, 맥락인식을 통해 사용자의 다음 활동을 예측할 수 있는 기술을 개발, 사용자에게 필요하고 유용한 정보와 서비스를 제공하는 것이 목표다.< 맥락인식 기술을 적용한 큐 앱 화면, 출처: 스켈터랩스 한지예, 이해연 디자이너 >얼마 전, 스켈터랩스의 맥락인식 기술 프로젝트 팀은 해당 기술을 활용해 사용자들이 일상 속에서 가볍게 사용할 수 있는 서비스가 무엇일까 고민하고, ‘큐(Cue)’라는 앱을 개발했다. 큐는 사용자가 직접 명령할 필요가 없다. 큐가 먼저 사용자의 생활을 돕기 때문이다. 날씨를 예를 들면, 사용자가 날씨를 알아보기 전에 비가 올 것 같으면 우산을 챙기라 알려주고, 덥거나 미세먼지가 많을 경우 도움 되는 정보를 알려준다. 사용자에게 전달하는 정보는 카드 메시지를 통해 잠금화면으로 표시된다.큐 프로젝트의 이민학 시니어 프로덕트 매니저는 큐를 통해 사용자가 ‘내'가 누구인지 파악할 수 있을 것이라고 말한다. 예를 들어, 나는 내가 운동을 좋아하는 액티브한 라이프스타일을 살고 있는 줄 알았는데, 실제로는 집에 누워서 영화보는 것을 더 좋아하는 사람에 가깝다는 것. 개인의 삶이 매우 중요해지는 시대이지만, 정작 내가 누구인지 확인하기 어렵기 때문에 맥락인식 기술은 다양한 용도로 사용될 수 있다.< 사용자 패턴을 분석한 유형 결과 예시, 출처: 스켈터랩스 한지예, 이해연 디자이너 >이민학 매니저는 맥락인식 기술에 대해 이렇게 말한다. 그는 “누가, 언제, 어디서, 무엇을, 어떻게, 왜로 구성된 사용자의 육하원칙을 파악하고, 더 나아가 ‘Next-육하원칙’을 파악하는 것이 진정한 맥락인식 기술입니다. 앞으로 기업 특히, 마케터들은 타겟 고객을 잡는데 굉장히 유용하게 사용할 것이라고 생각합니다”라며, “소비자 입장에서는 일상, 문화, 생활 등 세분화된 영역에서 자신의 삶을 더 윤택하게 영위할 수 있습니다. 맥락인식 기술이야말로 인간에게 정말 도움될 수 있는, ‘피부에 와닿는' 인공지능 기술이 아닐까 생각합니다”라고 설명했다.이호진, 스켈터랩스 마케팅 매니저조원규 전 구글코리아 R&D총괄 사장을 주축으로 구글, 삼성, 카이스트 AI 랩 출신들로 구성된 인공지능 기술 기업 스켈터랩스에서 마케팅을 담당하고 있다#스켈터랩스 #기업문화 #인사이트 #경험공유 #조직문화 #인공지능기업 #기술기업

기업문화 엿볼 때, 더팀스

로그인

/