스토리 홈

인터뷰

피드

뉴스

조회수 1204

[인공지능 in IT] AI, 넌 나만 바라봐

기술 회사 마케터로서, 특히 인공지능이라는 고도화된 기술을 다루는 회사에서 지내다 보면 참 재미있는 일이 많다. 기본적으로 엔지니어들이 다루고 있는 기술 컨셉과 역사는 물론, 가끔 코드도 공부해야 한다. 반강제적으로 (기술을 배우며) 성장하는 기분이다. 긍정적으로 생각하면, 비(非)엔지니어로 누릴 수 있는 특별한 혜택이지만, 여러모로 힘든 것도 사실이다.가장 고달픈 점이라면, '기술'이라는 눈에 보이지 않는 무형의 자산을 매력적으로 보일 수 있도록 설명하고, 이를 매출까지 연결하는 과제를 풀어야 하는 점이다. 앞서 언급한 기술 공부도 빼놓을 수 없다. 지금 다루고 있는 인공지능은 깊게 들어갈수록 끝이 없는데, 기술이라는 것은 나날이 변화하고, 익숙해졌다 생각하면 새로운 친구를 데리고 등장한다. 정말 환장할 노릇이다. 어찌되었건, 훌륭한 동료들과 함께 고도의 기술을 다룰 수 있는 환경을 축복이라 생각하며, 매번 마음을 다잡는 중이다.현재 필자는 인공지능 기술을 '팔고' 있다. 하지만, 정작 인공지능 기술을 '활용'하는 것은 또 다른 이야기다. 실제로 한번도 인공지능을 적용한 마케팅 솔루션을 다뤄보지 못했고, 엔지니어에게 요청한 경험도 없다. 아직까지 (회사는) 'B2B' 모델에 집중해, 굳이 제품을 사용하는 최종 소비자에게 맞춰 나갈 필요도 없다. 다만, 모바일 앱이나 가정용 기기 등 개인 사용자가 사용할 수 있는 제품을 팔아야 한다고 가정했을 때, '어떤 기술을 적용해야 (인공지능을) 타겟에 맞춰 설명할 수 있을까'라는 고민은 꼬리표처럼 따라 다닌다.< 마케팅에도 인공지능을 이용할 수 있지 않을까? >마케팅에는 굉장히 많은 이론이 있다. 'STP', '4P', 'MOT', 'SWOT' 등…. 나열하면 정말 끝이 없다. 이 모든 이론과 전략의 공통된 목표는 하나다. 소비자가 원하는 것을 정확히 파악해 (제품 또는 서비스를) 판매하는 것이다. 말이 쉽지 마케팅 전문가이든, 소프트웨어 엔지니어이든, 아직 모두가 고민하고 풀고 있는 어려운 문제다. 소비자들은 도대체 어떤 것을 원하는 것인지 도무지 정답이 없다. 그리고 필자는 여기에 한가지를 더 고민한다. (인공지능 기술 개발 업체 마케터로서) '인공지능을 활용해 정답을 찾아내는 방법은 없을까?'라고 말이다.현재 인공지능 기술로 접근할 수 있는 가장 근접한 해답은 '개인화'다. 다만, 지금도 많은 기업이 개인화 전략을 사용한다. 하지만, '개인화(Personalization)'와 '맞춤화(Customization)'라는 차이가 있다. 인공지능 기술 측면에서, 개인화는 고객이나 기술을 사용하고 있는 대상을 일부 집단으로 이해하지 않는다. 하나하나를 '개별적인 사람'으로 인식한다. 그 사람의 출퇴근 경로나 주로 방문하는 식당은 물론, 좋아하는 음악 장르, 구매 제품에서 얻고자 하는 가치, 더 나아가 감정 상태까지 개인마다 다른 특성을 정확하게 파악할 수 있어야 한다.반면에 맞춤화는, 개인화에 따른 결과 혹은 비슷한 특성을 가진 집단의 요구와 요청에 기반한다. 때문에 맞춤화는 반드시 개인화를 동반할 필요가 없다. 때문에 사용 집단을 대상으로 필요, 요구, 혹은 수요를 만족시키는 것을 주로 의미해 1명의 개인에게 불필요한 정보를 전달할 수 있다.지금과 같은 인공지능 기술이 없던 시절에도 방대한 양의 데이터를 활용한 마케팅 자동화로 고객에게 상품 관련 메세지를 전송하는 프로모션은 존재했다. 하지만, 이제는 마케팅 자동화에 인공지능이라는 살을 붙여 '개인화'와 '예측 분석'을 시도할 수 있도록 바뀌었다.아주 간단한 예를 들어보자. 필자는 축구를 좋아하고, 그중 아스날이라는 팀을 좋아한다. 여기에 리그 개막은 한달 정도 남은 여름에 시작된다고 가정하자. 기존 일반적인 마케팅 솔루션을 적용한 기업은 필자의 검색 히스토리, 혹은 현재 필자가 직접 입력한 개인정보와 비슷한 그룹의 다른 고객 데이터를 이용해 상품을 추천한다. 때문에 그저 현재 할인판매 중인 '긴팔 리버풀 유니폼'을 추천할 수 있다. 하지만, 인공지능을 적용해 개인화 정보를 활용하면, 이미 필자 이메일로 '반팔 아스날 유니폼 구매 링크'와 지난 시즌 아스날 유니폼을 20% 할인 가격에 구매할 수 있는 프로모션 정보를 추천할 수 있다. 이렇듯 각 개인에게 꼭 맞는 정보라면, 소비자도 자연스레 지갑을 열 수밖에 없다.명심해야 할 것은 '추천'과 '스팸'은 한 끗 차이라는 사실이다. 개인에게 '필요한 정보'는 추천이고, '일반적인 쓸데없는 정보'는 스팸이라는 것을 기억해야 한다.이호진, 스켈터랩스 마케팅 매니저조원규 전 구글코리아 R&D총괄 사장을 주축으로 구글, 삼성, 카이스트 AI 랩 출신들로 구성된 인공지능 기술 기업 스켈터랩스에서 마케팅을 담당하고 있다#스켈터랩스 #기업문화 #인사이트 #경험공유 #조직문화 #인공지능기업 #기술기업
조회수 10018

Estimator: BLE를 사용한 Planning Poker 애플리케이션

1. Planning PokerStyleShare 개발팀에서는 스크럼을 활용하여 일을 진행하고 있습니다.1 스크럼에는 일감의 크기를 추정estimate하는 과정이 있는데요. 구성원들 모두가 일감에 대해 이해하고 일감의 크기가 어느정도인지 함께 논의하여 합의에 이르는 과정입니다. 스프린트 회의에서 일감을 등록한 사람(리포터)이 일감에 대해 설명하고 나서 전체 구성원들이 일감의 크기를 추정하는데, 이 때 사용하는 것이 바로 Planning Poker입니다.Planning Poker는 0.5부터 시작해서 1, 3, 5, 8, 13, 20, … 100과 같이 피보나치 수열로 증가하는 숫자를 가진 카드 덱입니다. 리포터의 설명이 끝난 뒤 스크럼 마스터가 하나, 둘, 셋을 외치면 각자 생각한 일감의 크기에 맞는 카드를 꺼내고, 스크럼 마스터는 구성원들의 추정치가 최대한 가까워지도록 부가설명이나 질문을 유도합니다.2▲ Planning Poker는 이렇게 생겼다. (출처: Control Group 블로그)하지만 개발팀이 커지면서 불편함이 생기기 시작했습니다. 회의에 참여하는 인원이 7-8명씩 되다 보니, 각자가 어떤 카드를 들고있는지 한눈에 보기가 어려워진 것입니다. StyleShare에서 자칭 아이디어 뱅크 역할을 담당하고 있는 저는 획기적인 방법이 필요하다고 생각했고, 굳이 카드를 꺼내들지 않아도 각자가 무슨 카드를 선택했는지를 쉽게 볼 수 있는 애플리케이션을 만들기로 결심했습니다.2. BLE (Bluetooth Low Energy)불편함을 덜기 위한 애플리케이션이므로, 사용자 경험이 굉장히 직관적이고 단순해야 했습니다. N:N 통신이 가능해야하고, 사용자를 귀찮게 하는 페어링Pairing이나 네트워크 접속 과정이 없어야 했습니다. 한마디로, 카드를 꺼내들고 눈으로 확인하는 것보다 더 편한 무언가를 만들어야 했습니다!처음에는 근거리 무선 통신을 위한 기술로 스타벅스에서 사이렌 오더 개발에 사용한 고주파 인식 기술을 생각했습니다.3 각자의 기기에서 선택한 카드에 맞는 소리를 내보내고, 다른 기기에서는 고주파를 읽겠다는 것이었는데요. Soundlly(구 aircast.me)와 같은 상업용 SDK를 쓰지 않는 이상, 사운드 프로그래밍을 한 번도 해본 적 없는 저에게는 데이터가 실린 고주파를 만드는 것부터 소리를 인식해서 데이터를 읽어내는 과정이 마치 화성에서 감자 키우는 이야기처럼 들렸습니다.그러다 문득 생각난 것이 바로 비콘Beacon입니다. 언젠가 소비자가 오프라인 매장에 방문하면 BLE를 이용해서 매장 위치를 파악하는 기술이 있다는 이야기를 들은 적이 있었습니다. 찾아보니 시중에 나와있는 대부분의 모바일 기기에서는 BLE를 위한 최소 조건인 블루투스 4.0을 지원했고, 페어링이나 네트워크 접속 과정도 불필요했습니다. 무엇보다, 화성에서 감자 키우는 것보다는 쉬워보였습니다.3. Swift로 BLE 개발하기그래서 BLE를 사용해서 개발하기로 했습니다. 컨셉은 간단했습니다. 내가 선택한 카드를 브로드캐스팅하고, 다른 사람들이 선택한 카드를 내 모바일 기기에 보여주면 되는 것이었습니다. BLE를 사용하면 정보를 브로드캐스팅할 수 있고, 다른 기기에서 브로드캐스팅하는 정보를 읽을 수 있습니다.BLE에서 데이터를 브로드캐스팅하는 것을 Advertising이라고 합니다. 정보를 advertising하는 주체는 Peripheral이고, advertising되는 정보를 스캔하여 데이터를 읽어들이는 주체는 Central이라고 합니다. Peripheral에서 정보를 advertising할 때에는 특정한 정보를 실어나를 수 있는데요. 이를 Advertising Data Payload라고 합니다. 이 정보에 카드 숫자와 이름을 실어서 전송하면 될 것 같습니다.BLE를 구현하기 위해서, iOS에서는 SDK에 기본적으로 포함돼있는 CoreBluetooth 프레임워크를 사용하면 손쉽게 개발이 가능합니다. CBPeripheralManager 클래스와 CBCentralManager 클래스를 쓰면 되는데요. BLE를 이용하여 제 이름 석자를 advertising하는 코드는 다음과 같습니다.Peripheralimport CoreBluetooth let serviceUUID = CBUUID(string: "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX") let service = CBMutableService(type: serviceUUID, primary: true) /// 1. `CBPeripheralManager`를 초기화하고, self.peripheral = CBPeripheralManager(delegate: self, queue: nil) /// 2. 사용가능한 상태가 되면 특정 UUID를 가진 서비스를 추가한 뒤에 func peripheralManagerDidUpdateState(peripheral: CBPeripheralManager) { if peripheral.state == .PoweredOn { self.peripheral.addService(service) } } /// 3. 원하는 정보를 advertising합니다. func peripheralManager(peripheral: CBPeripheralManager, didAddService service: CBService, error: NSError?) { self.peripheral.startAdvertising([ CBAdvertisementDataLocalNameKey: "전수열", CBAdvertisementDataServiceUUIDsKey: [serviceUUID], ]) } 참고로, UUID는 커맨드라인 명령어를 통해 쉽게 만들 수 있습니다.$ uuidgen XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX 마찬가지로, Peripheral에서 advertising하는 정보를 스캔하는 Central 코드는 다음과 같이 작성할 수 있습니다. UUID는 Peripheral에서 advertising에 사용한 UUID와 동일해야합니다.Centralimport CoreBluetooth let serviceUUID = CBUUID(string: "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX") let service = CBMutableService(type: serviceUUID, primary: true) /// 1. `CBCentralManager`를 초기화하고, self.central = CBCentralManager(delegate: self, queue: nil) /// 2. 사용가능한 상태가 되면 특정 UUID를 가진 서비스를 스캔합니다. func centralManagerDidUpdateState(central: CBCentralManager) { if central.state == .PoweredOn { // 이미 한 번 스캔된 정보라도 계속 스캔합니다. let options = [CBCentralManagerScanOptionAllowDuplicatesKey: true] self.central.scanForPeripheralsWithServices([serviceUUID], options: options) } } /// 3. Peripheral이 스캔되면 이 메서드가 호출됩니다. func centralManager(central: CBCentralManager, didDiscoverPeripheral peripheral: CBPeripheral, advertisementData: [String : AnyObject], RSSI: NSNumber) { print(advertisementData[CBAdvertisementDataLocalNameKey]) // "전수열" } 스캔을 시작할 때 CBCentralManagerScanOptionAllowDuplicatesKey 옵션을 true로 설정해서 한 번 스캔된 정보라도 중복으로 계속 스캔하도록 합니다.4. 원하는 정보를 실어나르기CBPeripheralManager을 사용하여 advertising을 할 때에는 Advertising Data Payload를 포함시킬 수 있는데, 이 정보 중 개발자가 원하는 값을 넣을 수 있는 곳은 CBAdvertisementDataLocalNameKey밖에 없습니다. 그마저도 길이가 제한돼있기 때문에, 패킷을 효율적으로 사용하기 위해서는 정보를 저장하는 프로토콜을 직접 정의해야 합니다.우선, 카드에 대한 정의는 enum을 사용해서 작성했습니다. 0부터 0xFF까지의 숫자를 가지도록 정의했습니다.public enum Card: Int { case Zero = 0 case Half = 127 case One = 1 case Two = 2 case Three = 3 case Five = 5 case Eight = 8 case Thirteen = 13 case Twenty = 20 case Fourty = 40 case Hundred = 100 case QuestionMark = 0xFD case Coffee = 0xFE case None = 0xFF } 그리고 제가 정의한 패킷의 프로토콜은 다음과 같습니다.영역길이예시설명Version200프로토콜 버전 (00~FF)Channel201BLE 커버리지 내에서 회의하는 팀이 여럿일 수 있으니, 채널로 구분합니다. (00~FF)Card2FE카드의 16진수 값 (00~FF)Name12전수열사용자 이름 (UTF-8 기준 한글 4글자)이렇게 하면 총 18바이트 내에서 필요한 정보를 모두 전송할 수 있습니다. 이제 이 "00", "01", "FE", "전수열" 값을 직렬화해서 CBAdvertisementDataLocalNameKey로 advertising하면 됩니다.Peripheralself.peripheral.startAdvertising([ CBAdvertisementDataLocalNameKey: "0001FE전수열", CBAdvertisementDataServiceUUIDsKey: [serviceUUID], ]) 그리고, Central에서 정보를 스캔할 때에는 이 값을 각 영역의 길이에 맞게 끊어서 읽을 수 있습니다.5. 마치며비록 적은 양의 정보지만, BLE를 사용해서 실시간으로 근거리 통신을 할 수 있게 되었습니다. 이제 남은 것은 카드를 선택할 수 있는 화면과, 다른 사용자가 선택한 카드를 화면에 보여주는 인터페이스입니다. UI 개발은 본 포스트에서 중점적으로 다루고자 하는 주제와는 조금 벗어난 이야기가 될 것 같아, 오픈소스로 공개된 코드로 대신하려고 합니다. 소스코드는 GitHub에서 볼 수 있으며, Estimator는 앱스토어에서 받아보실 수 있습니다.6. 참고 자료BLE(BLUETOOTH LOW ENERGY) 이해하기 - Hard Copy World스타일쉐어의 스크럼이 지나온 길 포스트에 보다 자세히 설명되어 있습니다. ↩구성원들의 추정치에 차이가 난다는 것은 해당 일감에 대해 서로가 이해하고 있는 정도가 다르기 때문입니다. 스크럼 마스터는 구성원들이 일감에 대해 모두 비슷한 생각을 가지도록 커뮤니케이션을 유도해야합니다. ↩http://www.bloter.net/archives/226643 ↩#스타일쉐어 #개발 #개발팀 #개발자 #인사이트
조회수 2172

Android Gradle Tips

안드로이드와 GradleAndroid 가 Gradle 을 이용하기 시작한 것도 3년이 다 되어 갑니다. 이제는 많은 유저가 당연히 Gradle 을 Android 기본 개발 환경으로 사용하고 있습니다.하지만 기본 설정으로만 Gradle 을 사용하는 사용자들이 많습니다. 게다가 구글에서 Android Gradle Build DSL 을 끊임없이 변경했기 때문에 많은 사용자들이 이를 이해하기도 전에 변경이 되는 경우가 매우 빈번했습니다.Gradle Dependency 분리하기안드로이드 자동화 툴위 두번의 포스팅을 통해서 TossLab 에서 사용하고 있는 Gradle 에 대해서 소개를 해드렸습니다.오늘은 Android 팀이 사용하는 Custom 설정들에 대해서 정리하도록 하겠습니다.1. 초기화 값 검증 및 설정하기개발자들이나 CI 에서 관리해야하는 속성 값에 대해서는 각각 다르게 설정할 필요가 있습니다.안드로이드 팀은 3개의 추가적인 속성값을 추가하여 사용하고 있습니다.# gradle.properties inhouse_version=2 # 배포/qa 버전의 hofix version 을 관리학 ㅣ위함 report_coverage=false # coverage 측정에 대한 on/off 기능 dev_min_sdk=21 # minSDK 의 개별적인 관리를 위함 위의 3개의 값은 존재 하지 않으면 빌드가 되지 않도록 하는 강제사항으로 만들었으나 새로운 개발자가 입사하게 되었을 때 또는 CI 서버에 실수로 기입하지 못하게 되었을 때 Project Import 나 빌드가 아예 되지 않는 현상이 발생하였기에 초기 값을 설정할 수 있도록 하였습니다.report_coverage 는 5. Android Gradle DSL 에서 buildTypes.debug.testCoverageEnabled 에서 사용되며 이 값은 설정에 따라서 디버그 과정에서 변수값들이 제대로 노출되지 않게 됩니다. report 가 필요한 CI 서버 용으로 만들어진 값입니다.// valid.gradle def checkValidProperties() { println "Properties Valid Checking.........." if (!project.hasProperty("inhouse_version")) { println "set up to gradle.propeties --> inhouse_version = 1 (default)" project.ext.inhouse_version = 1 } if (!project.hasProperty("report_coverage")) { println "set up to gradle.propeties --> report_coverage = false (default)" project.ext.report_coverage = false } if (!project.hasProperty("dev_min_sdk")) { println "set up to gradle.propeties --> dev_min_sdk = 19 (default)" project.ext.dev_min_sdk = 19 } println "Properties Valid Check OK" } checkValidProperties() // ------------------------------- // build.gradle apply from: 'valid.gradle' 위와 같이 설정한 뒤 gradle.properties 에 아무런 값을 설정하지 않고 빌드를 하게 되면 빌드 최초에 다음과 같은 log 를 보실 수 있습니다.================================================================================ Properties Valid Checking.......... set up to gradle.propeties --> inhouse_version = 1 (default) set up to gradle.propeties --> report_coverage = false (default) set up to gradle.propeties --> dev_min_sdk = 19 (default) Properties Valid Check OK ================================================================================ 2. APK Copy 하기QA 팀 전달 또는 스토어 배포시에 Android Studio 의 기본 기능을 이용하지 않고 Gradle Task 를 사용하여 빌드를 하게 되면 /app/build/outputs/apk 에 있는 패키지를 복사하는 것이 여간 귀찮은 작업이 아닐 수 없습니다.그래서 Gradle 에서 기본적으로 제공되는 Copy Task 를 이용하여 APK Copy Task 를 만들었습니다.// apk-copy.gradle android.applicationVariants.all { variant -> // 1. Copy Task 생성 def task = project.tasks.create("copy${variant.name}Apk", Copy) task.from(variant.outputs[0].outputFile) // 2. 바탕화면 Task 로 복사 task.into("${System.properties['user.home']}/Desktop/") // 3. 복사하는 과정에서 APK 이름 변경 def targetName = "jandi-${variant.baseName}-${variant.versionName}.apk" task.rename ".*", targetName task.doFirst { println "copy from ${source.singleFile.name} to $destinationDir" } task.doLast { value -> println "completed to copy : $targetName" } } // --------------- // build.gradle apply from: 'apk-copy.gradle' 위의 Task 는 총 3개의 단계로 구분할 수 있습니다.Copy Task 생성~/Desktop 으로 복사복사 할 때 APK 이름 변경Task 를 정의하는 과정에서 application 의 flavor, build-type, version 을 기반으로 복사하도록 한 것입니다.위와 같이 설정하면 다음과 같이 사용할 수 있습니다.# flavor : qa , build-type : Debug $> ./gradlew assembleQaDebug copyqaDebugApk # 또는 줄여서 아래와 같이 쓸 수 있습니다. $> ./gradlew aQD copyQDA Application Variant 에 대한 변수는 링크에서 확인하실 수 있습니다.3. CI TasksCI 용으로 CheckStyle 과 PMD 를 사용하기 때문에 관련 설정 또한 별도로 처리하였습니다.task pmd(type: Pmd) { source 'src/main' include '**/*.java' ruleSetFiles = files('../pmd.xml') ignoreFailures = true } task checkstyles(type: Checkstyle) { configFile file('../checkstyle.xml') source('src/main') include '**/*.java' classpath = files() showViolations = true ignoreFailures = true } // --------------- // build.gradle apply from: 'ci-tasks.gradle' CheckStyle 과 PMD 설정에 필요한 정보 또한 별도의 script 로 설정하였습니다.4. Gradle Properties빠른 빌드를 위해 추가적인 설정을 하고 있습니다.# gradle.properties # 백그라운드 빌드 org.gradle.daemon=true # 동시 빌드 org.gradle.parallel=true # jvm heap size org.gradle.jvmargs=-Xmx4346m # build jdk org.gradle.java.home=/Library/Java/JavaVirtualMachines/jdk1.8.0_101.jdk/Contents/Home 위의 설정 중에서 제일 보셔야 할 것이 org.gradle.jvmargs 입니다. Android Gradle 설정 중에서 위의 값이 적으면 빌드속도가 현저히 느려집니다.빌드 할 때 console log 를 확인하시고 값을 적절하게 맞춰주실 것을 권장합니다.5. Android Gradle DSL 추가 정의하기 // build.gradle // ...중략 android { // 특정 Flavor에서 Release Build 막기 android.variantFilter { variant -> if (variant.buildType.name.equals('release') && (variant.getFlavors().get(0).name.equals('qa') || variant.getFlavors().get(0).name.equals('dev'))) { variant.setIgnore(true); } } buildTypes { debug { debuggable true testCoverageEnabled = project.hasProperty("report_coverage") && report_coverage.toBoolean() } // ..중략... } productFlavors { dev { // demo version applicationId 'com.tosslab.jandi.app.dev' versionName(defaultConfig.versionName + ".dev." + inhouse_version) minSdkVersion project.hasProperty("dev_min_sdk") ? dev_min_sdk : 19 } // ..중략.. } // 빌드 과정에서 CPU 와 Ram 최적화 하기 dexOptions { javaMaxHeapSize "2g" maxProcessCount Math.max(1, ((int) (Runtime.getRuntime().availableProcessors() / 2))) } } variant-filter 를 이용해서 qa 나 dev 용 빌드는 release 버전이 빌드되지 않도록 하였습니다.buildTypes 와 productFlavors 에서는 앞서 설정한 gradle-properties 에 대해서 설정에 따라 기본값이 지정되도록 하였습니다.dexOptions 설정은 개발하는 기기의 PC 환경에 따라 다를 수 있습니다.Android DSL 에 의하면 Dex 빌드 과정에서 최종적으로 사용하는 메모리는 heapsize * process-count 라고 합니다.heapsize 기본값 : 2048MBprocess-count 기본값 : 4참고문서6. Android Resource Image 의 EXIF 정보 삭제하기보통 디자이너가 Photoshop 과 같은 툴을 이용하여 이미지를 만들게 되면 자동으로 adobe 와 관련된 exif 정보가 붙게 됩니다. 그래서 빌드 할 때 libpng warning : iCCP ... 와 같은 warning 메세지를 보실 수 있습니다. 이는 Android Build 과정에서 aapt 가 이미지 최적화 하는 과정에서 불필요한 exif 정보로 인해서 오류를 내게 됩니다.따라서 exif 정보를 초기화 해주는 작업이 필요합니다.맥 사용자에 한해서 지원됩니다.HomeBrew 를 이용해서 exiftool 을 설치하셔야 합니다. exiftool 설명find . -path '*src/main/res/*' -name '*.png' -exec exiftool -overwrite_original -all= {} \; 저는 별도로 쉘 스크립트를 만들어서 실행합니다.아래를 복사해서 붙여넣기로 실행하시면 됩니다.echo "find . -path '*src/main/res/*' -name '*.png' -exec exiftool -overwrite_original -all= {} \;" > exif_clean.sh chmod 744 exif_clean.sh 관련 정보 : adt-dev google group 에서 제시된 해결책Wrap up안드로이드 팀은 Gradle 을 이용하여 반복적일 수 있는 작업을 자동화 하고 다양한 초기화 설정과 편의를 가지고자 하였습니다.초기화 값 검증 및 설정Apk 복사 자동화CI Task 정의Gradle Properties 지정Android Gradle DSL 정의Android Resource Image EXIF 삭제Gradle 을 얼마나 잘 활용하냐에 따라서 조직에 필요한 Task 를 금방 만드실 수 있습니다. 이번 포스팅이 도움이 되었기를 바라며 활용해보실 것을 권장합니다.#토스랩 #잔디 #JANDI #개발자 #개발팀 #앱개발 #안드로이드 #인사이트
조회수 2344

Angular Lazy Loading 모듈 사용하기

Angular는 비동기식 라우팅이 가능합니다. 나중에 사용할 기능들을 NgModule로 분리하여 사용자의 요청이 들어왔을 때 모듈을 불러와 기능을 사용할 수 있고, 이러한 기술을 지연 로딩이라 합니다.프로젝트가 진행되고 기능이 추가될수록 어플리케이션 번들 크기가 커지고, 결국엔 초기 로딩 시간도 길어지게 됩니다. 지연 로딩을 사용하면 초기 로딩 시간을 줄일 수 있습니다. 컴파일 단계에서 나중에 사용할 모듈들을 메인 모듈에서 분리하여 번들을 생성합니다. 그리고 사용자가 기능을 요청할 때 비동기로 스크립트를 불러와 실행합니다. 지연 로딩에 대한 소개와 사용법은 Angular 공식 문서의 Routing & Navigation — Milestom 6: Asynchronous routing 을 참고하시길 바랍니다하지만 지연 로딩을 사용할 때 유의해야할 점이 몇 가지 있습니다.지연 로딩 모듈과 인젝터(Injector)지연 로딩이 완료되었을 때 Angular는 지연 로딩된 모듈을 루트 인젝터(Root Injector)의 자식이 되는 자식 인젝터를 이용하여 초기화하고, 서비스들을 자식 인젝터에 추가합니다. 즉, 인젝터가 분리되기에 지연 로딩된 모듈의 클래스들은 자식 인젝터로의 서비스 주입이 가능하지만 루트 인젝터로 만들어진 클래스들은 불가능합니다.이는 Angular의 독특한 의존성 주입 시스템 때문입니다. Angular의 인젝터는 처음 애플리케이션이 시작되었을 때, 컴포넌트나 다른 서비스에 주입되기 전에 포함된 모든 모듈들의 서비스 제공자들을 블러와 루트 인젝터를 생성합니다. 애플리케이션이 시작되고 나면 인젝터는 서비스들을 생성하고 주입을 시작하고, 새로운 서비스들을 제공자로 추가가 불가능합니다.그러므로 지연 로딩된 서비스들은 이미 생성이 완료된 루트 인젝터로 추가가 불가능합니다. 따라서 Angular는 지연 로딩된 모듈에 대해서 새로운 자식 인젝터를 만들는 전략을 취하게 된 것입니다.자식 인젝터가 새로 만들어지기 때문에 공통된 모듈을 사용할 때 주의하여야 합니다. 예를 들어 다음과 같이 SharedModule 에 CounterService 를 서비스로 추가하고 루트 모듈인 AppModule 과 지연 로딩 모듈인 LazyModule 에 각각 SharedModule 을 import 하였습니다.import { BrowserModule } from '@angular/platform-browser'; import { NgModule } from '@angular/core'; import { RouterModule } from '@angular/router'; import { SharedModule } from './shared/shared.module'; import { AppShellComponent } from './app-shell.component'; const APP_ROUTES = [ { path: 'lazy', loadChildren: 'app/lazy/lazy.module#LazyModule' } ]; @NgModule({ imports: [ BrowserModule, SharedModule, RouterModule.forRoot(APP_ROUTES) ], declarations: [ AppShellComponent ], bootstrap: [AppShellComponent] }) export class AppModule { }import { Injectable } from '@angular/core'; @Injectable() export class CounterService { count = 0; increase(): void { this.count++; } decrease(): void { this.count--; } }import { NgModule } from '@angular/core'; import { RouterModule } from '@angular/router'; import { SharedModule } from '../shared/shared.module'; import { SomeLazyComponent } from './some-lazy.component'; const LAZY_ROUTES = [ { path: '', component: SomeLazyComponent } ]; @NgModule({ imports: [ SharedModule, RouterModule.forChild(LAZY_ROUTES) ] }) export class LazyModule { }import { NgModule } from '@angular/core'; @NgModule({ providers: [ CounterService ] }) export class SharedModule { }그리고 루트 모듈의 컴포넌트와 지연 로딩 모듈의 컴포넌트에서 각각 CounterService 를 사용하여 숫자 값을 바꿔봅니다.서로 다른 인젝터에 CounterService 인스턴스가 만들어졌기 때문에 두 컴포넌트에 표시되는 숫자값은 다릅니다. 앞에서 말했듯이 지연 로딩 모듈은 루트 인젝터가 아닌 자식 인젝터를 이용하여 초기화하기 때문입니다.만약, 지연 로딩 모듈에서 제공되는 서비스를 다른 모듈에서 사용하려면 루트 모듈에 포함시켜 줘야 합니다. 다음과 같이 루트 모듈에게만 노출시킬 서비스 제공자들을 따로 빼내어 줄 수 있습니다.import { NgModule } from '@angular/core'; import { RouterModule, Routes } from '@angular/router'; import { AccountLoginPageComponent } from './login-page.component'; const ACCOUNT_ROUTES: Routes = [ { path: 'login', component: AccountLoginPageComponent } ]; @NgModule({ imports: [ ... RouterModule.forChild(ACCOUNT_ROUTES) ], decalartions: [ AccountLoginPageComponent ] }) export class AccountLazyModule { }import { ModuleWithProviders, NgModule } from '@angular/core'; import { AccountAuthService } from './auth.service'; @NgModule({ imports: [...] }) export class AccountModule { static forRoot(): ModuleWithProviders { return { ngModule: AccountModule, providers: [ AccountAuthService ] }; } }AccountModule.forRoot() 를 루트 모듈에 import하면 다른 모듈에서도 AccountAuthService 를 사용할 수 있게 됩니다. 물론 이 경우 AccountModule를 지연로딩 모듈로 만들면 루트 모듈에 포함되기 때문에 번들을 나누는 의미가 없어질 수 있으니 AccountLazyModule 을 따로 두어 코드를 분리하였습니다.#타운컴퍼니 #개발 #개발자 #인사이트 #꿀팁
조회수 1763

네이버 신디케이션 — Rails

블로그에 새 글이 올라올 때, naver에 사이트 등록을 한다. 네이버 신디케이션 API를 이용하면 자동으로 등록된다.Wordpress에는 네이버 신디케이션 plugin이 존재한다. Rails gem을 찾아보니 애석하게도 없었다. 직접 만들면서 알게 되었다. 딱히 gem을 만들 만한 일도 아니더라.네이버 신디케이션을 이용하려면 우선 네이버 웹마스터 도구를 이용해야 한다. 해당 url이 자기 것이라는 인증과정만 거치면 바로 사용할 수 있다.작동방법은 대강 이렇다.네이버 신디케이션 API를 이용해서, 새로운 글이 생성되었음을 알린다. (혹은 글이 지워졌음을)네이버 크롤링 봇, Yeti가 와서 크롤링 해간다.API를 이용할 때 미리 약속된 format으로 만들어야 되는데, ATOM feed와 구조가 거의 같다. 다만 네이버가 정한 룰 때문에 (꼭 이름/저자/업데이트날짜 이런 순서를 지켜야 한다.)Rails에서 제공하는 atom_feed helper를 그대로 이용할 수 없다. 그러나 format만 살짝 바꾸면 되기 때문에 atom_feed helper를 이용해서, feed를 만드는 방법을 알려주는 Railscast가 늘 그렇듯 엄청 도움이 된다.(요즘 새로운 episode가 안올라오고 있는데… 힘내시라는 의미에서 예전에 유료결제 해드렸다)atom_feed helper의 코드를 그대로 가져와서 formating만 바꾼 naver_atom_feed helper를 만들었다. 별다른 건 없고, feed option 초기화 부분과 제일 마지막에 나와야 되는 link 부분을 주석처리한게 전부다.module NaverSyndicationHelper def naver_atom_feed(options = {}, █) ... feed_opts = {} //feed_opts = {"xml:lang" => options[:language] || "en-US", "xmlns" => 'http://www.w3.org/2005/Atom'} ... xml.feed(feed_opts) do xml.id... // xml.link... // xml.link... yield ActionView::Helpers::AtomFeedHelper::AtomFeedBuilder.new(xml, self, options) end end end새로만든 naver_atom_feed helper를 이용해서, feed부분만 완성한 code이다.naver_atom_feed({xmlns: "http://webmastertool.naver.com", id: 'http://ikeaapart.com'}) do |feed| feed.title "이케아아파트" feed.author do |autor| autor.name("이케아아파트") end feed.updated Link.maximum(:updated_at) feed.link(:rel => 'site', :href => (request.protocol + request.host_with_port), :title => '이케아아파트')이제 entry쪽을 만들어야 되는데, 네이버가 지정한 순서에 맞아야지만 신디케이션 서버에 전달할 수 있다. 정말 이상한 형식이다. 아무튼 그래서 Rails에서 제공하는 entry method를 사용하지 못한다. 이번엔 AtomFeedBuilder class에 naver_entry method를 만들었다.#config/initializers/feed_entry_extentions.rbmodule ActionView module Helpers module AtomFeedHelper class AtomFeedBuilder def naver_entry(record, options = {}) @xml.entry do @xml.id... # if options[:published]... # @xml.published(...) # end # if options[:updated]... # @xml.updated(...) # end # @xml.link(..) ...이번에도 순서 때문에 주석처리 한 것 밖에 없다. naver_entry method를 이용해서 완성된 코드가 아래 코드이다.# views/links/show.atom.buildernaver_atom_feed({xmlns: "http://webmastertool.naver.com", id: 'http://ikeaapart.com'}) do |feed| feed.title "이케아아파트" feed.author do |autor| autor.name("이케아아파트") end feed.updated Link.maximum(:updated_at) feed.link(:rel => 'site', ...) feed.naver_entry(@link, {id: link_url(@link)}) do |entry| entry.title(@link.title) entry.author do |author| author.name("이케아아파트") end entry.updated(@link.updated_at.xmlschema) entry.published(@link.created_at.xmlschema) entry.link(:rel => 'via', :href => (request.protocol + request.host_with_port)) entry.content(@link.contents) end end이제 새 글이 만들어 질 때, 이 atom 파일 주소를 네이버 신디케이션 API로 보내주면 된다. 참고로 Rails에서는 어떤 view파일을 사용할지 알아서 해주니, controller에 따로 ‘response_to’ 를 이용해서 format을 나눠줄 필요는 없고, 이름만 잘 맞춰주면 된다. (위 파일명은 show.atom.builder 이다)네이버 신디케이션 API에 핑을 보내는 code이다. 네이버가 지정해 놓은 header를 설정해 줘야 되고, 신디케이션 인증 토큰을 받아서 header에 넣어줘야 된다. 신디케이션 토큰은 네이버 웹마스터 페이지에서 볼 수 있다.require 'net/http' ... header = {"User-Agent"=>"request", "Host"=>"apis.naver.com", "Progma"=>"no-cache", "Content-type"=>"application/x-www-form-urlencoded", "Accept"=>"*/*", "Authorization"=>"Bearer " + ENV["NAVER_SYNDICATION_TOKEN"]} uri = URI.parse('https://apis.naver.com/crawl/nsyndi/v2') http = Net::HTTP.new(uri.host, uri.port) http.use_ssl = true args = {ping_url: link_url(link_id, format: "atom")} uri.query = URI.encode_www_form(args)request = Net::HTTP::Post.new(uri.request_uri, header) http.request(request)네이버 신디케이션 페이지에서 핑이 제대로 도달하는지 바로 확인해 볼 수 있다.#티엘엑스 #TLX #BA #BusinessAnalyst #비즈니스애널리스트 #꿀팁 #인사이트 #조언
조회수 4853

신입 개발자를 위한 코드의 정석

Overview대학을 수석으로 졸업했지만, 정작 회사에서는 A부터 Z까지 제대로 할 줄 아는 게 없었습니다. 실수를 남발할 때마다 느꼈던 좌절감은 아직도 생생하지만 되돌아보면 그때의 삽질이 소중한 피와 살이 되었지요. 오늘은 헤매고 있는 신입 개발자를 위한 글을 쓰려고 합니다. 신입 개발자, 당신! 내 이야기를 편하게 듣고 가지 않으실래요? 남을 위한 코드, 클-린 코드“너랑 같이 일하는 사람은 어떻게 보라는 거야?” “한 명이 짠 코드인데, 어째 한 사람이 짠 것 같지가 않다..” “이게 네 스타일이냐?” 대학생이었을 땐, 대부분 혼자서 프로젝트를 진행했습니다. 다른 사람이 제 코드를 보는 일도 거의 없어서 띄어쓰기나 들여쓰기 등에 통일이 없었고, 함수의 네이밍도 전혀 고려하지 않았습니다. 이게 나쁜 습관이었다는 걸 입사하고 알게 되었죠. 이 습관을 고치려고 코딩 컨벤션(coding convention)을 지키는 것에 꽤 오랜 시간을 들여야만 했습니다. 우리는 협업을 하는 사람들입니다. 사람들이 더러운 방보다 깨끗한 방을 좋아하는 것처럼, 당신과 협업하는 개발자도 보기 어려운 코드보다 깨끗한 코드를 더 좋아합니다. 클린 코드를 작성하기 위한 세 가지 기본 원칙을 잠시 소개합니다. 클린 코드를 위한 세 가지 기본 원칙 코드를 최초로 작성한 사람이 끝까지 유지보수를 한다는 보장은 없다.이미 잘 정리된 코드는 효율성이 증가한다. 정리할 시간에 코드 한 줄을 더 분석할 수 있으니까!리팩토링은 미루었다가 한꺼번에 하는 것이 아니다. 코드를 작성하는 매순간 함께 하는 활동이다.작은 것 하나부터 습관을 들여보세요. 분명 깔끔하고 보기 좋은 코드를 만드실 수 있을 겁니다. 머지 않아 “남을 위한 코드는 곧 나를 위한 코드”라는 것도 알게 될 거고요. 책의 한 구절이 떠오르네요. “우리는 저자이다. 저자에게는 독자가 있다. 그리고 저자에게는 독자와 잘 소통해야할 책임이 있다.”⌈Clean Code⌋의 저자, Robert C. Martin 설마가 사람 잡는다, 철저한 검증만약 누군가 검증 단계에서 잊지 말아야할 것이 뭔지 묻는다면 이렇게 대답하고 싶습니다. “절대 사용자가 입력한 값을 신뢰하지 말라. 프론트엔드에서도, 백엔드에서도.” 모든 사용자가 각 항목에 맞게 올바른 정보만 입력해준다면 얼마나 좋을까요? 세상에는 다양한 사용자가 있습니다. 너무 바빠서 얼른 회원가입을 해야하는 사용자는 항목을 채우지도 않고 신청 버튼을 누를 수도 있습니다. 영어로 입력해야 하는 항목엔 한글을 입력한 사용자도 있을 겁니다. 이런 휴먼 에러(human error)뿐만 아니라 의도적으로 비정상적인 요청을 시도하는 사용자도 분명 있습니다. 이 때문에 개발자는 기능에 대해 항상 검증해야 합니다. 바로 이렇게요!그런데 프론트엔드에서 유효성 검사를 하면, 백엔드에는 유효한 값만 넘어온다고 보장할 수 없습니다. 자바스크립트는 브라우저 엔진에 따라 다르게 동작할 수도 있습니다. 또 자바스크립트에서 다루는 값들은 크롬의 개발자도구(option + command + i)를 이용하면 얼마든지 값을 변조하거나 검증을 회피할 수 있습니다. 또 불온한 시도가 아니더라도 다양한 예외 케이스들이 존재하기 때문에 백엔드에서도 무조건 검증해야 합니다.페이스북 페이지의 개발자 도구를 열었을 때 노출되는 화면입니다. 얼마나 나쁜 사람들이 많으면 경고화면까지 만들었을까요?누군가 질문할 수도 있겠군요. “프론트엔드의 검증이 의미가 없다면, 백엔드에서만 검증을 해도 되지 않을까요?” 네, 아닙니다.(단호) 많은 양의 일을 한꺼번에 하는게 힘든 것처럼 무분별한 요청이 서버에 쏟아지면 서버도 사람처럼 지치고 말 겁니다. 응답이 느려지는 등의 문제가 생길 수도 있고, 결국 사용자가 불편해질 것입니다. 그러므로 가장 좋은 검증 방식을 3단계로 정리하면 아래와 같습니다. 고수가 되는 검증 방식 3단계프론트엔드에서 먼저 값 검증을 하여 빠른 사용자 경험을 제공한다.백엔드에서 다시 한 번 더 검증을 거쳐 상황에 적절한 응답 코드를 내려준다.프론트엔드는 상황에 맞게 적절한 UX와 메시지를 보낸다. 동작 그만! 정리는 하고 코딩하자!예전에는 요구사항이 있으면 바로 키보드 위에 손부터 올렸습니다만, 그건 좋은 태도가 아니었습니다. 팀장님이 “이 경우엔 어떻게 하지?”라고 질문하면 아무 대답도 하지 못했기 때문이죠. 팀장님은 늘 “항상 먼저 생각하고 코딩하자!“라고 조언하십니다. 맞습니다. 최대한 모든 경우의 수를 머릿속에 정리하고 코딩을 시작해야 합니다. 시간이 없다는 핑계로 무작정 시작하면 분명 문제가 발생합니다. 또 구현할 기능만 몰두하지 말고, ‘이 기능이 다른 기능에 영향을 미칠 수 있을까?’를 고민하면 훨씬 좋은 코드를 만들 수 있을 겁니다. “이런 거 다 생각하고 짜면 도대체 코딩은 언제 하라고?” “얼른 선임 분들에게 코딩하는 내 모습을 보여줘야 하는데!” “당장 코드 안 짜고 있으면 노는 것처럼 보이지 않을까?” 혹시 이런 생각을 하고 계신가요? 나도 그런 생각을 했던 적이 있습니다. 하지만 요구사항을 확실하게 정리한 후, 코드를 짜는 게 더 효율적입니다. (그렇지 않으면.. ‘수정’이란 이름 아래 모든 것을 뒤엎고 처음부터 다시 시작해야할 수도 있습니다.) ‘더 나은 개발자가 되는 8가지 방법(8 Ways to Become a Better Coder)’이란 글에는 이런 내용이 있습니다. “동작하는 코드는 끝이 아니라 시작이다.” 신입 개발자는 종종 요구사항에 따라 동작하는 코드만 짜면 된다고 여길 때가 있습니다. 물론 사회생활에 적응하느라 정신 없는 와중에 그나마 자신의 코드가 요구사항대로 동작하면 무척 뿌듯할 겁니다. 하지만 동작만 한다고 절대 지나치지 말아주세요. 위에서 언급한 것처럼 깨끗한 코드가 되도록 리팩토링을 하고, 검증하고, 동작이 제대로 되는 것인지 의심하면서 꾸준히 노력해야 합니다. 마지막으로 항상 중요하게 생각하는 문장 하나를 남기고 글을 마치겠습니다.“진정으로 훌륭한 프로그래머는 적극적으로 어디가 잘못되었지를 찾는다. 자기가 놓친 결함은 결국 ‘사용자’가 발견하게 된다는 것을 알고 있기 때문이다.” Esther SchindlerConclusion지금까지 다룬 내용은 결국 같은 맥락입니다. 모든 개발조직은 좋은 품질의 소프트웨어를 개발할 줄 아는 개발자, 협업할 줄 아는 개발자를 원합니다. 누군가 “당신은 잘 지키고 있는가”라고 질문한다면, “저 또한 노력하고 있습니다.”라고 답변하고 싶습니다. 같은 자리에 머무르는 개발자가 될 것인지, 부족함을 알고 항상 배우고 나아가는 개발자가 될 것인지는 스스로의 몫이라고 생각합니다. 이 글을 끝까지 읽은 신입 개발자 당신! 같이 노력하지 않으실래요? :-) 참고 Robert C. Martin, 「Clean Code」, 케이엔피북스(2010)Esther Schindler, 8 Ways to Become a Better Corder, New Relic, 2018.03.02.유석문, 「프로그래머 철학을 만나다 - 소프트웨어를 사랑하는 기술」, 로드북(2014)임백준, 「읽기 좋은 코드가 좋은 코드다」, 한빛미디어(2012)팀장들이 꼽은 신입 PHP 개발자가 가급적 빨리 알았으면 하는 것들프론트에서”만” 유효성 검사가 문제인 경우남을 위한 코드 만들기 - 클린코드글김우경 대리 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 1039

국내 IT 산업을 주무르는 첫눈 마피아

업계에서 페이팔 마피아(PayPal mafia)에 대한 이야기를 듣는 건 어렵지 않다. 전세계 IT 산업의 핵심인 실리콘밸리를 장악하고 있는 페이팔 마피아를 탄생시킨 회사는 컨피니티(Confinity)라는 회사다. 이 회사의 이름은 낯설지 몰라도 이 회사가 개발한 페이팔(PayPal)이라는 전자 송금 서비스의 이름은 낯설지 않을 것이다. 1998년 시작된 컨피니티는 페이팔을 만들어 2002년 상장한 뒤 얼마 지나지 않아 이베이(eBay)에 매각된 닷컴 버블 폭풍의 몇 안되는 생존자 중 하나였다. 페이팔 마피아란 페이팔의 초기 임직원들을 일컫는 말로, 이들은 이후에 또 다른 혁신적인 회사들(Tesla Motors, LinkedIn, Palantir Technologies, SpaceX, YouTube, Yelp, Yammer 외 다수)을 계속 만들어 내고 있다. 이들의 모습이 마치 사회 모든 곳에 얽혀 있는 마피아 조직을 연상시킨다는 것에 비유해, 이들을 페이팔 마피아라고 부르기 시작했다. 심지어 포춘지(Fortune)에서는 2007년 이들을 한데 모아 마피아 같은 옷을 입히고 재미있는 사진을 남기기도 했다. 출처 : Fortune Magazine, 2007년 11월페이팔 마피아들의 성공은 절대 우연이 아니라고 생각한다. 이들이 닷컴 버블의 위기를 이겨낼 수 있었던 밑바닥에는 페이팔이라는 회사가 가진 확고한 고유의 문화(culture)가 존재했다. 자신들이 만들어 낸 본연의 문화가 몸에 배인 초기 구성원들이 새로운 회사를 시작하고, 또 다시 새로운 그들만의 확고한 문화를 만들어 가면서 또 다른 페이팔이 만들어 질 가능성이 높아졌다고 할 수 있다. 또한 각자가 가진 강력한 인적 네트워크를 통해 서로 도움을 주고 받으며 새로운 회사를 만들고 함께 성장할 수 있도록 하는 노력을 아끼지 않았다. 실리콘밸리에 또 다른 닷컴 버블이 터진다 하더라도 이들 페이팔 마피아의 생존 가능성은 의심할 여지가 없을 것이다. 정부 시스템이 무너져도 마피아 조직의 견고함은 무너지지 않는 영화 같은 이야기가 실리콘밸리에서 실제로 일어나고 있는 것이다.출처 : jamesaltucher.com한국에서는 이런 사례가 없는지 늘 궁금했다. 얼마 전 알토스벤처스의 한킴 대표님 페이스북에서 ‘네오위즈 마피아'에 대한 이야기를 본적이 있다. 그런데 나는 이 이야기를 읽으면서 네오위즈보다 주목해야 할 회사는 첫눈이 아닌가 하는 생각이 들었다. 네오위즈, 넥슨, NHN 같은 회사보다 훨씬 더 마피아의 밀집도가 높은, 미국의 페이팔을 연상시킬만한 작은 조직이었기 때문이다.첫눈은 2005년 6월 네오위즈에서 분사하며 설립되었던 검색 회사다. 가장 큰 특징은 자사의 내부 DB를 통해 검색 결과를 제공하는 경쟁사들과 차별화하여 인터넷 전체를 검색 대상으로 삼는다는 점이었다. 이후 설립 1년 만에 NHN에 350억원 규모로 매각되었고, NHN의 당시 보도자료에 따르면 임직원은 총 55명이었다. ‘첫눈 마피아’에 대해 정리하려고 마음 먹고 그간 나왔던 첫눈에 대한 기사들을 많이 읽어 봤다. 간간이 첫눈을 페이팔 마피아에 비유했던 기사들도 있었다. 또 마침 우리 회사 렌딧의 홍보 담당인 꼬날이 첫눈의 홍보 담당이었던 덕분에 생생한 이야기를 직접 들을 수 있었다. 정리해 본 첫눈 마피아들은 아래와 같다 (존칭 생략):장병규 : 지난 9월 25일 4차산업혁명위원장에 임명되어 국가적 화제의 인물로 떠오른 장병규 블루홀스튜디오 의장이 첫눈의 창업자. 2005년 6월 네오위즈에서 검색엔진 개발팀 인력들을 이끌고 분사해 첫눈을 창업했다. 2006년 6월 첫눈 설립 1년 만에 NHN 과 350억원 규모로 매각. 이렇게 NHN에 들어간 첫눈의 인재들이 주축이 되어 개발한 서비스가 라인(LINE)이다. 장병규 대표는 첫눈의 NHN 인수 후 초기 기업에 전문적으로 투자하는 벤처캐피털 본엔젤스벤처파트너스를 설립해 우수한 창업자와 스타트업을 발굴하고 지원하는 일에 힘써왔다. 2007년에는 게임개발사인 블루홀스튜디오를 창업해 현재까지 의장직을 맡고 있다.신중호 : 신중호 라인 CGO(Chief Global Officer)는 첫눈의 CTO였다. 2005년에 첫눈 창업 시 장병규 대표와 함께 네오위즈에서 나왔다. 2006년 NHN 인수합병 시 NHN에 합류, NHN 재팬의 검색서비스를 책임지고 일본에 건너가 있던 중 라인을 개발했다. 일본과 동남아시아 여러나라에서 현지화에 성공, 2016년 7월 라인의 나스닥 상장을 견인했다. 최근에는 WAVE, Clova 등 네이버의 AI 사업을 총괄하며 미래를 이끌어 가고 있다.이상호 : SK텔레콤 AI사업단장 역시 첫눈 출신이다. 자연언어처리와 음성합성, 음성검색 분야의 국내 최고 권위자로 알려졌다. 첫눈에 합류하기 전에는 LG전자 연구원을 거쳐 서울산업기술대학 교수를 지냈다. 당시 이상호 교수를 첫눈에 영입하기 위해 장병규 대표가 오랜 시간 공을 들인 것으로 알려졌다. 이상호 단장 역시 첫눈의 NHN 인수합병으로 NHN에 합류한 후 음성 검색 서비스 등 검색 개발에 집중하다, 2011년 다이알로이드라는 음성 인식 개발사를 창업했다. 국내 최고의 음성 검색 전문가 4인으로 구성되었던 다이알로이드는 2012년 9월 국내 최초로 음성으로 문자를 전송하는 앱 ‘다이알로이드'를 선보였다 (관련 내용 : http://limwonki.com/536). 이상호 대표는 2012년 말 다음이 다이알로이드를 인수하며 다음을 거쳐 카카오에서 음성 검색 연구를 지속했으며, 이후 SK플래닛에 입사, CTO 로 기술을 책임지다 2017년 4월부터 SKT AI 사업단장을 맡아 누구 (NUGU) 등 AI 부문 사업을 총괄하고 있다.노정석 : 잘 알려지지 않은 사실이지만 노정석 리얼리티 리플렉션 대표 역시 첫눈 출신이다. 첫눈 창업 초기 약 4개월 간 글로벌 사업 담당으로 일하다, 2005년 9월에 블로그 개발사인 태터앤컴퍼니를 창업했다. 노정석 대표는 1996년 카이스트-포항공대 해킹 전쟁의 주인공으로 유명하다. 이후 1997년 선배들과 창업한 보안회사 인젠이 2002년 코스닥 상장에 성공. 2005년에 설립한 태터앤컴퍼니는 2007년 9월 구글이 인수하며 국내 스타트업으로는 드물은 글로벌 M&A 성공 사례로 기록 되었다. 이후 구글에서 2년여 간 프로덕트 매니저로 일하다 2010년에 설립한 파이브락스(설립 시 사명은 아블라컴퍼니)가 2014년 8월 다시 미국의 모바일 광고 플랫폼 회사인 탭조이에 매각되며, 국내 스타트업에서 드물은 글로벌 M&A 성공 사례를 다시 남긴 주인공이 되었다. 2015년 5번째 회사인 리얼리티 리플렉션을 창업해 국내 대표적인 ‘연쇄 창업가'로 불리운다. 창업과 더불어 엔젤투자자로서 좋은 창업가들을 발굴하고 후배 창업가들과 함께 호흡하는 것을 좋아한다. 티몬, 비트파인더, 미미박스, 다이알로이드, 다노, 다이알로이드(다음이 인수), 파프리카랩(일본 그리 인수), 울트라캡숑(카카오 인수) 등에 투자했다. 나 역시 2011년 미국에서 창업했던 두번째 회사인 스타일세즈 창업 때 노정석 대표의 엔젤투자를 받았다.그 외 2011년 모바일 메신저 ‘틱톡'을 개발해 카카오톡의 강력한 경쟁자로 부상했던 매드스마트의 김창하 대표 역시 첫눈 개발자 출신이다. 김창하 대표는 2012년 매드스마트를 SK플래닛에 매각하며 SK플래닛에서 일하다, 현재는 라인에 합류해 신중호 CGO와 함께 일하고 있는 것으로 알려져 있다. 라인의 박의빈 CTO 역시 첫눈 출신으로 오랜 기간 신중호 CGO 와 함께 하고 있는 핵심 인물이다. 천재 개발자로 유명한 보이저엑스 남세동 대표 역시 장병규 대표와 오랫동안 함께 한 개발자다. 19살에 네오위즈 인턴으로 시작해서 세계 최초의 웹기반 채팅 서비스인 ‘세이클럽 채팅' 개발을 주도하였고, 이후 첫눈을 거쳐 라인에서 일했다. 카카오의 AI 사업을 총괄하고 있는 김병학 부사장 역시 첫눈 출신이다.    대기업과 스타트업을 오가며 활약 중인 첫눈의 인재들도 있다. 이은정 라인플러스 이사는 베인앤컴퍼니 등에서 컨설턴트로 일하던 중 장병규 대표에게 스카우트되어 첫눈에 입사. 첫눈이 NHN에 인수된 후 현대카드, GS홈쇼핑, 삼성카드 등 대기업에서 승승장구 하던 중 2014년 라인플러스에 입사해 글로벌 사업의 중추 역할을 하며 다시 신중호 CGO와 일하고 있다. 엘지생활건강에서 모바일 플랫폼 혁신을 주도하고 있는 권도혁 상무 역시 첫눈 출신이다. 첫눈 합류 전 베인앤컴퍼니와 NHN에서 경력을 쌓았던 권도혁 상무는, 첫눈이 NHN에 인수된 후 다시 전직장 NHN에 합류하지 않고 스타트업인 큐박스에 합류했다. 이후 2011년 ‘울트라캡숑' 이라는 재미있는 이름의 스타트업을 창업, 대학생들의 익명 커뮤니티인 ‘클래스메이트', 소셜미디어 서비스 ‘너 말고 니 친구', ‘마티니', 다이어트 앱 ‘다이어터' 등을 개발해 서비스 하던 중 2014년 카카오에 매각하고 엘지생활건강에 합류했다.   스타트업 홍보를 열심히 하고 있는 우리 회사 꼬날도 첫눈 출신이다. 첫눈 (NHN 매각) - 태터앤컴퍼니 (구글 매각) - 엔써즈 (KT 매각, 이후 닐슨에 재매각됨) - 파이브락스 (탭조이 매각) 등 성공적인 엑시트로 평가되는 스타트업에 연이어 렌딧에 합류. 스타트업 홍보의 미다스 손으로 불리는 국내 유일무이한 이력의 홍보전문가다.첫눈이 NHN에 인수되면서 첫눈의 새로운 검색 정책과 혁신적인 서비스에 기대를 많이 했던 초기 사용자들이 '첫눈이 녹아 버렸다'며 아쉬워했었다고 한다. 하지만 첫눈은 매각 당시 보도했던대로 NHN과 함께 글로벌 서비스 개발에 힘썼고, 메신저 서비스 라인을 만들어 글로벌 시장 진출에 성공했다. 또한 다양한 첫눈 마피아들이 여전히 창업 전선에서 맹활약 중이다. 내가 창업에 뛰어든지 이제 만 12년이 되었고 세번째 회사인 P2P금융 렌딧을 시작한지 2년 반이 지났다. 렌딧은 기술 혁신을 통한 금융 서비스의 효율화라는 미션을 갖고 시작되었다. 혁신적인 서비스를 통해 우리 삶에 긍정적인 영향을 주는 것만큼이나 내게 강한 동기가 되는 것은 함께 일하는 사람들과의 동반 성장이다. 렌딧의 성장 뿐만 아니라 우리 고유의 문화가 몸에 배인 렌딧맨들이 미래에 또 다른 곳에서 새로운 혁신을 만들어 낼 수 있는 강력한 렌딧 마피아가 형성되기를 기대해본다.지난 5월27일, 렌딧의 SeriesB 투자가 확정되던 날 모든 렌딧맨과 함께
조회수 328

컴공생의 AI 스쿨 필기 노트 ⑤ 베이즈 결정이론

이번 5회차 수업에서는 베이즈 결정이론(Bayes Decision Theory)과 가우시안 혼합모형(Gaussian Mixture model)에 대해 배웠어요.1980년대 이후 세계 금융시장에서 위험관리를 계량화한 것은 확률이론, 그중에서도 ‘베이즈 정리’가 있었기에 가능했어요. 이전의 경험과 현재의 증거를 토대로 사건의 확률을 추론하는 알고리즘 덕분에 온갖 파생상품이 탄생했어요. 그런데 베이즈 정리는 오랫동안 금기시됐는데요. 주관적인 믿음을 측정하기 때문에 합리적이지 않다는 이유에서였다고 해요. 하지만 베이즈 정리의 활용도는 갈수록 커지고 있어요. 암호 해독부터 전쟁 중 의사결정, 실종된 사람이나 선박의 위치 추정, 암 발병률 예측, 스팸메일 걸러내기 등 무한대에 가깝다고 해요. 이번  필기노트에서는 베이즈 결정이론에 대해 알아볼게요.Bayes Decision Theory베이즈 결정이론은 패턴 인식을 위한 통계적 접근 방법이에요. 베이즈가 제시한 통계적 방법을 통해 의사 결정을 하는 방법이죠. 전통적 통계 방식은 통계적 추리를 할 때 표집으로 얻은 정보만 사용해요. 베이지안 확률이 전통적 통계 방식과 다른 점은 학습자가 기존에 가지고 있는 사전 정보를 활용한다는 것인데요. 불확실한 상황에서 통계적으로 얻은 정보를 가지고 의사 결정을 해야 하는 경제학, 경영학 등 여러 분야에서 많이 사용되고 있어요.베이즈 결정이론에 사용되는 베이즈 정리(Bayes rule)에 대해 간단한 예시를 들어볼게요.우리가 은행 지점장이라고 가정해봐요. 고객에게 돈을 빌려줄 수는 있지만 아무에게나 막 빌려줄 수는 없겠죠?그래서 은행 고객을 high-risk, 즉 돈을 빌려줘도 안 갚을 확률이 높은 고객과 low-risk, 즉 돈을 빌려주면 갚을 확률이 높은 고객으로 나눌 거예요.그런데 은행 고객이 돈을 갚을지 안 갚을지를 판단하는 기준이 있어야겠죠? 그래서 고객의 연봉(yearly income)과 현재 은행 계좌 보유금액(savings)을 가지고 판단할 거예요. 이렇듯 변수가 두 개만 있을 때 우리는 이항분포를 사용해서 의사를 결정해요. 위에서는 두 가지 고객이 존재하므로 이항분포를 사용해서 고객에게 돈을 빌려줄지 여부를 결정하죠. 결정을 내릴 때는 확률이 큰 쪽을 선택할 거예요. 확률이 큰 쪽을 선택하는 것은 이성적인 판단이기 때문이에요. 그래서 고객 x가 high risk일 확률(P(C=1|x)이 x가 low-risk일 확률(P(C=0|x)보다 크다면 1이라는 결정을 내리고, 작다면 0이라는 결정을 내려요.하지만 우리가 내리는 결정에도 error(=risk)가 존재하겠죠?확률의 합은 항상 1이고 결정은 항상 P(C=1|x)나 P(C=0|x) 중 확률이 큰 쪽이기 때문에 1에서 그 확률을 빼면 그 결정의 error가 돼요. 베이즈 결정이론은 이처럼 분류하고자 하는 물체들에 대해서 사전 정보가 주어지는 경우에 사용이 될 수 있는 이론이에요.Bayes’ rule베이즈 결정이론에는 베이즈 정리(Bayes’ rule)가 사용되는데요. 자세히 살펴볼게요.- P(C) : prior probability(선행 확률, 특정 사건이 일어날 것에 대한 추가 정보를 획득하지 못한 확률)로 여기서는 x가 어떤 값을 가지든 C가 1일 확률을 말해요.- p(x|C) : likelihood(우도, C가 주어졌을 때 조건부 확률) C가 주어졌을 때 x를 가지고 있을  확률을 말해요. 따라서 x값에 따라 확률이 달라져요. 예를 들어 p(x|C = 1) 은 C가 1인 즉 high risk인 고객이 x를 가지고 있을 확률을 나타내요.- p(x) : evidence(증거)는 C와 상관없이  x가 나타날 확률이에요.- p(C|x) : posterior probability(사후 확률)로 우리는 사후 확률을 기반으로 아래와 같이 decision을 내려요.위의 예시처럼 두 가지 고객만 있는 상황(이항분포)이 아니라 K명의 고객이 있는 경우(다항분포)는 어떻게 계산할까요? 이 경우에도 베이즈 정리가 적용되는데 식이 조금 달라져요.p(x) 구하는 식만 달라지고 나머지는 위에서 봤던 예시와 같아요. 그리고 이항분포의 error는 1에서 둘 중에 큰 확률을 뺐듯이 다항분포의 error도 아래와 같이 구해요.Loss and Risk위의 이항분포에서는 고객에게 돈을 빌려줌으로써 돈을 못 받는 손실(Loss)이 존재하고 돈을 못 받을 것 같은 고객에게 빌려주지 않음으로써 생기는 손실이 존재해요. 이 중 어떤 것이 더 손실이 적을지 생각해봐야겠죠?의사 결정을 하는 행동(action)을 αi라고 했을 때 αi에 대한 손실을 λik라고 정의할게요.위의 식은 예상되는 손실값이에요. 이 손실값은 실제로는 k인 상황이지만 행동 αi를 취해서 생기는 손실이에요.손실을 줄여야 하기 때문에 가장 작은 손실이 생기는 행동을 취해야 해요. 따라서 위의 식을 보면 argmin함수를 이용해서 k개의 행동 중 가장 작은 손실을 취해요.Reject 의사 결정이 어려운 경우에는 의사 결정을 피하는 것이 더 적절한 경우도 있어요. 이때는 어떠한 행동도 하지 않는 행동 αK+1을 추가해요.action αK+1을 추가하면 αK+1에 따른 손실 λik 또한 하나가 더 늘어요.위의 수식은 reject 행동을 포함했을 때 결정을 내리는 식인데 간단하게 참고하시면 될 것 같아요.이번에는 베이즈 결정이론에 대해 자세하게 다뤘는데요. 이번 수업은 교수님께서 많은 것을 가르쳐주셔서 저 같은 초보자가 듣기에 조금 힘든 점이 있었어요. 벌써 8주차 이론수업의 절반 이상이 지났는데요. 5주 동안 배운 많은 이론들을 코드로 능숙하게 표현하는 데에는 많은 노력이 필요하겠지만, 이만큼 왔다는 것만으로도 뿌듯한 기분이 들어요. 8주차부터 시작하게 될 팀 프로젝트에서 실력 발휘를 하기 위해서 더 열심히 수업에 임해야겠어요!* 이 글은 AI스쿨 - 인공지능 R&D 실무자 양성과정 5주차 수업에 대하여 수강생 최유진님이 작성하신 수업 후기입니다.
조회수 1687

"코인원 중심에서 '보안'을 외치다." - 보안전략기획팀 정지원

‘보안팀'을 생각했을 때 어떤 단어들이 떠오르시나요? 조금은 무시무시하지만 우람한 팔뚝, 강력한 눈빛, 태평양같은 어깨를 소유한 영화배우 ‘마요미' 마동석님이 떠오르네요. 코인원에서도 무시무시한 매의 눈으로 코인원 크루가 자리를 비울때 화면잠금이 되었는지 확인하는 ‘정요미'가 있습니다. 바로 코인원 보안을 책임지는 보안전략기획팀의 지원님이에요. 코인원 크루의 보안뿐만 아니라 고객들의 소중한 자산을 지키는 코인원의 수문장, 지원님을 만나볼까요?Q. 안녕하세요, 코인원의 ‘프로 화면잠금러'를 만나뵙게되어 정말 영광입니다.네, 저 또한 영광입니다. 제가 이전에 자리를 잠깐 비울때 화면잠금을 하지 않았는데요, 이렇게 영혼까지 털릴줄 몰랐습니다. ‘화면잠금도 모르면서 보안을 어떻게 논하느냐’ 라고들 하셔서 사죄의 의미로 커피를 쏘게 되었습니다. 이후 다시 이런 일이 없도록 스스로에게 다짐했을 뿐만 아니라 화면잠금 안하신 크루가 있는지 없는지 열심히 찾고 있습니다. (걸리기만 해 아주…-_-)Q. ‘프로 화면잠금러’로 오해하실 수도 있는 독자분들을 위해 ‘진짜’ 지원님 소개 부탁드릴게요:)안녕하세요, 코인원 보안본부 내 보안전략기획팀에서 근무하고 있는 정지원입니다. 코인원의 보안본부는 대내외 각종 보안 위협으로부터 선제적으로 대응할 수 있도록 Action Plan을 수립하고 실행하여 코인원의 모든 서비스와 자산을 보호하는 역할을 하고 있어요. 크게 보안전략기획팀, 개인정보보호팀, 보안운영팀으로 나뉘어 집니다.이 중에서 보안전략기획팀은 주로 대/내외 보안 트렌드를 파악하며 거래소 보안전략을 수립하고, 우선순위를 설정하고 조정하여 실행하고 있습니다. 더불어 코인원의 기존 서비스와 앞으로 출시될 신규 서비스의 보안 위험을 식별할 수 있도록 분석하고 대응방안을 마련하죠. 철저한 보안으로 코인원이 고객들에게 신뢰받을 수 있는 거래소가 되기 위해 최선을 다하고 있습니다.Q. 코인원을 이용하는 고객분들이라면 정말 궁금할 것 같아요. 코인원에 보관되어 있는 제 자산, 정말 안전하게 보관되어 있나요?“코인원 고객들의 자산은 100% 안전합니다" 라는 말 대신 “코인원 보안팀은 단 1%의 취약점도 허용하지 않기 위해 정말 최선을 다하고 있습니다" 라고 말씀드리고 싶어요.개인적으로 “고객의 자산은 100% 안전합니다.” 또는 “100% 완벽한 보안” 이라는 말은 성립할 수 없다고 생각해요. 취약점이 발생할 가능성은 언제나 있다고 생각하고, 그것이 1%의 가능성이라고 할지라도 해결방안을 고민해서 현실적인 대책을 세우고 실행해나가야 한다고 생각합니다.현재 코인원에서는 *DID(Defense In-Depth)의 개념으로 계층화된 보안 시스템(Multi-Layered Security)을 구축하고 발생할 수 있는 보안 위협에 대비합니다. 성을 공략하는 게임을 예를 들어 볼게요. A라는 성은 10m의 성벽 1개가 있고 B라는 성은 1m의 성벽 10개가 있다고 가정할께요. 성벽을 우회해서 성에 도착하기까지 어디가 시간이 더 걸릴까요?코인원은 마치 여러 개의 성벽처럼 계층화된 보안 방안을 구현, 거래소에 적용하고 있어요. 적용했다고 끝난게 아닙니다. 계속해서 모니터링 하면서 좋은 점과 나쁜 점을 모아놓고 좋은 점은 더 좋게, 나쁜 점은 개선할 수 있도록 재기획하고 실행합니다. 보다 더 안전하게 고객의 자산을 보호할 수 있는 방법을 고민하고 적용하고 있어요. *여기서 잠깐 DID(Defense In-Depth, 심층방어)란? 여러 계층의 보안 제어가 정보 기술(IT) 시스템 전반에 걸쳐 배치되는 정보 보증 개념입니다. 보안 제어가 실패하거나 시스템의 수명주기 동안 인력, 절차적, 기술적 및 물리적 보안 측면을 포괄 할 수있는 취약점이 악용되는 경우를 대비하여 다수의 방어 중복성을 제공하기 위한 것입니다.Q. 현재 코인원에서 진행하고 있는 보안정책은 어떤것들이 있을까요? 간단하게 소개해주세요.코인원 보안정책 중 몇가지를 소개해 드리자면, 코인원은 콜드월렛 보관 비중을 85%로 유지하여 고객자산을 보다 안전하게 보호하려고 노력하고 있습니다. 이는 사단법인 한국블록체인협회 권고 사항인 70% 보다 높은 비중이죠.또한 IT전문 보안 기업 SK infosec의 체계적인 보안관제 서비스를 제공받고 있습니다. 사이버 침해 위협을 실시간으로 감시하고 SK infosec이 보유한 방대한 위험 정보 데이터 베이스에 기반하여 고도화된 위협에 대응하고 있습니다. 마지막으로 이번에 새로 사이버 보안 기업 티오리(THEORI)의 전문적인 보안 컨설팅을 받게 되었습니다. 티오리는 미국 오스틴에 본사를 둔 기업으로 카네기멜론대학 해커팀(PPP) 핵심 멤버들이 설립한 사이버 보안 R&D 기업인데요, 데프콘(DEFCON) 같은 유명한 국제해킹방어대회에서 항상 상위권에 랭크되고는 합니다. 이렇게 검증된 역량을 바탕으로 Pen-Test(모의해킹)을 통해 코인원의 보안 아키텍쳐를 점검하고, 발생 가능한 모든 침해 시나리오를 상정하여 이에 대비하기 위한 자문을 진행할거에요.이외 다수의 테크니컬한 부분은 영업비밀(?) 입니다. (와하하하)Q. 콜드월렛을 잘 모르실 수도 있는 독자분들을 위해서 자세한 설명 부탁드려요. 또한 85%까지 비중을 유지하는것이 왜 중요한가요?먼저 콜드월렛에 대한 설명을 드릴게요. 콜드월렛은 핫월렛과 달리 네트워크가 연결되지 않은 물리적으로 분리된 저장 공간을 말합니다. 콜드월렛에 보관한다는 의미는 고객의 암호화폐 자산을 침해 또는 해킹 위협으로부터 원천적으로 차단된 별도의 장소에 보관한다는 뜻입니다. 그런일이 있어서는 안되겠지만, 사이버 침해가 발생한다고 가정할 경우 고객의 피해를 최소화할 수 있는 안전 장치에요. 블록체인 협회에서는 70%이상을 콜드월렛에 보관하는 것을 권고하고 있는데요. 저희는 협회에서 권고하기 이전부터 자체적으로 월렛 관리 정책을 만들고 그에 따라 콜드월렛을 운영해왔습니다. 참고로, 85%로 유지하는 이유는 거래소 비즈니스적으로 병목현상이 일어날 수 있는 부분을 방지하기 위한 적정 수준이라고 답할 수 있겠네요.보안팀은 무시무시하지 않아요, 부드럽습니다! (그윽한 눈빛을 발사하는 지원님)Q. 거래소 보안 전문가로서 막중한 책임감을 갖고 계실 것 같아요. 코인원 입사 후에 가장 기억에 남았던 혹은 어려움을 겪었던 에피소드가 있을까요?코인원의 보안 수준을 어떻게 하면 제1금융권 수준까지 끌어올릴 수 있을까에 대한 고민이 매우 컸습니다. 블록체인과 암호화폐 업계가 굉장히 폭발적으로 성장해왔는데요. 폭발적으로 성장하는 속도를 따라잡을 수 있도록 보안 및 인프라팀에서 무수한 노력을 해왔어요. 짧은 시간내에 보안 인프라를 효율적으로 구축할 수 있을지 치열하게 진행했던 회의들이 생각나네요. 코인원의 많은 크루들이 노력해주시고 도와주신 덕분인지 현재까지 코인원에서는 단 한건의 해킹사고도 발생하지 않았습니다. 최근에 생각나는건 금번 NH농협은행과의 재계약에서 보안 요구사항과 점검에 대한 실사가 많았는데 다행이 보안요건을 충족하며 재계약한 것이 생각나네요.Q. 지원님은 앞으로 보안본부에서 어떤 꿈을 이뤄나가고 싶으세요?글로벌 회사를 보면 유명한 보안팀들이 있어요. 예를 들어 구글에는 ‘프로젝트 제로(Project Zero)’라는 팀이 있는데, 이 팀은 ‘제로데이(0-day)’ 공격을 대비하기 위한 팀이에요. 제로데이 공격은 알려지지 않은 취약점을 발견해서 이에 대처하기 전 무방비 상태인 점을 악용하는 사이버 공격 방법이에요. 프로젝트 제로는 제로데이 공격 위협을 사전에 해소하기 위해 자사 제품 뿐만 아니라 타사 제품까지 연구하고 취약점이 발견된다면 해당 회사에 전달해서 대처할 수 있게 합니다. 또 다른 예로 야후에 “패러노이즈(Paranoids)”를 들 수 있겠네요. 야후의 모든 제품은 패러노이즈의 승인 없이는 론칭되지 않습니다. 전문성이 뛰어나지 않다면 가능하지 않은 케이스죠.저는 보안을 위해서라면 편집증적인 집착도 용서가 된다고 생각하는데요, 암호화폐 거래소 뿐만 아니라 블록체인 전반적인 영역에 대해 전문성을 발전시켜 궁극의 편집증 환자가 되는게...(?) 아 이게 아니고, 글로벌 유수의 보안팀들과 어깨와 나란히 하고 싶습니다.Q. 마지막으로 묻겠습니다. 지원님에게 ‘화면잠금' 이란?(인터뷰에서까지 영혼이 털리네요...) 회사 메신저에 제 프로필을 보시면 “화면잠금 털린 보안어린이”라고 되어 있습니다. 슬프네요 흑. 농담이구요, 어떤 일이던지 기본부터 충실해야 한다는 초심을 찾을 수 있었던 계기도 되었고 또 의도하지 않았지만 코인원 크루들이 보안은 어려운게 아니구나 라는 인식으로 바뀌게 된 계기가 된 것 같습니다. 수많은 보안 캠페인을 기획하고 시행했지만 지금처럼 크루들에게 여운이 남아있던 적이 없던 것 같아요. 앞으로 쉽지만 누구나 할 수 있는 보안 캠페인을 고민해 볼께요. (좋은 아이디어 주시면 제가 커피를 쏩니다!)충성! 단결! 필승! 오늘도 보안은 안전합니다 :-)언제나 보안을 최우선으로 고려하고, 원칙을 지키며 건전한 암호화폐 시장을 만들기 위해 지원님은 오늘도 24시간 365일 보안에 대한 고민을 풀가동하고 있습니다. 코인원을 이용하는 고객들의 안전한 거래를 위해 끊임없이 노력하는 보안전략기획팀에 많은 응원 부탁드립니다!#코인원 #블록체인 #기술기업 #암호화폐 #스타트업인사이트 #기업문화 #조직문화 #팀원소개 #인터뷰
조회수 6616

`git push —force` 이야기

안녕하세요. 스타일쉐어 개발팀의 김현준입니다. 훌륭한 엔지니어링 경험을 공유하고 싶어 만든 블로그이지만, 아직까지는 그런 일이 없었던지라, 창피한 장애 경험을 공유하고자 합니다.배경:웹 서비스 디플로이는 프로덕션 웹 서버에서 업스트림 master를 풀 받아 리로드하는 방식으로 진행하고 있습니다.CSS, JS 등의 파일들은 CDN을 위해 매 빌드마다 디플로이 이전에 S3에 업로드합니다. Git 커밋의 SHA1 해시를 키로 사용합니다.장애:어제 새벽 서비스에 긴급한 패치가 있었습니다. 하지만 이 커밋은 8분 후 다시 롤백되는데…오늘 오후 디플로이 이후에 갑자기 웹 사이트의 스타일이 전부 깨져보이기 시작했습니다.심지어 아무리 커밋 로그를 살펴봐도 존재하지도 않는 커밋 해시로 파일을 요청하고 있었습니다.원인:롤백을 git revert 명령으로 하는 대신에, 이전 커밋으로 HEAD를 돌리고 git push --force로 업스트림을 덮어썼습니다.해당 커밋은 이미 디플로이가 되어있었지만, 되돌린 이후에 다시 디플로이를 하지 않았습니다.다음 디플로이할 때 해당 웹 서버 로컬에서 업스트림 master를 풀 받자, (개발자의 로컬이나, GitHub에서 보이는 커밋 트리와 달랐기 때문에) 서로 다른 커밋 해시를 가지게 되었습니다.404교훈:force-push를 (창피한 실수라던지, 지저분한 여러개의 커밋이라던지) 이력을 남기고 싶지 않을 때 사용하는 경우가 있는데요. 이는 위의 사례처럼 해당 커밋을 이미 풀 받은 다른 개발자의 로컬을 꼬이게 하거나, 장애를 유발할 수가 있습니다. 롤백을 하고 싶은 경우엔 revert 명령을, 커밋을 정리하고 싶은 경우엔 각자의 브랜치에서 충분히 rebase를 한 뒤에 올리는 습관을 꼭 가져야겠습니다.#스타일쉐어 #개발 #개발자 #개발팀 #인사이트 #후기 #일지
조회수 1151

개발자의 경력관리란?

경력이 아닌 업력이 되는 단계에 이르러야 가능한 것 아닌가 합니다.대부분의 경력은 '어느 회사의 누구'라는 표현에서 만들어진 것이 아닙니다.진정한 경력의 결과는 '자신의 이름'이 곧 브랜드화 되는 것입니다.매우 당연하게,하루 이틀, 한 두해 한다고 해서 얻어지는 것이 아닙니다."10년 경력!"10년 이상 한 분야나 하나의 도메인, 하나의 테크, 하나의 경력, 하나의 경험을 꾸준하게 파고들었을 때에 얻어지고, 그러는 경험속에서 인사이트, 통찰력이 생기게 됩니다.물론. 그래서, 20대에도 명성을 얻을 수 있는 '경력관리'가 가능하다고 이야기합니다.(실제 얻은 사람을 많이 봤습니다. 그들은 10대에 시작했죠. )회사의 테두리 내에서 얻을 수 있는 '경력'은 '경험'일뿐입니다.자신의 이름을 중심으로 기술할 수 있을 때에 '경력'이라고 이야기할 수 있습니다.개발자라면...글을 써서도 얻을 수 있고,강연을 해서도 얻을 수 있고,GitHub에 오픈소스를 공개하면서도 얻을 수 있습니다.현재 30대와 그 이전의 개발자라면...10대와 20대도 똑같습니다.40대, 50대 이후를 준비하세요.반복적인 일, 똑같은 일, 회사의 프로세스의 하나인 일만 하는 '사람'이라면...그냥, 그 회사의 톱니바퀴가 되는 것입니다.대부분 '경력관리'가 잘 안됩니다.앞으로 50대 이후에도 '브랜드'를 얻을 사람이 되려면...자신의 '경력'관리를 잘 해야 얻을 수 있습니다.나중에 닭 튀기거나 치킨 배달할 것이 아니라면...관리를 잘해야 합니다.경력관리가 가능하려면 어떤 회사를 찾아야 할까요.다음을 기억하세요.1. 구루급 개발자가 있는 회사를 찾으세요.2. 자신이 주도적으로 무언가를 만들 수 있는 권한과 책임을 줄 수 있는 회사를 찾으세요.3. 커뮤니티나 외부 강연, 외부 오픈소스 개발 행사에 적극 참여할 수 있는 기회를 주는 회사를 찾으세요.4. 반복적인 업무와 정체된 마켓에서만 반복적으로 서비스를 하는 회사는 회피하세요.5. 우리 도메인은 원래 이래, 이 일은 원래 이래... 이런 식으로 이야기하는 '상급자'가 있는 회사를 피하세요.6. 쉽게 설명할 수 있도록 준비하고, 리뷰를 할 수 있는 기회와 시간이 주어지는 회사를 찾으세요.그리고, 마지막으로...비전은 누가 주거나 만들어 주지 않습니다.결국, 자기 자신이 찾아야 하는데...이것도, 주변에 이야기가 통하는 '구루급 개발자'가 있어야 그나마 방향성을 찾기 좋습니다.혼자 고민하거나,주변에 비슷한 사람들끼리 고민해봐야 답이 안 나옵니다.꼭, 기억하세요!'구루급 개발자'와 상의하세요.그분들은 실패와 성공, 포기와 단념, 선택과 집중에 대해서 알고 있답니다.퇴근시간이라면..구루급 개발자에게 치맥 한잔 하자고 하세요!
조회수 1104

비트윈의 HBase 스키마 해부

비트윈에서는 HBase를 메인 데이터베이스로 이용하고 있습니다. 유저 및 커플에 대한 정보와 커플들이 주고받은 메시지, 업로드한 사진 정보, 메모, 기념일, 캘린더 등 서비스에서 만들어지는 다양한 데이터를 HBase에 저장합니다. HBase는 일반적인 NoSQL과 마찬가지로 스키마를 미리 정의하지 않습니다. 대신 주어진 API를 이용해 데이터를 넣기만 하면 그대로 저장되는 성질을 가지고 있습니다. 이런 점은 데이터의 구조가 바뀔 때 별다른 스키마 변경이 필요 없다는 등의 장점으로 설명되곤 하지만, 개발을 쉽게 하기 위해서는 데이터를 저장하는데 어느 정도의 규칙이 필요합니다. 이 글에서는 비트윈이 데이터를 어떤 구조로 HBase에 저장하고 있는지에 대해서 이야기해 보고자 합니다.비트윈에서 HBase에 데이터를 저장하는 방법¶Thrift를 이용해 데이터 저장: Apache Thrift는 자체적으로 정의된 문법을 통해 데이터 구조를 정의하고 이를 직렬화/역직렬화 시킬 수 있는 기능을 제공합니다. 비트윈에서는 서버와 클라이언트가 통신하기 위해 Thrift를 이용할 뿐만 아니라 HBase에 저장할 데이터를 정의하고 데이터 저장 시 직렬화를 위해 Thrift를 이용합니다.하나의 Row에 여러 Column을 트리 형태로 저장: HBase는 Column-Oriented NoSQL로 분류되며 하나의 Row에 많은 수의 Column을 저장할 수 있습니다. 비트윈에서는 Column Qualifier를 잘 정의하여 한 Row에 여러 Column을 논리적으로 트리 형태로 저장하고 있습니다.추상화된 라이브러리를 통해 데이터에 접근: 비트윈에서는 HBase 클라이언트 라이브러리를 직접 사용하는 것이 아니라 이를 래핑한 Datastore라는 라이브러리를 구현하여 이를 이용해 HBase의 데이터에 접근합니다. GAE의 Datastore와 인터페이스가 유사하며 실제 저장된 데이터들을 부모-자식 관계로 접근할 수 있게 해줍니다.트랜잭션을 걸고 데이터에 접근: HBase는 일반적인 NoSQL과 마찬가지로 트랜잭션을 제공하지 않지만 비트윈에서는 자체적으로 제작한 트랜잭션 라이브러리인 Haeinsa를 이용하여 Multi-Row ACID 트랜잭션을 걸고 있습니다. Haeinsa 덕분에 성능 하락 없이도 데이터 무결성을 유지하고 있습니다.Secondary Index를 직접 구현: HBase에서는 데이터를 Row Key와 Column Qualifier를 사전식 순서(lexicographical order)로 정렬하여 저장하며 정렬 순서대로 Scan을 하거나 바로 임의 접근할 수 있습니다. 하지만 비트윈의 어떤 데이터들은 하나의 Key로 정렬되는 것으로는 충분하지 않고 Secondary Index가 필요한 경우가 있는데, HBase는 이런 기능을 제공하지 않고 있습니다. 비트윈에서는 Datastore 라이브러리에 구현한 Trigger을 이용하여 매우 간단한 형태의 Secondary Index를 만들었습니다.비트윈 HBase 데이터 구조 해부¶페이스북의 메시징 시스템에 관해 소개된 글이나, GAE의 Datastore에 저장되는 구조를 설명한 글을 통해 HBase에 어떤 구조로 데이터를 저장할지 아이디어를 얻을 수 있습니다. 비트윈에서는 이 글과는 약간 다른 방법으로 HBase에 데이터를 저장합니다. 이에 대해 자세히 알아보겠습니다.전반적인 구조¶비트윈에서는 데이터를 종류별로 테이블에 나누어 저장하고 있습니다. 커플과 관련된 정보는 커플 테이블에, 유저에 대한 정보는 유저 테이블에 나누어 저장합니다.각 객체와 관련된 정보는 각각의 HBase 테이블에 저장됩니다.또한, 관련된 데이터를 하나의 Row에 모아 저장합니다. 특정 커플과 관련된 사진, 메모, 사진과 메모에 달린 댓글, 기념일 등의 데이터는 해당 커플과 관련된 하나의 Row에 저장됩니다. Haeinsa를 위한 Lock Column Family를 제외하면, 데이터를 저장하기 위한 용도로는 단 하나의 Column Family만 만들어 사용하고 있습니다.각 객체의 정보와 자식 객체들은 같은 Row에 저장됩니다.또한, 데이터는 기본적으로 하나의 Column Family에 저장됩니다.이렇게 한 테이블에 같은 종류의 데이터를 모아 저장하게 되면 Region Split하는 것이 쉬워집니다. HBase는 특정 테이블을 연속된 Row들의 집합인 Region으로 나누고 이 Region들을 여러 Region 서버에 할당하는 방식으로 부하를 분산합니다. 테이블을 Region으로 나눌 때 각 Region이 받는 부하를 고려해야 하므로 각 Row가 받는 부하가 전체적으로 공평해야 Region Split 정책을 세우기가 쉽습니다. 비트윈의 경우 커플과 관련된 데이터인 사진이나 메모를 올리는 것보다는 유저와 관련된 데이터인 메시지를 추가하는 트래픽이 훨씬 많은데, 한 테이블에 커플 Row와 유저 Row가 섞여 있다면 각 Row가 받는 부하가 천차만별이 되어 Region Split 정책을 세우기가 복잡해집니다. RegionSplitPolicy를 구현하여 Region Split 정책을 잘 정의한다면 가능은 하지만 좀 더 쉬운 방법을 택했습니다.또한, 한 Row에 관련된 정보를 모아서 저장하면 성능상 이점이 있습니다. 기본적으로 한 커플에 대한 데이터들은 하나의 클라이언트 요청을 처리하는 동안 함께 접근되는 경우가 많습니다. HBase는 같은 Row에 대한 연산을 묶어 한 번에 실행시킬 수 있으므로 이 점을 잘 이용하면 성능상 이득을 얻을 수 있습니다. 비트윈의 데이터 구조처럼 특정 Row에 수많은 Column이 저장되고 같은 Row의 Column들에 함께 접근하는 경우가 많도록 설계되어 있다면 성능 향상을 기대할 수 있습니다. 특히 Haeinsa는 한 트랜잭션에 같은 Row에 대한 연산은 커밋시 한 번의 RPC로 묶어 처리하므로 RPC에 드는 비용을 최소화합니다. 실제 비트윈에서 가장 많이 일어나는 연산인 메시지 추가 연산은 그냥 HBase API를 이용하여 구현하는 것보다 Haeinsa Transaction API를 이용해 구현하는 것이 오히려 성능이 좋습니다.Column Qualifier의 구조¶비트윈은 커플들이 올린 사진 정보들을 저장하며, 또 사진들에 달리는 댓글 정보들도 저장합니다. 한 커플을 Root라고 생각하고 커플 밑에 달린 사진들을 커플의 자식 데이터, 또 사진 밑에 달린 댓글들을 사진의 자식 데이터라고 생각한다면, 비트윈의 데이터들을 논리적으로 트리 형태로 생각할 수 있습니다. 비트윈 개발팀은 Column Qualifier를 잘 정의하여 실제로 HBase에 저장할 때에도 데이터가 트리 형태로 저장되도록 설계하였습니다. 이렇게 트리 형태로 저장하기 위한 Key구조에 대해 자세히 알아보겠습니다.Column Qualifier를 설계할 때 성능을 위해 몇 가지 사항들을 고려해야 합니다. HBase에서는 한 Row에 여러 Column이 들어갈 수 있으며 Column들은 Column Qualifier로 정렬되어 저장됩니다. ColumnRangeFilter를 이용하면 Column에 대해 정렬 순서로 Scan연산이 가능합니다. 이 때 원하는 데이터를 순서대로 읽어야 하는 경우가 있는데 이를 위해 Scan시, 최대한 Sequential Read를 할 수 있도록 설계해야 합니다. 또한, HBase에서 데이터를 읽어올 때, 실제로 데이터를 읽어오는 단위인 Block에 대해 캐시를 하는데 이를 Block Cache라고 합니다. 실제로 같이 접근하는 경우가 빈번한 데이터들이 최대한 근접한 곳에 저장되도록 설계해야 Block Cache의 도움을 받을 수 있습니다.비트윈에서는 특정 커플의 사진이나 이벤트를 가져오는 등의 특정 타입으로 자식 데이터를 Scan해야하는 경우가 많습니다. 따라서 특정 타입의 데이터를 연속하게 저장하여 최대한 Sequential Read가 일어나도록 해야 합니다. 이 때문에 Column Qualifier가 가리키는 데이터의 타입을 맨 앞에 배치하여 같은 타입의 자식 데이터들끼리 연속하여 저장되도록 하였습니다. 만약 가리키는 데이터의 타입과 아이디가 Parent 정보 이후에 붙게 되면 사진 사이사이에 각 사진의 댓글 데이터가 끼어 저장됩니다. 이렇게 되면 사진들에 대한 데이터를 Scan시, 중간중간 저장된 댓글 데이터들 때문에 완벽한 Sequential Read가 일어나지 않게 되어 비효율적입니다.이렇게 특정 타입의 자식들을 연속하게 모아 저장하는 묶음을 컬렉션이라고 합니다. 컬렉션에는 컬렉션에 저장된 자식들의 개수나 새로운 자식을 추가할 때 발급할 아이디 등을 저장하는 Metadata가 있습니다. 이 Metadata도 특정 Column에 저장되므로 Metadata를 위한 Column Qualifier가 존재합니다. 이를 위해 Column Qualifier에는 Column Qualifier가 자칭하는 데이터가 Metadata인지 표현하는 필드가 있는데, 특이하게도 메타데이터임을 나타내는 값이 1이 아니라 0입니다. 이는 Metadata가 컬렉션의 맨 앞쪽에 위치하도록 하기 위함입니다. 컬렉션을 읽을 때 보통 맨 앞에서부터 읽는 경우가 많고, 동시에 Metadata에도 접근하는 경우가 많은데, 이 데이터가 인접하게 저장되어 있도록 하여 Block Cache 적중이 최대한 일어나도록 한 것입니다.Datastore 인터페이스¶비트윈에서는 이와 같은 데이터 구조에 접근하기 위해 Datastore라는 라이브러리를 구현하여 이를 이용하고 있습니다. HBase API를 그대로 이용하는 것보다 좀 더 쉽게 데이터에 접근할 수 있습니다. GAE의 Datastore와 같은 이름인데, 실제 인터페이스도 매우 유사합니다. 이 라이브러리의 인터페이스에 대해 간단히 알아보겠습니다.Key는 Datastore에서 HBase에 저장된 특정 데이터를 지칭하기 위한 클래스입니다. 논리적으로 트리 형태로 저장된 데이터 구조를 위해 부모 자식 관계를 이용하여 만들어 집니다.Key parentKey = new Key(MType.T_RELATIONSHIP, relId);Key photoKey = new Key(parentKey, MType.T_PHOTO, photoId); // 특정 커플 밑에 달린 사진에 대한 키Datastore는 Key를 이용해 Row Key와 Column Qualifier를 만들어 낼 수 있습니다. Datastore는 이 정보를 바탕으로 HBase에 새로운 데이터를 저장하거나 저장된 데이터에 접근할 수 있는 메서드를 제공합니다. 아래 코드에서 MUser 클래스는 Thrift로 정의하여 자동 생성된 클래스이며, Datastore에서는 이 객체를 직렬화 하여 HBase에 저장합니다.MUser user = new MUser();user.setNickname("Alice");user.setGender(Gender.FEMALE);user.setStatus("Hello World!"); Key userKey = new Key(MType.T_USER, userId);getDatastore().put(userKey, user);user = getDatastore().get(userKey);getDatastore().delete(userKey);또한, Datastore는 Key를 범위로 하여 Scan연산이 할 수 있도록 인터페이스를 제공합니다. Java에서 제공하는 Try-with-resource문을 이용하여 ResultScanner를 반드시 닫을 수 있도록 하고 있습니다. 내부적으로 일단 특정 크기만큼 배치로 가져오고 더 필요한 경우 더 가져오는 식으로 구현되어 있습니다.try (CloseableIterable> entries = getDatastore().subSibling(fromKey, fromInclusive, toKey, toInclusive)) { for (KeyValue entry : entries) { // do something }}Secondary Index 구현 방법¶HBase는 데이터를 Row Key나 Column Qualifier로 정렬하여 저장합니다. 이 순서로만 Sequential Read를 할 수 있으며 Key값을 통해 특정 데이터를 바로 임의 접근할 수 있습니다. 비트윈에서는 특정 달에 해당하는 이벤트들을 읽어오거나 특정 날짜의 사진들의 리스트를 조회하는 등 id 순서가 아니라 특정 값을 가지는 데이터를 순서대로 접근해야 하는 경우가 있습니다. 이럴 때에도 효율적으로 데이터에 접근하기 위해서는 id로 정렬된 것 외에 특정 값으로 데이터를 정렬할 수 있어야 합니다. 하지만 HBase에서는 이와 같은 Secondary Index 같은 기능을 제공하지 않습니다. 비트윈 개발팀은 이에 굴하지 않고 Secondary Index를 간단한 방법으로 구현하여 사용하고 있습니다.구현을 간단히 하기 위해 Secondary Index를 다른 데이터들과 마찬가지로 특정 타입의 데이터로 취급하여 구현하였습니다. 따라서 Index에 대해서도 Column Qualifier가 발급되며, 이때, Index에 해당하는 id를 잘 정의하여 원하는 순서의 Index를 만듭니다. 이런 식으로 원하는 순서로 데이터를 정렬하여 저장할 수 있으며 이 인덱스를 통해 특정 필드의 값의 순서대로 데이터를 조회하거나 특정 값을 가지는 데이터에 바로 임의 접근할 수 있습니다. 또한, Index에 실제 데이터를 그대로 복사하여 저장하여 Clustered Index처럼 동작하도록 하거나, Reference만 저장하여 Non-Clustered Index와 같이 동작하게 할 수도 있습니다. Datastore 라이브러리에는 특정 데이터가 추가, 삭제, 수정할 때 특정 코드를 실행할 수 있도록 Trigger 기능이 구현되어 있는데, 이를 통해 Index를 업데이트합니다. 데이터의 변경하는 연산과 Index를 업데이트하는 연산이 하나의 Haeinsa 트랜잭션을 통해 원자적으로 일어나므로 데이터의 무결성이 보장됩니다.못다 한 이야기¶각 테이블의 특정 Row의 Column들에 대한 Column Qualifier외에도 Row에 대한 Row Key를 정의 해야 합니다. 비트윈에서는 각 Row가 표현하는 Root객체에 대한 아이디를 그대로 Row Key로 이용합니다. 새로운 Root객체가 추가될 때 발급되는 아이디는 랜덤하게 생성하여 객체가 여러 Region 서버에 잘 분산될 수 있도록 하였습니다. 만약 Row Key를 연속하게 발급한다면 특정 Region 서버로 연산이 몰리게 되어 성능 확장에 어려움이 생길 수 있습니다.데이터를 저장할 때 Thrift를 이용하고 있는데, Thrift 때문에 생기는 문제가 있습니다. 비트윈에서 서버를 업데이트할 때 서비스 중지 시간을 최소화하기 위해 롤링 업데이트를 합니다. Thrift 객체에 새로운 필드가 생기는 경우, 롤링 업데이트 중간에는 일부 서버에만 새로운 Thift가 적용되어 있을 수 있습니다. 업데이트된 서버가 새로운 필드에 값을 넣어 저장했는데, 아직 업데이트가 안 된 서버가 이 데이터를 읽은 후 데이터를 다시 저장한다면 새로운 필드에 저장된 값이 사라지게 됩니다. Google Protocol Buffer의 경우, 다시 직렬화 할 때 정의되지 않은 필드도 처리해주기 때문에 문제가 없지만, Thrift의 경우에는 그렇지 않습니다. 비트윈에서는 새로운 Thrift를 적용한 과거 버전의 서버를 먼저 배포한 후, 업데이트된 서버를 다시 롤링 업데이트를 하는 식으로 이 문제를 해결하고 있습니다.저희는 언제나 타다 및 비트윈 서비스를 함께 만들며 기술적인 문제를 함께 풀어나갈 능력있는 개발자를 모시고 있습니다. 언제든 부담없이 [email protected]로 이메일을 주시기 바랍니다!

기업문화 엿볼 때, 더팀스

로그인

/