스토리 홈

인터뷰

피드

뉴스

조회수 1078

Rxjava를 이용한 안드로이드 개발

Overview브랜디는 현재 2.0 기반 Android 버전입니다. Main Thread와 Sub Thread 사이의 ANR를 방지하려고 Volley, Otto Bus Library를 사용해서 백엔드 서비스(back-end Service)를 연동하고 있습니다. 이제 3.0 개발로 더 좋은 백엔드 서비스 기능을 만들려고 합니다. (기반 작업은 이미 완료했습니다.) 다만 3년 동안 브랜디 앱을 개발하면서 느꼈던 고통과 피로를 ‘제발’ 줄여보고 싶어서 브랜디 3.0에서는 Retrofit2 와 RxJava, Lambda 표현식을 사용하기로 했습니다. RxJava(Reactive programming)는 가장 추천하고 싶은 것 중 하나입니다. 우리는 함수형 리액티브(반응형) 프로그램이라는 표현으로 자주 마주치곤 하는데요. 주로 옵저버 패턴(Observer pattern)을 대체하기 위해 사용합니다. 단순히 데이터를 넘기고 마무리하는 건 옵저버 패턴으로도 충분하지만 대부분의 문제는 이벤트들을 묶어서 사용할 때 생깁니다.1) RxJava는 이벤트에 대한 조건 처리나 실패 처리, 리소스 정리에 대비해 사용합니다. 기존 방식의 명령형 리액티브 접근 방식을 사용하면 복잡함이 지속적으로 증가하는 반면, 함수형 리액티브 프로그래밍은 효율을 크게 높일 수 있습니다. 몇 가지 예제와 함께 살펴보겠습니다. Android에 직접 사용해보기새로운 프로젝트를 생성한 후, 아래와 같이 build.gradle 파일을 수정해봅시다. (JDK 1.8 설치 필수) apply plugin: 'com.android.application' android {    compileSdkVersion 26   defaultConfig {        applicationId "kr.co.brandi.myapplication"        minSdkVersion 21        targetSdkVersion 26        versionCode 1        versionName "1.0"        testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"    }    buildTypes {        release {            minifyEnabled false            proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'        }    }   //추가된 부분 1      compileOptions {        sourceCompatibility JavaVersion.VERSION_1_8        targetCompatibility JavaVersion.VERSION_1_8   }  } dependencies {    implementation fileTree(dir: 'libs', include: ['*.jar'])       //추가된 부분2    implementation 'io.reactivex.rxjava2:rxandroid:2.0.1'    implementation 'io.reactivex.rxjava2:rxjava:2.1.3'      implementation 'com.android.support:appcompat-v7:26.1.0'    implementation 'com.android.support.constraint:constraint-layout:1.0.2'    implementation 'com.android.support:design:26.1.0'    testImplementation 'junit:junit:4.12'    androidTestImplementation 'com.android.support.test:runner:1.0.1'    androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.1' } 이제 람다 표현식과 RxJava를 사용할 준비가 되었습니다.Flowable.just("Hello World").subscribe(new Consumer() {    @Override   public void accept(String s) throws Exception {        Log.v(tag, s);   }  });   Flowable.just("Hello World !").subscribe(s -> Log.v(tag, s)); 간단한 생성자와 결과를 출력하는 부분입니다. 두 번째 subscribe는 람다 표현식으로 인터페이스를 생성하지 않더라도 첫 부분과 동일하게 결과물을 얻을 수 있습니다.2) 이제 RxJava에서 간단한 필터링으로 간편하게 데이터를 가공하는 능력을 확인해보겠습니다. 아래 코드는 기본적인 List 의 값을 출력하는 부분입니다.List valueList = Arrays.asList(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10);   for (int data : valueList) {    String result = "value " + data;    Log.v(tag, result);  } Flowable.fromIterable(valueList)        .map(new Function() {            @Override            public String apply(Integer data) throws Exception {                return "value : " + data;            }        })        //.map(data -> "value : " + data)        .subscribe(data -> Log.v(tag, data)); 위의 코드에 조건을 추가해 ’짝수’만 출력하겠습니다.for (int data : valueList) {    if ((data % 2) == 0) {        String result = "value " + data;        Log.v(tag, result);    }  } Flowable.fromIterable(valueList)        //.filter(data -> {        //      return (data % 2) == 0;        //})        .filter(data -> (data % 2) == 0)        .map(data -> "value : " + data)        .subscribe(data -> Log.v(tag, data)); 위와 같이 데이터 가공은 순차적으로 진행되고, 여러 함수로 간단하게 처리할 수 있습니다. 원하는 데이터 가공을 위해 filter, map 등의 함수들을 순차적으로 이어 붙일 수도 있습니다.위에서 보여드린 RxJava는 간단한 예시이기 때문에 RxJava 의 기능을 좀 더 보여드리겠습니다.String[] data1 = {Shape.HEXAGON, Shape.OCTAGON, Shape.RECTANGLE};  String[] data2 = {Shape.TRIANGLE, Shape.DIAMOND, Shape.PENTAGON};   Flowable source =        Flowable.combineLatest(                Flowable.fromArray(data1)                        .zipWith(Flowable.interval(100L, TimeUnit.MILLISECONDS), (shape, notUsed) -> Shape.getId(shape)),                Flowable.fromArray(data2)                        .zipWith(Flowable.interval(150L, 200L, TimeUnit.MILLISECONDS), (shape, notUsed) -> Shape.getSuffix(shape)),                (id, suffix) -> id + suffix);   source.subscribe(s -> Log.d(getThreadName(), s)); CombineLatest() 함수를 이용해 두 개의 스트림을 하나로 처리하는 방법을 보여 드렸습니다. 각각의 스트림은 interval 함수를 시간 간격으로 data1과 data2 배열의 개수만큼 반복하여 처리하는 로직입니다. 서로 다른 두 스트림은 마지막 데이터를 가지고 있으며 새로운 데이터가 나올 때마다 하나의 스트림으로 출력됩니다.마블 다이어그램 3)결과Conclusion만약 RxJava를 이용하지 않고 두 개의 TimerTask를 이용해서 코딩했다면 결과는 같았을지도 모릅니다. 이제 RxJava를 알기 때문에 다시는 TimerTask를 이용해서 코딩할 일은 없을 겁니다. 알면 알수록 다양한 기능을 갖추고 있는 RxJava! 이제 브랜디 상용화 버전에 사용할 수 있게 다시 개발의 숲으로 들어가겠습니다. 그럼 이만. 1)함수나 네트워크 호출의 비동기 응답 2)Java 8 람다 표현식 자세히 살펴보기, 2018.03.09. 3)RxJava on Android 글고재성 과장 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 2321

Good Developer 3 | 나쁜 개발자의 11가지 습관

세상에 나쁜 개발자는 없다. 나쁜 개발 습관만 있을 뿐나쁜 개발자란 누구를 지칭하는 것일까? 코드가 별로인 개발자? 커뮤니케이션이 안되는 개발자? 나쁜 개발자로 지칭될 수 있는 사람들은 굉장히 많다. 하지만, 세상에는 나쁜 개발자는 없다고 생각한다. 단지, 나쁜 개발 습관만 존재할 뿐. 즉, 누구든지 나쁜 습관을 버리고 좋은 습관을 갖는다면 언제든지 좋은 개발자가 될 수 있다는 것이다. 좋은 개발자, 나쁜 개발자. 이것은 칭호가 아니라 속성일 뿐이다. 언제든지 바뀔 수 있는 속성 말이다.이것이 속성인 이유는 누구든지 좋은 개발자와 나쁜 개발자의 속성들을 가지고 있기 때문이다. 단지 그 속성의 비율의 차이가 그 사람이 어떤 개발자인지 결정할 뿐이다. 흔히, 좋은 개발자라고 불리는 사람도 나쁜 개발 습관이 있을 수 있다. 또, 나쁜 개발자라고 욕을 먹는 사람도 좋은 개발 습관이 있을 수 있다.우리는 이 글에서 나쁜 개발 습관(혹은 속성)들을 알아보고 왜 그것이 나쁜지 그리고 그것을 어떻게 피하는지에 대해 이야기할 것이다. 좋은 습관이 아니라 나쁜 습관들을 이야기하는 이유가 있다. 좋은 습관은 습득하기 어렵다. 하지만, 나쁜 습관을 버리는 것은 더더욱 어렵다. 나쁜 습관을 피하는 것이 때로는 좋은 개발자가 되기 위한 요건일 수도 있다. 아래의 습관들을 보면서 자신을 진단해 보자.(아래의 습관들 중 습관인 것들도 있고 단순히 사고방식이나 경향인 것들이 있다. 여기서 습관은 사고방식이나 행동의 양식 등 총체적인 행동 방식 등을 의미한다.)습관 1: 코드 리뷰가 없다.지난번에 같이 해보니까 험악만 말만 나오고, 분위기만 안 좋아졌다. 후배들에게 코드 지적받는 것도 자존심 상하고... 그리고 대부분 시니어들이 지적하고 주니어들은 고개만 끄덕이는 자리 아닌가? 코드 리뷰 할 시간에 코드 한 줄이라도 더 짜서 프로젝트 마감일이나 지키는 게 낫지. 솔직히, 프로라면 자기 코드는 자기가 책임져야 하는 거 아닌가?습관 2: 문서화를 하지 않는다.아니 개발할 시간도 부족한데 무슨 문서화인가. 개발자가 개발하는 사람이지 문서 만드는 사람인가? 인수인계받을 사람 오면 직접 알려주면서 일주일이면 끝날 텐데 말이다. 그리고 이때까지 만든 문서들 만들고 나서 본적이나 있나? 그냥 보여주기식 파일이지 뭐.습관 3: 커뮤니케이션 향상에 관심이 없다.지금도 말 잘하고 대화 잘 통하는데 더 향상시킬게 있나? 그리고 개발자의 핵심은 커뮤니케이션이 아니라 코딩인데 말이야. 컴퓨터랑만 잘 소통하면 되지. 어차피 다른 부서에 있는 사람들은 개발 기술에 대해서 잘 알지도 못하고... 커뮤니케이션 스킬은 그런 사람들이 향상시켜야 한다고 생각한다.습관 4: 업무 공유가 되지 않는다. 자신의 일에 대해 알고 있는 사람이 없다. 데드라인 잘 지키고, 주어진 일을 잘 해내면 된다고 생각한다. 보고를 하기 전까지 굳이 보고하지 않고, 동료나 후배들과 업무 공유를 잘 하지 않는다. 어차피 내가 하는 일에 별로 관심도 없는데 공유해봤자 무슨 소용인가?습관 5: 코드의 복붙(복사 후 붙여넣기)가 '일상화'되어 있다.직접 만드는 것보다 이미 만들어진 코드들을 찾아서 Ctrl +c,v하는게 더 빠르고 생산성 있다고 생각한다. 동료 개발자랑 공통 모듈을 만들어 사용할 수 있겠지만 그렇게 하기에는 너무 많은 리소스가 낭비된다고 생각한다. 잘 돌아가기만 하면 되지 않나?습관 6: 자신의 부족한 점을 드러내지 않는다.부족한 점에 대해 동료들과 터놓고 얘기하지 않는다. 괜히 부끄럽고 껄끄럽기도 하고 자신의 부족한 점이 드러나는 것이 두렵다. 동료들이 조언을 해주려고 해도 방어적으로 나오거나 피한다. 동료의 진솔한 피드백이 없으니 한 번 단점을 만들면 끝까지 내 것으로 가져간다.습관 7: 새로운 기술을 익히는데 시간을 투자하지 않는다.세상은 정말 빠르게 변하고 있다. 그리고 그 변화의 중심은 기술이고 기술 중에서도 IT 기술이 정점에 있다고 봐도 무방하다. 새로운 기술은 새로운 기술자들이 익히는 것이라 생각한다. 지금 하고 있는 일만으로도 벅차다. 그리고 지금 쓰는 기술이 시대의 주류인데 쉽게 바뀔까?습관 8: 자신의 개발 환경에서 벗어나지 않는다.개발자 모임이나 개발 커뮤니티에 시간을 쓰는 것은 낭비라고 생각한다. 개발에 대해 새로운 시도를 하지 않는다. 새로운 프레임워크나 협업 툴들이 나와도 기존의 환경을 고집한다. 왜냐하면 지금 개발 환경이 너무 편하고 익숙하니까.습관 9: 자신이 맡은 개발과 관련된 비즈니스를 이해하지 않는다.개발자는 개발에만 신경 쓰면 된다고 생각한다. 지금 개발하고 있는 서비스의 비즈니스적 관점은 생각해 본 적 없다. 어차피 기획자나 마케터, 프로덕트 매니저가 신경 써야 할 일이라고 생각한다. 개발만으로도 바쁜데 그것까지 신경 쓰면 정말 골치 아파진다.습관 10: 개발에 대한 지신만의 장기적인 목표가 없다.어떤 개발자가 되어야 하는지에 대한 목표가 없다. 주어진 프로젝트 외에 자신이 하고 싶은 프로젝트를 하면서 개발을 발전시키지 않는다. 그냥 개발의 메인 스트림을 따라만 간다. 커리어나 다른 생활에 대한 걱정은 종종 하지만, 개발 자체에 대한 고민은 하지 않는다.습관 11: 자신의 나쁜 개발 습관에 관심이 없다.(습관은 아니지만....)내가 나쁜 개발자라고...? 내가 하고 있는 것들이 나쁜 습관들이라고??? 글쎄..... 그냥저냥 잘 하고 있는 거 같은데.... 라고 생각하는 당신! 아무리 좋은 개발자라도 나쁜 습관은 존재하기 마련이다. 좋은 개발자는 좋은 습관들을 가지고 있는 개발자기도 하지만, 나쁜 습관들이 많지 않은 개발자이기도 하다.나쁜 환경은 나쁜 개발자를 만든다.당신이 만약 스스로를 나쁜 개발자라고 생각한다면 아마 '나쁜' 환경에서 개발을 했을 가능성이 크다. 혹은 선배가 나쁜 개발자여서 그 습관을 그대로 보고 배웠다든지, 아니면 좋은 개발자에 대한 고민 없이 흘러가듯 개발을 배웠을 것이다. 예를 들어, 코드 리뷰를 하지 않았던 것은 회사에서 코드 리뷰를 안 했을 가능성이 크다. 혹은 문서화를 안 하는 경우, 그 회사에서 그것에 대해 크게 신경 쓰기 있지 않을 가능성이 크다.Bad developers are not born, but created.위에서도 언급했듯이 나쁜 개발자는 없다. 나쁜 습관들이 있을 뿐. 당신이 지금 위의 습관에서 많은 부분들이 해당된다 하더라도, 그 습관들을 바꾸면 된다. 다른 개발자들에게 있는 좋은 습관들을 보고 배우면서 자신에게 해당되는 나쁜 습관들을 하나씩 바꿔나가는 것이다.환경이 바뀐다고 자신이 바뀌지는 않겠지만, 나쁜 환경이 나쁜 개발자를 만드는 것처럼, 좋은 환경은 좋은 개발자를 만든다. 좋은 환경을 찾아가라! 직장이 그걸 주지 못한다면 다른 곳에서라도 찾아라. 좋은 개발자는 나쁜 습관들을 하나씩 바꿔나갈 때 될 수 있을 것이다. 다음 포스팅에서는 좋은 개발자가 되기 위해 필요한 정보들을 압축적으로 모아 포스팅할 것이다.
조회수 2187

프로세스 마이닝과 AI를 통한 프로세스 혁신

지난해 이세돌과 알파고의 대결 이후에 인공 지능 (AI)과 기계 학습은 국내에서 많은 대중들의 관심을 얻어 중요한 추진력을 얻었으며, 모든 산업 분야의 기업들이 해당 기술을 빠른 속도로 계속 적용하여 사용하는 비중이 더욱 높아졌습니다. 실제로 Gartner는 2022년까지 스마트 머신과 로봇이 고학년 전문직 분야를 대체할 수 있을 것으로 내다봤으며, 심지어는 인공지능이 경영자 CEO도 대체 가능할 것인지에 대한 논의도 일어나고 있습니다. 이것은 사람이 과거 경험에 의해서 의사 결정을 내리 듯이 인공 지능도 확보한 데이터를 기반으로 의사 결정 모델을 만들 수 있다는 유사성에 기반합니다.  인공 지능에 의한 의사 결정은 사람한테 종종 있을 수 있는 감정이나 개인적 이해관계 및 관례에 의해 불합리한 판단에서 벗어나 데이터의 의한 객관적 판단을 할 수 있다는 장점이 있습니다.여기서 중요한 것은 인공지능이 학습하기 위한 “데이터”입니다.  지금까지 머신러닝이 막대한 이미지, 음성, 영상 데이터를 축적한 후 해당 데이터의 특징을 추출하여 패턴을 학습하여 자연어 처리 등을 통해 사람처럼 인식하여 분류하거나 상황을 판단하였듯이 기업 내 여러 가지 업무 활동에 머신 러닝을 적용하기 위해서는 이와 마찬가지로 관련 데이터가 필요합니다.제조 분야의 공정 관리, 공공 서비스, 물류 공급망 관리 등 전통적인 기업 내 업무 프로세스는 인공 지능에 의한 자동화과 효율화를 통해 혁신이 필요한 분야입니다. 기존에 외부 협력 업체로부터의 납기 예측, 소요되는 자재 인력 등 리소스 산정, 생산 스케줄, 장비 파라미터 입력값 등은 사람에 의해 수작업으로 진행 시 몇 주에서 수개월 소요되었지만, 인공 지능과 기계 학습 기반의 솔루션 도움으로 정확하게 지속적인 추세를 인식하고 인간의 개입 없이 데이터 중심의 결정이 가능해집니다.지금까지 기업 내 축적된 엄청난 양의 데이터를 활용하여 여러 산업 분야에서 숨겨진 패턴과 상관관계, 이상 징후 및 불량 탐지, 고객 수요 예측 등이 시도되었습니다. 하지만 이러한 시도들은 기업 내 문제 요인을 파악하여 우선적으로 어떤 부분에 초점을 맞추어 개선을 해야 하는지 알아야 하므로, 기업 경영 활동 전반에 걸쳐 돌아가는 판세를 읽는 노력이 필요합니다. 하지만, 기업 내에서 이뤄지고 있는 프로세스는 충분히 복잡하여, 개별 단위 작업의 전문가들은 존재하겠지만, 각 개별 부서, 구성원, 시스템 간에서 발생하는 다양한 상호작용과 이에 따른 예외 상황이 존재하여 이를 파악하기가 쉽지 않습니다.프로세스 마이닝은 데이터 기반의 프로세스 분석을 통해 문제 부분을 파악하여, 실제 인공 지능이나 머신 러닝을 적용하여 개선할 부분을 찾을 수 있도록 도와줍니다. 그리고, 프로세스 개선을 위해 머신러닝을 적용하기 위해서는 앞서 말한 것처럼 “데이터”가 학습될 수 있는 형태의 기반을 제공합니다.아래 그림과 같이 이벤트 로그를 기반으로 프로세스 모델을 생성하고, 수집된 패턴들과 각 분기 단계에서의 주요 성과 지표들을 디지털화하여 인공지능이 이해할 수 있는 형태로 축적합니다 이렇게 축적된 프로세스 패턴 데이터를 가지고 알파고가 최적화된 다음의 한 수를 예측하듯이 프로세스 마이닝은 인공 지능 기술과 결합하여 과거 프로세스에 대한 이해뿐만 아니라, 현재 시점에서 앞으로의 프로세스를 예측하여 합리적인 의사 결정을 도와줄 것입니다.#퍼즐데이터 #개발팀 #개발자 #개발후기 #인사이트
조회수 4867

안드로이드 앱의 Persistent data를 제대로 암호화해 보자! (2/2)

들어가기1부에서는, KeyStore 를 사용해 Shared Preferences 를 암호화 하는 법에 대해 알아봤습니다. 그리고 이 글에서는 Room을 사용한 Database 를 암호화 하는 방법에 대해 설명합니다.2018년 현재, 안드로이드 자체에서 데이터베이스를 암호화하는 기능을 제공해 주진 않습니다. 따라서 오픈 소스 프로젝트인 SQLCipher, SafeRoom 의 사용법 위주로 설명할 예정입니다. 또한 KeyStore 에 대칭키를 생성하는 기능은 API Level 23 이후에서만 가능하며, SQLCipher 가 Android KeyStore 를 지원하지 않고 있습니다.이로 인해 1부에서 소개한 키 암호화 메커니즘으로 보호한 별도의 키를 디스크 어딘가에 저장해 두고, 필요할 때만 복호화 해서 쓴 다음 복호화된 내용을 지우는 방식으로 구현해야 합니다. 하지만 이런 방식으로 사용하는 키는 메모리에 순간적으로 남기 때문에 좋은 공격 표면(Attack surface) 이 됩니다. 그 이유도 함께 다뤄 보겠습니다.SqlCipher team 에서 하루라도 빨리 현재의 char[] 형식의 passphrase 를 입력받는 대신, JCA 를 사용해 암호화하는 데이터베이스를 구현하길 기대해 봅시다.SqlCipher1부에서 보여드렸다시피 internal storage 에 저장한 데이터는 결코 안전하지 않습니다. 파일 DB 인 Sqlite 데이터는 포맷을 모르면 어차피 볼 수 없을테니 조금 다르지 않을까요? 그렇지 않다는 것을 다음 예에서 보여드리겠습니다. 루팅한 디바이스에서 adb pull명령으로 sqlite3 데이터베이스를 추출 후 내용을 열어보면 다음과 같습니다.$ hexdump -vC secure_database.sqlite3 00000000  53 51 4c 69 74 65 20 66  6f 72 6d 61 74 20 33 00  |SQLite format 3.| 00000010  10 00 02 02 00 40 20 20  00 00 00 02 00 00 00 04  |.....@  ........| 00000020  00 00 00 00 00 00 00 00  00 00 00 04 00 00 00 04  |................| 00000030  00 00 00 00 00 00 00 04  00 00 00 01 00 00 00 00  |................| 00000040  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................| 00000050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 02  |................| 00000060  00 2e 01 5a 0d 0f 95 00  02 0e a9 00 0e a9 0f c9  |...Z............| 00000070  0e 6f 0e 6f 00 00 00 00  00 00 00 00 00 00 00 00  |.o.o............| ... 00000d30  00 00 00 00 00 82 37 03  07 17 57 57 01 83 4d 74  |......7...WW..Mt| 00000d40  61 62 6c 65 73 71 6c 69  74 65 62 72 6f 77 73 65  |ablesqlitebrowse| 00000d50  72 5f 72 65 6e 61 6d 65  5f 63 6f 6c 75 6d 6e 5f  |r_rename_column_| 00000d60  6e 65 77 5f 74 61 62 6c  65 73 71 6c 69 74 65 62  |new_tablesqliteb| 00000d70  72 6f 77 73 65 72 5f 72  65 6e 61 6d 65 5f 63 6f  |rowser_rename_co| 00000d80  6c 75 6d 6e 5f 6e 65 77  5f 74 61 62 6c 65 05 43  |lumn_new_table.C| 00000d90  52 45 41 54 45 20 54 41  42 4c 45 20 60 73 71 6c  |REATE TABLE `sql| 00000da0  69 74 65 62 72 6f 77 73  65 72 5f 72 65 6e 61 6d  |itebrowser_renam| 00000db0  65 5f 63 6f 6c 75 6d 6e  5f 6e 65 77 5f 74 61 62  |e_column_new_tab| 00000dc0  6c 65 60 20 00 00 00 00  00 00 00 00 00 00 00 09  |le` ............| ... [리스트 1] Internal storage 에 저장된 SQLite3 database 를 dump 한 결과.역시 기대했던대로 데이터가 하나도 암호화되어 있지 않은 것을 확인할 수 있습니다. 그렇다면 가장 간단한 방법은 SQLiteDatabase클래스를 확장하는 일일 텐데요, 문제는 이 클래스가 final 로 상속 불가능하게 되어 있단 점입니다. 이 때문에 암호화된 SQLiteDatabase 구현체는 이 클래스 및 이 클래스에 강하게 결합되어 있는 SQLiteOpenHelper 를 온전히 쓸 수 없다는 문제가 있습니다. 즉, 바닥부터 새로 만들어야 하는 상황인데요, 다행히도 Zetetic 사에서 만든 SQLCipher for Android 는 이 문제를 모두 해결해 주는 고마운 오픈 소스 프로젝트입니다.SqlCipher 의 사용법은 기존의 SQLiteDatabase 에 의존하던 로직들의 import namespace 만 바꿔주면 되도록 구현되어 있어 마이그레이션 비용도 거의 들지 않습니다.// 안드로이드에서 제공해 주는 SQLiteDatabase 클래스명 import android.database.sqlite.SQLiteDatabase; // SqlCipher 에서 제공해 주는 SQLiteDatabase 클래스명 import net.sqlcipher.database.SQLiteDatabase; // 프로그램 시작시 native library 를 로드해줘야 한다. class MyApplication extends android.app.Application {    @Override public void onCreate() {        super.onCreate();        net.sqlcipher.database.SQLiteDatabase.loadLibs(this);    } } [리스트 2] android SQLiteDatabase 에서 SqlCipher SQLiteDatabase 로 마이그레이션 하기물론 두 클래스는 전혀 타입 호환되지 않지만, net.sqlcipher.database.SQLiteDatabase 의 모든 메소드 및 field의 signature 가 기본 android.database.sqlite.SQLiteDatabase 와 같기 때문에 이런 변경이 가능합니다. SqlCipher 개발팀의 수고에 박수를 보냅니다.RoomRoom 은 SQL 을 객체로 매핑해 주는 도구입니다. Room 을 이용해 데이터베이스를 열 때는 보통 아래와 같은 코드를 사용합니다.object Singletons {    val db: DataSource by lazy {        Room.databaseBuilder(appContext, DataSource::class.java, "secure_database")            .build()    } } abstract class DataSource: RoomDatabase() {    abstract fun userProfileDao(): UserProfileDao } // 클라이언트 코드에서 아래와 같이 호출 val userProfile: UserProfile = Singletons.db.userProfileDao().findUserByUid(userId) [리스트 3] Room database 의 정의 및 활용Sqlite 의 기본 동작은 파일 데이터베이스에 단순 Read 및 Write 만 합니다. 따라서 데이터베이스 접근시 암호화/복호화 동작을 하는 callback 을 주입해야 데이터베이스를 암호화 할 수 있습니다. 그리고 RoomDatabase.Builder 클래스는 데이터베이스를 열때 우리가 주입한 일을 할 수 있는 hook method(openHelperFactory) 를 제공해 주고 있습니다. 다음 코드를 살펴봅시다.class RoomDatabase.Builder {    class Builder {        /**        * Sets the database factory. If not set, it defaults to {@link FrameworkSQLiteOpenHelperFactory}.        */        @NonNull        public Builder openHelperFactory(@Nullable SupportSQLiteOpenHelper.Factory factory)    } } interface SupportSQLiteOpenHelper {    /**     * Create and/or open a database that will be used for reading and writing.     */    SupportSQLiteDatabase getWritableDatabase();    /**     * Create and/or open a database. This will be the same object returned by {@link #getWritableDatabase}.     */    SupportSQLiteDatabase getReadableDatabase();    /**     * Factory class to create instances of {@link SupportSQLiteOpenHelper} using {@link Configuration}.     */    interface Factory {        /**         * Creates an instance of {@link SupportSQLiteOpenHelper} using the given configuration.         */        SupportSQLiteOpenHelper create(Configuration configuration);    } } [리스트 4] Room builder 의 SupportSQLiteOpenHelper 주입 메소드 및 SupportSQLiteOpenHelper.Factory 인터페이스 정의설명을 최대한 간소하게 하기 위해 관심가질 필요 없는 코드 및 코멘트는 모두 제외했습니다. 아무튼 SupportSQLiteOpenHelper 구현체를 주입하면 뭔가 데이터베이스 작업 이전에 우리의 로직을 실행할 수 있을 것 같습니다.사실 이 인터페이스의 핵심은 바로 getWritableDatabase(), getReadableDatabase() 구현입니다. javadoc 에도 있지만 두 메소드로 반환하는 인스턴스는 같아야 하며 또한 암호화를 지원해야 한다는 것을 알 수 있습니다.결국 우리 목표는 Room 과 데이터베이스 암호화 로직을 연결해 주는 SupportSQLiteDatabase 구현체를 만드는 것임을 알 수 있습니다. 이 인터페이스는 규모가 제법 크기 때문에 이게 만만한 일이 아님을 직감하실 수 있을 겁니다.saferoom 도입으로 SupportSQLiteDatabase 인터페이스 구현체 사용하기앞서 살펴봤듯 SupportSQLiteDatabase 구현에는 상당한 노력이 필요하단 것을 알 수 있습니다. 그런데 고맙게도 saferoom 이라는 오픈 소스 프로젝트가 우리의 귀찮음을 잘 해결해 주고 있습니다. saferoom 의 SupportSQLiteOpenHelper 구현체를 간단히 살펴보면 아래와 같습니다./** * SupportSQLiteOpenHelper.Factory implementation, for use with Room  * and similar libraries, that supports SQLCipher for Android.  */ public class SafeHelperFactory implements SupportSQLiteOpenHelper.Factory {    private final char[] passphrase;    public SafeHelperFactory(final char[] passphrase) {        this.passphrase = passphrase;    }    @Override    public SupportSQLiteOpenHelper create(final SupportSQLiteOpenHelper.Configuration configuration) {        return(new com.commonsware.cwac.saferoom.Helper(configuration.context,            configuration.name, configuration.version, configuration.callback,            this.passphrase));    }    /**     * NOTE: this implementation zeros out the passphrase after opening the database     */    @Override    public SupportSQLiteDatabase getWritableDatabase() {        SupportSQLiteDatabase result = delegate.getWritableSupportDatabase(passphrase);        for (int i = 0; i < passphrase>            passphrase[i] = (char) 0;        }        return(result);    }    /**     * NOTE: this implementation delegates to getWritableDatabase(), to ensure that we only need the passphrase once     */    @Override    public SupportSQLiteDatabase getReadableDatabase() {        return getWritableDatabase();    } } /**  * SupportSQLiteOpenHelper implementation that works with SQLCipher for Android  */ class Helper implements SupportSQLiteOpenHelper {    final OpenHelper delegate;    Helper(Context context, String name, int version, SupportSQLiteOpenHelper.Callback callback, char[] passphrase) {        net.sqlcipher.database.SQLiteDatabase.loadLibs(context);        this.delegate = createDelegate(context, name, version, callback);        this.passphrase = passphrase;    }    abstract static class OpenHelper extends net.sqlcipher.database.SQLiteOpenHelper {        SupportSQLiteDatabase getWritableSupportDatabase(char[] passphrase) {            SQLiteDatabase db = super.getWritableDatabase(passphrase); return getWrappedDb(db);        }    } } [리스트 5] Saferoom 의 SupportSQLiteOpenHelper 구현체.소스 코드를 보면 SQLiteDatabase 의 원래 요구사항을 만족하지 못하는 구현 부분도 보입니다만, 그래도 이 정도면 수고를 꽤 크게 덜 수 있어 훌륭합니다.그리고 로직을 잘 보면 데이터베이스를 연 직후 암호로 넘겨준 char[] 배열을 초기화 하는 코드가 있다는 점입니다. 이것이 바로 이 문서의 서두에서 말했던 attack surface 를 최소화 하기 위한 구현입니다. 이 글의 주제에서 벗어난 내용이기에 여기서는 다루지 않습니다만, 궁금하신 분들은 부록 1: in-memory attack 맛보기에서 확인하실 수 있습니다.SqlCipher + SafeRoom + Room 구현 및 코드 설명이상으로 데이터베이스 암호화 전략에 대해 살펴봤습니다. 이 장에서는 실제로 연동하는 방법에 대해 다룹니다.불행히도 2018년 현재 SqlCipher 는 Android KeyStore 를 지원하지 않고 있습니다. 그리고 인스턴스 생성에 쓸 비밀번호로 CharArray 가 필요한데, 이 값은 한번 정해지면 불변해야 합니다. 여기 사용할 키를 KeyStore 에 저장하면 문제를 깔끔하게 해결할 수 있을 것 같습니다. 하지만 1부에서 살펴봤듯이 하드웨어로 구현된 Android KeyStore 밖으로는 키가 절대로 노출되지 않는다고 합니다. 이 문제를 어떻게 해결해야 할까요?먼저, SqlCipher 에 사용하기 위해 KeyStore 로 생성한 AES256 키의 내용을 한번 살펴봅시다.val secretKey = with(KeyGenerator.getInstance("AES", "AndroidKeyStore"), {    init(KeyGenParameterSpec.Builder(alias,             KeyProperties.PURPOSE_ENCRYPT or KeyProperties.PURPOSE_DECRYPT)        .setKeySize(256)        .setBlockModes(KeyProperties.BLOCK_MODE_CBC)        .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)        .build())    generateKey() }) val keyInfo = with(KeyFactory.getInstance(privKey.getAlgorithm(), "AndroidKeyStore"), {    factory.getKeySpec(privKey, KeyInfo::class.java) }) println("Key algorithm : " + secretKey.algorithm) println("Key format : " + secretKey.format) println("Encoded key size: " + secretKey.encoded?.size) println("Hardware-backed : " + keyInfo.isInsideSecureHardware) // 실행 결과 Key algorithm : AES Key format : null Encoded key size: null Hardware-backed : true [리스트 6] AndroidKeyStore 에 저장한 Key 는 어플리케이션에서 직접 쓸 수 없다.저희가 보유중인 개발 시료 Nexus 5 에서 실행한 결과 위와 같이 나타났습니다. secretKey.encoded 의 값이 메모리에 있다면 이 값을 SqlCipher 생성자에 넘겨줄 수 있겠지만 값이 null 이네요. 보안 측면에서는 다행일 지 모르지만 우리 구현에서는 쓸 수 없으니 문제입니다. 그래서 별 수 없이 임의로 키를 만들고(AndroidAesHelper#generateRandomKey()), 1부에서 소개했던 AndroidRsaCipherHelper 를 이용해 암호화한 값을 Shared Preferences에 저장하는 식으로 구현해 봅시다.val settingsPrefs = appContext.getSharedPreferences("app_settings", Context.MODE_PRIVATE) val settings = SecureSharedPreferences.of(settingsPrefs) val dbPass = with(settings, {    /*     * String.toCharArray() 같은 함수를 쓰면 로직이 좀더 간단해지지만, JVM 에서의 String은     * Immutable 하기 때문에 GC 이전에는 지울 방법이 없으므로 attack surface 가 더 오랫동안     * 노출되는 부작용이 있다. 따라서 key의 plaintext 는 가급적 String 형태로 저장하면 안된다.     */    var savedDbPass = getString("DB_PASSPHRASE", "")    if (savedDbPass.isEmpty()) {        // KeyStore 에 저장해도 SqlCipher 가 써먹질 못하니 그냥 1회용 키 생성 용도로만 활용한다.        val secretKey = AndroidAesCipherHelper.generateRandomKey(256)        // String 생성자 사용: 이 문자열은 heap 에 저장된다.        savedDbPass = String(Base64.encode(secretKey, Base64.DEFAULT))        putString("DB_PASSPHRASE",  AndroidRsaCipherHelper.encrypt(savedDbPass))        // 메모리 내에 plaintext 형태로 존재하는 attack surface 를 소멸시켜 준다.        secretKey.fill(0, 0, secretKey.size - 1)    } else {        // decrypt 메소드 내부에서 String 생성자 사용하므로 base64 인코딩된 plaintext 키는 heap 에 저장된다.        savedDbPass = AndroidRsaCipherHelper.decrypt(savedDbPass)    }    val dbPassBytes = Base64.decode(savedDbPass, Base64.DEFAULT)    /*     * SqlCipher 내부에서는 이 char[] 배열이 UTF-8 인코딩이라고 가정하고 있다.     * 그리고 UTF-8 인코딩에서는 byte range 의 char 는 1 바이트니까,     * 아래 변환을 거치더라도 키 길이는 32 byte(256 bit)가 유지된다.     *     * UTF-8 인코딩에서는 32 글자 != 32 바이트가 아님에 항상 유의해야 한다!     */    CharArray(dbPassBytes.size, { i -> dbPassBytes[i].toChar() }) }) [리스트 7] 암호화한 SqlCipher 용 passphrase 를 사용하는 방법.위 코드를 사용해 char[] 타입의 값 dbPass 를 얻을 수 있습니다. 리스트 7을 이용해 얻은 dbPass를 아래 코드에 사용하면 SqlCipher - SafeRoom - Room 의 연동이 끝납니다.val dataSource = Room.databaseBuilder(_instance, DataSource::class.java, "secure_database") .openHelperFactory(SafeHelperFactory(dbPass))                .build() // 메모리 내에 plaintext 형태로 존재하는 attack surface 를 소멸시켜 준다. dbPass.fill('0', 0, dbPass.size - 1) [리스트 8] SqlCipher - SafeRoom - Room 연동하기위 코드에서 볼 수 있듯, 임의로 저장한 키를 Base64 인코딩으로 변환, 그리고 그것을 다시 CharArray 로 변환하는 과정에서 key 가 메모리에 존재해야 하는 순간이 있습니다. 이 구간을 바로 공격 표면(attack surface) 이라고 합니다.JVM 단에서 넘겨주는 Passphrase 를 SqlCipher 내부에서 native 로 어떻게 처리하고 있는지는 SqlCipher SQLiteDatabase 구현및 SqlCipher crypto 구현 에서 확인할 수 있습니다.결과 확인하기SafeHelperFactory 를 주입한 Room database 파일을 추출 후 hexdump 로 확인해 보겠습니다.hwan@ubuntu:~$ hexdump -vC secure_database.sqlite3 00000000  8c 0d 04 07 03 02 11 eb  a4 18 33 4f 93 e8 ed d2  |..........3O....| 00000010  e9 01 21 d7 49 df 25 9a  f4 1d c7 1e ff 2d b0 13  |..!.I.%......-..| 00000020  fc 17 9b 4b b2 1c a3 1d  7d 1d 69 76 b1 ea ec e8  |...K....}.iv....| 00000030  1f 50 e4 c4 6c 50 e6 82  58 27 b9 fe 85 21 27 99  |.P..lP..X'...!'.| 00000040  ec 54 53 ba 32 c6 59 09  b4 30 65 39 a0 75 3e c4  |.TS.2.Y..0e9.u>.| 00000050  b8 f7 ea 47 14 df c4 f0  7c be 9f 62 26 49 1c b2  |...G....|..b&I..| 00000060  0f 63 00 7a 09 7e 33 e0  43 2b eb ea 80 21 bb 5d  |.c.z.~3.C+...!.]| 00000070  5c 04 ff 57 a3 a3 7f c2  19 42 b9 67 6c e3 d5 c8  |\..W.....B.gl...| ... 00000d30  c1 f3 93 1f 4e 5b 6a 70  39 c2 e9 2c 3e 8f 7e ff  |....N[jp9..,>.~.| 00000d40  73 3a 9a 39 0d 8a 1a 3e  6b d4 5b de 1f 6d c4 b8  |s:.9...>k.[..m..| 00000d50  fb 62 3e 21 09 0a 31 20  37 5d 8d 0a 39 6d 35 31  |.b>!..1 7]..9m51| 00000d60  26 d6 b0 22 41 7e 6c 54  7d 77 22 ba 1b f3 cf 5a  |&.."A~lT}w"....Z| 00000d70  e5 47 97 76 f0 89 e5 98  b3 37 3c 8d 43 af 0e b9  |.G.v.....7<.C...| 00000d80  18 74 fd f5 2a 41 d8 b1  d9 70 32 0b 5c 93 4b 0d  |.t..*A...p2.\.K.| 00000d90  bc 60 4c 25 9a ec 53 23  90 60 b2 52 a8 a1 b1 87  |.`L%..S#.`.R....| 00000da0  f3 3e 03 3e ac 0a 75 a0  61 d8 bd 07 b8 5a 48 66  |.>.>..u.a....ZHf| 00000db0  57 85 13 ac 04 26 55 30  34 46 57 bf 8b 42 c6 2d  |W....&U04FW..B.-| 00000dc0  9e 82 a2 df 77 bb b3 2e  96 43 70 23 23 03 df 1d  |....w....Cp##...| ... [리스트 9] Internal storage 에 저장된 SQLite3 database 를 dump 한 결과. 리스트 1과 비교해 보자.이로서 오픈 소스의 힘을 빌려 우리 앱의 데이터베이스를 비교적 간편하게 암호화 할 수 있음을 알 수 있습니다.맺으며이로서 Persistent data 암호화에 대한 설명을 마칩니다. Android KeyStore 가 API Level 23 이상의 기기에서만 100% 동작한다는 점은 2018년 현재까지는 큰 단점입니다. 하지만 사소한 데이터라 하더라도 보안의 중요성은 날로 강조되고 있습니다. 따라서 빠르던 늦던 고객 데이터 암호화에 투자해야 할 순간이 다가온다는 점은 변하지 않습니다.언젠가는 적용해야 할 고객 데이터 보호의 순간에, 이 글이 여러분의 앱의 보안에 조금이나마 도움이 된다면 좋겠습니다.부록 1: in-memory attack 맛보기앞서 계속 반복해서 설명드렸던 메모리 내의 attack surface 를 찾아내는 방법을 간단히 설명해 보겠습니다. 잘 지키려면 잘 공격하는 법을 알아야 하므로 알아두면 좋지 않을까요? 그리고 일반적인 앱 개발과는 다소 동떨어진 이 장의 내용이 이해되지 않으신다면 한줄요약한 메모리 내부의 값도 때로는 안전하지 않을 수 있다 는 한마디만 기억해 두시면 됩니다. 모든 데모는 LG Nexus 5(Hammerhead), 시스템 버전 6.0.1(M) 에서 실행한 결과며 시스템마다 약간의 차이는 있을 수 있습니다.마켓에 출시한 앱들은 debuggable:false 가 설정된 상태이므로 힙 덤프를 바로 뜰 수는 없습니다. 그런데 어떻게 in-memory attack 이 가능할까요? 다음 리스트는 디버그 불가능한 앱의 힙 덤프를 시도할 때 보안 정책 위반 오류가 발생함을 보여줍니다.hwan@ubuntu:~$ adb shell ps | grep "com.securecompany.secureapp" USER PID PPID VSIZE RSS WCHAN PC NAME u0_a431   25755 208   1700384 100888 sys_epoll_ 00000000 S   com.securecompany.secureapp hwan@ubuntu:~$ adb shell am dumpheap 25755 "/data/local/tmp/com.securecompany.secureapp.heap" java.lang.SecurityException: Process not debuggable: ProcessRecord{b6f96fc 25755:com.securecompany.secureapp/u0_a431}     at android.os.Parcel.readException(Parcel.java:1620)     at android.os.Parcel.readException(Parcel.java:1573)     at android.app.ActivityManagerProxy.dumpHeap(ActivityManagerNative.java:4922)     at com.android.commands.am.Am.runDumpHeap(Am.java:1248)     at com.android.commands.am.Am.onRun(Am.java:377)     at com.android.internal.os.BaseCommand.run(BaseCommand.java:47)     at com.android.commands.am.Am.main(Am.java:100)     at com.android.internal.os.RuntimeInit.nativeFinishInit(Native Method)     at com.android.internal.os.RuntimeInit.main(RuntimeInit.java:251) [리스트 10] debuggable=false 설정된 앱의 힙 덤프 시도시 발생하는 예외(SecurityException)SuperUser 는 가능할까요? SuperUser 권한으로 앱을 강제로 디버그 가능한 상태로 시작해 보도록 하겠습니다.hwan@ubuntu:~$ adb shell 32|shell@hammerhead:/ $ su 1|root@hammerhead:/ \# am start -D -n "com.securecompany.secureapp/MainActivity" && exit Starting: Intent { cmp=com.securecompany.secureapp/MainActivity } hwan@ubuntu:~$ \# adb shell ps | grep "com.securecompany.secureapp" USER PID PPID VSIZE RSS WCHAN PC NAME u0_a431   27482 211   1700384 100888 sys_epoll_ 00000000 S   com.securecompany.secureapp hwan@ubuntu:~$ adb forward tcp:12345 jdwp:27482 hwan@ubuntu:~$ netstat -an | grep 12345                                                           tcp4       0      0  127.0.0.1.12345         *.*                    LISTEN     hwan@ubuntu:~$ jdb -connect com.sun.jdi.SocketAttach:hostname=127.0.0.1,port=12345 java.net.SocketException: Connection reset     at java.net.SocketInputStream.read(SocketInputStream.java:210)     at java.net.SocketInputStream.read(SocketInputStream.java:141)     at com.sun.tools.jdi.SocketTransportService.handshake(SocketTransportService.java:130)     at com.sun.tools.jdi.SocketTransportService.attach(SocketTransportService.java:232)     at com.sun.tools.jdi.GenericAttachingConnector.attach(GenericAttachingConnector.java:116)     at com.sun.tools.jdi.SocketAttachingConnector.attach(SocketAttachingConnector.java:90)     at com.sun.tools.example.debug.tty.VMConnection.attachTarget(VMConnection.java:519)     at com.sun.tools.example.debug.tty.VMConnection.open(VMConnection.java:328)     at com.sun.tools.example.debug.tty.Env.init(Env.java:63)     at com.sun.tools.example.debug.tty.TTY.main(TTY.java:1082) Fatal error:  Unable to attach to target VM. [리스트 12] SuperUser 권한으로도도 Java 디버거를 붙일 수 없다.다행히도 debuggable=false 로 릴리즈한 앱은 자바 디버거(jdb)를 붙일 수 없으니 프로그램 실행을 매우 정밀하게 제어할 수는 없다는 것을 알 수 있습니다(debuggable=true 설정된 앱에 위 과정을 실행하면 어떤 일이 벌어지는지 직접 확인해 보세요!).하지만 안드로이드의 앱은 ‘linux process’ 에서 실행되므로 SuperUser 권한으로 process 메모리 전체 dump를 뜨는 것은 막을 수 없습니다. 정공법으로는 /proc/PID/maps 의 내용을 분석하면 됩니다만 제가 안드로이드를 깊게 알고 있는 것은 아니라, 어느 영역이 dalvik heap 인지를 알아낼 수 없었습니다. 이 때문에 프로세스 메모리를 통째로 떠서 내용을 헤집어보는 방식으로 공격해 보겠습니다. 여담입니다만, 데모를 위해 공격한 앱은 dumpsys 명령으로 확인해보니 약 6MiB 의 Java heap 을 쓰고 있는데요, 이 크기를 줄이면 줄일 수록 공격이 더욱 수월할 겁니다.아래 데모에서는 안드로이드 기기용(arm-linux-gnueabi)으로 컴파일한 gdb 를 미리 설치한 결과를 보여드리고 있습니다. 참고로 여기 보이는 [heap] 은 아쉽지만 native heap 이므로 우리 공격 목표는 아닙니다.1|root@hammerhead:/ \# cd /proc/27482 1|root@hammerhead:/proc/27482 \# cat maps 12c00000-12e07000 rw-p 00000000 00:04 8519       /dev/ashmem/dalvik-main space (deleted) ... b7712000-b771f000 rw-p 00000000 00:00 0 [heap] bee86000-beea7000 rw-p 00000000 00:00 0 [stack] ffff0000-ffff1000 r-xp 00000000 00:00 0 [vectors] 1|root@hammerhead:/proc/27482 \# ifconfig wlan0     Link encap:Ethernet          inet addr:192.168.12.117          inet6 addr: fe80::8e3a:e3ff:fe5f:64c9/64 1|root@hammerhead:/proc/27482 \# gdbserver –attach :12345 27482 Attached; pid = 27482 Listening on port 12345 [리스트 13] SuperUser 권한으로 gdbserver 실행.hwan@ubuntu:~$ adb forward tcp:23456 tcp:12345 hwan@ubuntu:~$ netstat -an | grep 23456 tcp4       0      0  127.0.0.1.23456         *.*                    LISTEN     [리스트 14] 로컬 포트 23456 으로 원격 포트 12345 를 연결하는 과정.이제 모든 준비가 끝났습니다. 개발 기기에서 gdb로 원격 프로세스에 접근한 뒤, 메모리를 덤프해 봅시다.hwan@ubuntu:~$ ./gdb (gdb) target remote 192.168.12.117:12345 Remote debugging using 192.168.12.117:12345 0xb6f92834 in ?? () (gdb) dump memory /tmp/com.securecompany.secureapp.heap 0x12c00000 0xb771f000 (gdb) [리스트 15] gdb 로 메모리를 덤프하는 과정.덤프한 힙 덤프 파일 속에 있을지도 모르는 문자열을 검색해 봅시다. 그 전에 잠시, 데이터베이스에 사용할 키를 어떻게 처리했었나 되새겨 볼까요? if (savedDbPass.isEmpty()) {        // ...        // String 생성자 사용: 이 문자열은 heap 에 저장된다.        savedDbPass = String(Base64.encode(secretKey, Base64.DEFAULT))    } else {        // decrypt 메소드 내부에서 String 생성자 사용하므로 base64 인코딩된 plaintext 키는 heap 에 저장된다.        savedDbPass = AndroidRsaCipherHelper.decrypt(savedDbPass)    } [리스트 16] Base64 인코딩을 처리하기 위한 임시 String 생성 과정.우리 로직은 256 비트의 키를 Base64 변환해서 디스크에 저장합니다. 그리고 256비트의 byte array 를 base64 변환한 결과는 (4 * (256 / 3)) / 8 = 42.66 바이트 -> 4의 배수여야 하므로 44바이트입니다. 약 1.34 바이트의 pad 를 맞추기 위해 문자열의 끝에 =가 최소 1글자 이상은 있을 겁니다. 한번 찾아봅시다.hwan@ubuntu:~$ strings /tmp/com.securecompany.secureapp.heap ... /masterkey ... user_0/.masterkey em_s 1337 ... [리스트 17] strings 명령을 사용한 힙 덤프 파일내의 문자열 검색의외로 = 나 == 로 끝나는 문자열이 발견되지 않습니다. 하지만 안심하기는 이릅니다. 이건 단순히 (공격자의 입장에서) 운이 나빠서 발견되지 않은 것일 뿐입니다. 우리가 원하는 어떤 ‘순간’ 에 힙 덤프 명령을 내리지 않았기 때문에 그렇습니다. 우리의 구현은 attack surface 를 매우 짧은 시간동안만 메모리에 노출하기 때문에 이 순간이 짧으면 짧을 수록, 디바이스의 성능이 좋으면 좋을 수록 순간을 잡아내기가 더욱 어려워집니다. 즉, 이 문서에서 보여드린 방식으로 CharArray 의 내용을 아주 짧은 시간 동안만 사용하고 지워버리면 내용을 탈취하기 굉장히 어렵습니다. 하지만 안심하기는 이릅니다. nano-time 단위로 앱을 실행할 수 있는 환경을 가진 국가급 공격자는 여전히 있기 때문입니다.그리고 이 방법은 루팅하지 않은 기기에서는 절대 재현이 불가능하므로 루팅되지 않은 환경일 경우에만 실행 가능하도록 한다던가 하는 방식까지 더한다면 공격자가 더욱 우리 앱을 뚫기 힘들 겁니다.여담입니다만 독자 여러분들 중 GameGuardian 처럼 다른 게임의 메모리값을 마구 바꾸는 앱이 어떻게 동작하나 궁금하신 분들도 있을 겁니다. 그런 류의 앱들도 바로, 이 장에서 설명했던 방식으로 동작합니다.장황했던 이 장의 내용을 한줄로 요약하면 Android KeyStore 로 보호하지 않은 키는 많은 수고를 들이면 뚫을 수 있다고 할 수 있습니다.부록 2: SQLite database 의 UPDATE / DELETE 구현 특성SQLite3 의 구현특성상, UPDATE / DELETE 시에 이전 레코드의 값이 남아있는 경우가 있습니다. 암호화 했으니 좀더 안전하다곤 하지만 찌거기 값을 굳이 남겨둬서 공격자에게 더 많은 힌트를 제공할 필요도 없습니다.이 문서는 암호화 구현에만 초점을 맞췄기 때문에 상세하게 다루진 않습니다만, LINE Tech blog에 소개된 True delete 는 이 문제를 해결하기 위한 방법을 제시하고 있으므로 그 문서도 한번 읽어보시길 권합니다.더 보기SQLCipherSafeRoomAndroid SQLite3 True delete - by LINE tech blogDifference between java.util.Random and java.security.SecureRandomAttack surface on security measuresAOSP: DebuggingRootbeer: Simple to use root checking Android library#하이퍼커넥트 #개발 #개발자 #안드로이드 #앱개발 #모바일 #PersistentData #인사이트 #개발후기
조회수 1715

경험 부족한 스타트업의 devops 도입기 3편

칸반과 스크럼을 섞은 I/O 트렐로 보드코드리뷰코드리뷰를 말씀드리기 전에 I/O의 개발 프로세스부터 소개해 드리겠습니다. 저희 SW 엔지니어들은 칸반보드를 일주일 주기(sprint)로 진행해 나갑니다. devops 도입을 위해 이 개발 프로세스를 설계 하였는데요. Sprint 주기인 working day 5일 동안 이번 주안에 개발을 끝내야 하는 feature 1개와 지난 주에 개발을 마친 feature 1개의 알파테스트 그리고 지지난 주에 개발된 feature 1개의 베타테스트가 동시에 진행됩니다. 즉, 3개의 phase 가 매순간 공존하는 프로세스 입니다.코드리뷰 도구로는 bitbucket의 pull request를 사용하기로 했습니다. I/O에 있는 5명의 SW 엔지니어들은 각자 필수로 리뷰 받야할 짝꿍이 정해져 있습니다. Sprint동안 개발한 피쳐 혹은 hotfix를 merge(배포)하기 위해서는 반드시 pull request과정을 거쳐야합니다. 즉, 짝꿍을 포함한 최대 4명에게 pull request를 요청할 수 있습니다. Sprint동안 개발된 feature는 가급적 매주 목요일에 pull request하기로 하였으며 SW엔지니어들은 목요일엔 코드 리뷰 시간을 할애해 두기로 약속 했습니다.이러한 개발환경 아래 지난 2주간 제가 기억하는 pull request는 4개 였습니다. 총 review해야할 commit 수가 22개로 평균 pull request당 5.5개의 commit 을 리뷰해야 했습니다. 알파테스트에서 발생한 마이너한 hotfix는 pull request없이 merge된 걸로 알고 있어 제가 놓친 commit들도 존재 했습니다. Jira로 Ticket 관리를 안하다보니 위에 첨부된 이미지 처럼 Trello 카드링크가 카드의 제목(유즈케이스)으로 나오지 않아 조금 불편하기도 합니다.Pull reqest에 달린 Comment들.일단, bitbucket으로 코드리뷰를 2주간 진행 해보니 엔지니어간의 유대감이 생기는 느낌이 들었습니다. 그 전에는 구현상의 이슈를 이야기 나누는 수준에서 머물렀는데 이제는 서로가 직접 짠 코드를 공유하다보니 확실히 느낌이 달라졌습니다. 처음으로 목욕탕을 함께 다녀온 친구가 된 느낌이랄까요… 저만 그렇게 느꼈을 수도 있구요. 확실한 건 엔지니어마다의 개발 스타일을 파악할 수 있게되어 엔지니어와 대화할 때 상대방의 스타일에 맞춰서 낭비가 적은 커뮤니케이션을 수행할 수 있게 되었습니다.Exception Hadling feedbackMagic Number feeback뿐만아니라 위의 이미지 두 장 처럼 개발상의 안좋은 냄새를 리뷰과정에서 감지하여 개발자에게 바로바로 피드백해 줄 수 있었습니다. 물론, 좋은 개발 방식이나 설계내용을 배울 수도 있었구요.TDD(테스트주도개발)테스트주도개발의 개발 리듬 : 출처 : 구글 이미지 검색Sprint의 feature scope을 극단적으로 작게 줄여버리니 TDD 공부에 엔지니어들이 매진했습니다. 각자 포지션에 맞는 책을 하나씩 끼고 충분히 TDD을 깊게 파고 들어갔는데요. 결과적으로 안드로이드, iOS 엔지니어는 4주만에 TDD의 기본기를 확실하게 다질 수 있었습니다.안드로이드 엔지니어의 경우 최근 2주 동안 정말 놀랍게 성장했는데요. 지난 I/O diary 8에서 소개된 안드로이드의 switcher sorting 클래스는 SUT로 만들기 쉽지 않은 legacy class였습니다.그러나, 안드로이드 엔지니어가 켄트백의 TDD 책을 14장까지 정독하면서 상황을 완전히 뒤바꿔 버렸습니다. 예제로 나오는 통화 프로그램을 한 줄 한 줄 키보드로 직접 따라 쳐가며 긴호흡으로 책을 정독함으로써 자연스럽게 객체지향으로 변해가는 설계 리펙토링 원리를 피부로 체험할 수 있었는데요. 그덕에 지난 주에 진행된 소프트웨어 세미나에서 공개된 리팩토링된 switcher sorting 클래스 로직은 보기좋게 간결해졌습니다. 기존 코드의 test함수는 switcher sorting 클래스의 많은 기능을 1개의 테스트 함수에서 다 집어 넣고 검증하려다 보니 함수 길이가 50줄 이상 되어 가독성이 무척 떨어졌었는데요. 그러나, 리팩토링된 test class에는 약 5개의 test 함수(setup, teardown 제외)로 적절하게 나뉘어 리뷰어가 참 읽기 좋게 코드가 작성되었습니다. 각 test 함수도 적당한 길이로 짜여서 테스트 코드를 읽으면서 자연스럽게 설계의도를 파악할 수 있었습니다. 이렇게 단시간에 TDD를 체화한 엔지니어니어들을 보면 신기할 따름입니다.느낀점출처 : 구글 이미지 검색devops가 성공적으로 도입되려면 당분간은 완급조절이 핵심인것 같습니다. 새로운 것을 마구잡이로 도입하기보다 지금은 코드리뷰와 TDD에만 집중 할 수 있도록 팀환경을 만들어 줘야 할것 같습니다. 지난 6월 1주차에는 제가 scope 조절에 실패해서 개발 phase의 feature가 무지 무거웠습니다. 그로인해, 안드로이드 엔지니어는 테스트코드를 짤 여유가 없었습니다. 제 실수로 결국 기술부채가 쌓이고 말았습니다. 당분간 기술부채를 털어내기로 해놓고 말과 행동이 다른 사람이 되어버렸습니다. 6월 30일까지는 조바심 내지말고 TDD와 코드리뷰가 몸에 완전히 익을 때까지 feature scope가 충분히 작게 설정되도록 신중에 신중을 가해야할 듯합니다. 과도한 업무량에 좇겨 엔지니어들이 Test code coverage가 낮아지거나 코드리뷰 없이 코드가 배포되지 않도록 팀 완급조절에 지속적으로 관심을 쏟아야 겠습니다.#스위쳐 #Switcher #DevOPS #데브옵스 #개발 #개발자 #문제해결 #도입기 #인사이트
조회수 1500

스타일쉐어에서 이미지 분류하기 (시작 편) feat.ML

안녕하세요.스타일쉐어에서 백엔드 개발을 하고 있는 김동현입니다.작년 11월 스타일쉐어에서 뷰티에 관련된 사진들을 따로 모아서 보여줄 피드.바로 뷰티피드 라는 것을 만들었습니다. 하지만 피드를 만드는 과정이 순탄치 만은 않았는데요.그간의 과정과 얻었던 경험들을 공유하고자 합니다.들어가기에 앞서혹시 설명을 하다 보면 스타일쉐어에서만 사용되는 단어가 있을 수 있다는 생각이 들어 단어에 대한 공유를 먼저 드리고자 합니다.스타일쉐어에서는 이를 “피드”라 칭합니다.스타일쉐어에서는 이를 “스타일”이라 칭합니다.여러 가지 카테고리 중에서 왜 뷰티인가요?기존의 서비스에서는 유저들이 올리는 스타일에 대한 카테고리가 없어서 유저들이 보고 싶어 하는 스타일들을 쏙쏙 뽑아서 보여줄 수 없는 상황이었지만 “내가 보고 싶은 것들만 볼 수 있었으면 좋겠다”라는 유저들의 니즈는 계속 올라가고 있었습니다.서비스 특성상 1020 유저들이 많이 있었고 하루 동안 올라오는 스타일에 대해서 사람이 직접 카테고리를 하나하나 나눠봤을 때 가장 활발하게 대화가 이루어지고 반응이 좋고 충성도도 높은 카테고리가 바로 뷰티였습니다.뷰티만이라도 따로 보여줄 수 있도록 해보자그럼 어떻게 뷰티에 관련된 게시물들을 뽑아낼 건가요?올라오는 스타일들 중에서 뷰티라는 속성을 찾아내어 분류하는 방법으로 두 가지의 제안이 나왔습니다.1. 사람이 직접 뽑아낸다.2. 요즘 뜨고 있는 딥러닝을 이용해서 뽑아낸다.처음엔 사람이 직접 모니터링 해볼까? 라는 이야기가 나왔었습니다.당장이라도 시작 할 수 있다는 점과 높은 정확도를 가졌다는 장점이 있기 때문이였죠.하지만 주말 관계없이 4000~6000개씩 올라오는 스타일들을 상시 모니터링하고 모두 검토해야 하는 상황이 너무 막막하게 느껴졌습니다. 관련 업무를 하시는 분의 업무 만족도는 낮을 것이 당연하기도 했지만 그럴만한 인적자원이 충분하지 않았습니다.그래서 요즘 뜨고 있는 딥러닝을 이용해보자는 방향으로 일이 진행되었습니다. 게다가 요즘 딥러닝으로 Image Classification 하는데에 있어서 정확도가 사람을 넘어섰다는 이야기도 결정에 한몫을 했답니다.딥러닝으로 분류하기로 결정했다! 근데 트레이닝 셋은?딥러닝을 하시는 분들이 애용하는 사이트인 캐글만 가보아도 문제와 트레이닝 셋이 잘 정리되어있기에 개발자는 어떻게 하면 잘 예측할 수 있을까에 대한 고민만 했으면 되었었습니다. 하지만 당연하게도 실제 필드에서 처리해야 하는 문제와 그에 대한 트레이닝 셋은 존재하지 않았습니다.우선 딥러닝으로 분류하기로 결정을 하였으니 서비스에서 뷰티라는 카테고리 안에 넣을 소카테고리를 나누었고 다음과 같았습니다.* 눈 화장 관련* 입술 화장 관련* 얼굴 화장 관련* 헤어* 화장품* 발색* 네일그래도 태양 아래 새로운 것은 없다 라는 말처럼 비슷한 것들이 존재할까 하고 찾아보았으나…https://www.kaggle.com/openfoodfacts/openbeautyfactshttp://www.antitza.com/makeup-datasets.htmlㅇ…없잖아?!그렇습니다. 공개된 것은 없던 새로운 것이었습니다. 위의 소카테고리들을 모으는 방법을 모색해야 했습니다.위에서 언급했듯이 잉여 인적자원이 없었기 때문에 몇만 개의 데이터를 모을만한 데이터를 모으는 일은 저를 포함해서 개발자 2명이서 진행을 했었습니다.그래서 결국 뷰티 피드는…성.공.적.다행히도 잘 마무리되었습니다. 화자 되고 있는 딥러닝 기술을 실제로 사용해볼 수 있어서 좋았고 팀원들도 이게 되는구나, 다른 것도 해볼 수 있겠다 라는 피드백을 많이 받았고 저 또한 개발을 하면서도 이게 된다고? 하는 반응이 제일 많았던 것 같습니다. 물론 앞으로 모델을 계속 개선해나가야겠지만요.사실 딥러닝을 거의 처음 공부하는 수준에 가까웠고 초반에 우왕좌왕 하기도 많이 했었는데 믿고 기다려줬던 스타일쉐어 팀원 분들 덕분에 잘 마무리될 수 있었던 것 같습니다.분류와 트레이닝 셋에 대한 좀 더 자세한 글은 다음 포스팅 (분류 편)에서 찾아뵙겠습니다.#스타일쉐어 #개발팀 #개발자 #개발후기 #경험공유 #인사이트
조회수 924

2017 NDC 리뷰) 몬스터 슈퍼리그 리텐션 프로젝트

 2017년 4월 25일부터 27일까지 진행된 Nexon Developer Conference 에 나녀온 후기입니다.제가 들었던 재밌는 세션들 하나하나 올릴 테니 기대해 주세요! :)2017 NDC 재밌었다능!!!몬스터 슈퍼리그 리텐션 15% 개선 리포트 - 숫자보다 매력적인 감성 테라피"몬스터 슈퍼리그"의 게임 리텐션 개선 리포트였는데요, 기본적인 서비스의 소비자를 향한 어프로치인"당신은 똑똑한 유저!"라는 인식 심기(쉬운 접근성/ 심도 깊은 진행 유도)"빠른 어필"(이벤트에 대한 빠른 피드백)"축복받은 계정" (다양하고 많은 초반 보상)이라는 인식과,"주어지면 알아서 하겠지""보상이 있으면 알아서 하겠지"라는 생각을 지양하고, "의도하지 않았지만 수행을 할 수 있도록" 하는 넛지(Nudge) 효과를 일으킬 수 있는 무의식을 자극하는 재밌는 전략에 대해서 흥미를 느꼈습니다. 그리고 이후 리텐션 강화를 위한 프로젝트로 가장 중요한 건,단지 "무슨 기능을 만들 것이냐?"가 아닌, "어떤 부분에서 유저가 이탈"하게 되고,이탈한 유저들 중 "우리가 진짜 챙겨야 할 유저"가 어떤 유저들인가에 집중한다.라는 부분에서 항상 우선돼야 하지만, 되지 못한 부분들을 생각하게 되었던 것 같아요. 그래서 이를 통해스스로 모험 입장을 몇 번 한 유저: 원하는 것에 접근하지 못한 유저에 대한 파악 후 개선다음 지역에 접근 한 유저: 지속 플레이 의향 있으나, 니치를 못 찾은 유저들의 의도 파악 후 개선이라는 개선에 필요한 정확한 목표를 가지고, 어떤 방식으로 접근해야 하는지에 대한 고민을 보는 것에 정말 재미를 느꼈고요, 이에 대한 진행방향을 듣는 것도 정말 값진 경험이었습니다.개선 시퀀스1차 개선 (-)보상 10배 상향에도 불구, 큰 성장 없음.>"가치비교가 익숙하지 않은 유저들에게 보상의 절대적 수치 증가는 큰 감흥이 없다."라는 점을 파악하고, 유저에 "감정"을 터치하는 방법을 고안.2차 개선 (+ & -)조사 결과, 첫 패배 지점에서 유저들의 높은 이탈률을 파악> 패배 지점을 인위적으로 미루지 않되, 패배에 신경 쓰지 않도록 다른 부분들에 대한 장치를 추가.> "도전 가능한 포인트를 생성하는 것은 유효하다."는 부분을 Metric으로 확인했으나, 타깃 유저 범위를 정확하게 파악하지 않고  Metric만 집중해서 정확한 범위 파악을 놓침.3차 개선 (+ & +)유저가 얻을 수 있는 보상의 기회를 꼭 찾아가도록 유도옵션 1. 텍스트 강조? 텍스트는 망각의 영역 (X)옵션 2. 강제 터치? 이미 자유 플레이가 된 유저에게 부자연스러운 접근 (X)옵션 3. 얻고 싶은 보상이 있다면, 어떨까? 그리고 보상 등에 대해서 스토리 텔링이 될 수 있다면?  (O)  - 부정 경험 개선을 통한 리텐션 향상 효과  - 초반에 한 일을 다시 하게 하는 것은 큰 부정 경험을 초래  - 강제적 이동보다는 원하는 보상을 통해 부여4차 개선 (+)스토리 텔링 요소 추가  1. 일러스트  2. 캐릭터에 대한 스토리 추가글로벌 원빌드로서 북미권 영역에서  특히 추가결과개선 프로세스 이후,"무언가가 무조건 있다."라는 이야기 보단, "기대치 않은 행동에 대해서 얻는 보상의 획득"으로 유저의 감성을 자극하는 스토리 텔링의 중요성 확인.교훈보상도 주지만, "보상을 준다"라는 이벤트를 행하는 것 만으로 서비스 제공자는 끝내선 안된다. 보다 감성적인 접근을 통해 유저의 감정을 이해하는 것이 더 중요하다. 첫날 첫 번째 세션이었는데요, 아침부터 정말 보람찬 세션 들을 수 있어서 정말로 감사했습니다. 사실, 게임이건, 모바일 서비스건, 웹 서비스건 "소비자를 이해한다."라는 부분은 언제 어디서나 필요한 부분이지만, 결과적으로 서비스 제공자들은 "보상을 제공했다."로 서비스 제공을 스스로 끝을 내버리는 순간들을 더 많이 마주하기 때문에, 다양한 분야들에서 생각해 볼만한 이야기라고 생각합니다. 한줄평: 중요한 건, "내가 이런 걸 줬다!"보다는 "이런 걸 줘서 고마워"라는 것을 느낄 수 있도록 소비자의 마음에 초점을 맞추는 서비스 제공이 맞다!#코인원 #블록체인 #기술기업 #암호화폐 #스타트업인사이트
조회수 8874

AWS Lambda에서 메모리 설정값과 CPU 파워의 관계

안녕하세요. 데이블 백엔드 개발팀 최형주입니다.이번에 말씀드릴 내용은 서버 없는 컴퓨팅(Serverless Computing)의 널리 사용되는 AWS(Amazon Web Service)의 Lambda에 대한 내용입니다. AWS Lambda는 메모리 설정값에 따라 CPU 파워가 결정되는데, 그 메모리 설정값에 따라 CPU 파워가 어떻게 변화하는지에 대한 실험 내용을 설명하겠습니다. 처음에 AWS Lambda가 무엇인지 간략하게 소개를 하고 왜 이번 실험을 하게 되는지 배경 설명을 드릴 것입니다. 그다음 메모리 설정값에 따른 CPU 파워는 어떻게 결정되는지를 규명하고 마지막으로 이번 포스트를 간략히 요약겠습니다.목차1. AWS Lambda란?2. 실험배경3. 메모리 설정값과 CPU 파워의 관계4. 요약AWS Lambda란?AWS Lamba의 웹사이트AWS Lambda는 이벤트에 응답하여 코드를 실행하고 자동으로 기본 컴퓨팅 리소스를 관리하는 서버 없는 컴퓨팅 서비스입니다. 즉 코드를 업로드 하기만 하면 높은 가용성과 확장성을 보장하는 Lambda 플랫폼에서 코드를 실행합니다.AWS Lambda를 사용의 장점은 서버관리 불필요(Serverless), 지속적인 조정(Scaling), 밀리 초 단위의 측정 및 과금(Demand-based Pricing)입니다. 즉 서버를 프로비저닝(Provisioning)하거나 관리할 필요 없이 AWS Lambda에서 코드를 자동으로 실행하기 때문에 코드를 작성하고 AWS Lambda에 업로드하기만 하면 됩니다. 또한, 각 트리거에 대한 응답으로 코드를 실행하여 애플리케이션을 자동으로 확장하거나 축소합니다. 즉 코드는 병렬로 실행되고 각 트리거는 개별적으로 처리되어 정확히 워크로드(Workload) 규모에 맞게 조정됩니다. 과금 방식은 100밀리 초 단위로 코드가 실행되는 시간 및 코드가 트리거 되는 회수를 기준으로 요금이 부과됩니다. 코드가 실행되지 않을 때는 요금이 부과되지 않습니다.실험 배경AWS Lambda의 과금은 요청 요금과 컴퓨팅 요금의 합으로 계산됩니다. 요청 요금은 Lambda 함수를 호출한 총 요청 수에 대해 요금을 부과하고, 컴퓨팅 요금은 사용자가 업로드한 코드를 실행한 시간을 계산하여 100ms당 요금을 부과합니다. 컴퓨팅 요금은 사용자가 설정한 메모리 크기에 선형 비례하여 다르게 부과됩니다. 예를 들어 128MB 메모리에서는 100ms당 0.000000208$이고 256MB는 128MB의 약 두 배인 0.000000417$입니다. 그리고 512MB에서는 256MB의 두 배인 0.000000834$입니다. 또한, 더 큰 메모리를 사용할수록 더 큰 CPU 파워를 제공합니다.가장 큰 메모리 설정값을 사용하면 좋겠지만, 비용적인 측면을 고려해볼 때 사용자 입장에서의 사용 목적은 AWS Lambda로부터 최소한의 요금으로 최대한의 계산 효율을 뽑아내는 것입니다. 이 목적을 달성하기 위해서는 Lambda 함수를 실행할 때 메모리의 크기와 CPU의 파워(코어 수, 연산능력)를 명확하게 규명할 수 있어야 합니다. 메모리 크기는 사용자가 설정할 수 있습니다. 하지만 아쉽게도 아마존에서는 CPU 용량은 설정한 메모리 크기에 비례하여 결정된다고만 설명되어 있고 어느 정도의 성능을 가졌는지 명시하지 않고 있습니다.하지만 데이블의 백엔드 개발팀에서, 실험을 통하여 AWS Lambda에서 메모리 설정값에 따라 CPU 파워가 어떻게 변하는지 규명해냈습니다. 이제 그것을 이 포스팅을 통해 설명해 드리고자합니다.메모리 설정값과 CPU 파워의 관계"설정한 메모리 크기와 CPU 파워는 지수적 감쇠 관계(Exponential Decay)를 보인다"앞서 "CPU 파워는 메모리 설정한 값에 비례하여 증가한다”라고 했습니다. "그러면 어느 정도로 어떻게 비례하는가?”, “당연히 선형관계 아닌가?"라는 질문이 자연스럽게 나올 것입니다. 저희는 이 질문에 대답하기 위해 각 메모리 설정값별로 100만 번의 덧셈연산을 하여 각 설정 별 처리시간을 계산해 보았습니다. 다음 [그림 1]은 100만 번의 덧셈 연산을 했을 때 처리시간을 나타낸 그래프입니다. X축은 할당한 메모리의 크기를 나타내고 Y축은 처리시간을 초 단위로 측정한 것입니다. 보시는 바와 같이 처리시간은 메모리 크기에 따라 지수적으로 감소함을 알 수 있었습니다. 그러므로 AWS Lambda에서는 설정한 메모리 크기와 CPU 파워는 지수적 감쇠 관계(Exponential Decay)를 보인다고 결론을 내릴 수 있습니다. 예를 들면 현재 설정한 메모리보다 2배 높은 CPU 파워를 사용하고 싶으면 2배로 큰 메모리 용량을 설정해야 합니다.[그림 1] 메모리 설정값에 따른 처리시간필요로 하는 메모리 크기와 사용하는 응용에 따라 다르겠지만, 일반적으로 메모리의 크기에 상관없이 사용하는 비용이 거의 같다고 얘기할 수 있습니다. [그림 2]는 앞서 100만 번 덧셈 연산을 1만 번 호출했을 때의 각 메모리 설정값 별 요금을 나타낸 것입니다. X축은 설정한 메모리 크기이고 Y축은 각 메모리 설정값 별 요금입니다. 보시는 바와 같이 분포가 급격히 변하지 않고 대체로 균일한 것을 알 수 있습니다.[그림 2] 메모리 설정값에 따른 요금하지만 프로그램의 실행 시간은 단순히 CPU 파워로만으로 처리 시간이 결정되지 않기 때문에 다양한 요인을 검토해야 합니다. 알고리즘의 시간복잡도, 메모리의 크기와 접근 횟수, 네트워크 비용 등 다양한 것들이 처리 시간에 영향을 미치기 때문에 단순히 메모리 설정값을 늘려서 사용하는 방법은 옳지 못합니다. 그러므로 위 자료를 참고 용도로만 사용하셔서 하고자 하는 목적에 맞게 가장 최적의 메모리 설정값을 설정하시면 됩니다.요약AWS Lambda는 대표적인 서버 없는 컴퓨팅 서비스입니다. AWS Lambda에서 뛰어난 가성비를 얻고자 할 때는 각 설정값에 따라 제공하는 자원을 예측할 수 있어야 합니다. 여러 설정값 중 가장 성능에 큰 영향을 미치는 것은 사용하고자 하는 메모리 크기인데 이 크기에 따라 CPU 파워가 결정됩니다. 하지만 각 메모리 설정값에 따른 CPU 파워 정보를 아마존에서 제공해 주지 않고 있으므로 실험을 통해서 확인하였습니다. 실험 결과 설정한 메모리 크기와 CPU 파워는 지수적 감쇠 관계(Exponential Decay)를 규명했습니다. 이 규명은 단순한 프로그램에서만 확인한 것이기 때문에 최고의 효율을 가지는 AWS Lambda를 사용하기 위해서는 그 밖의 다양한 것들을 고려하여 설정해야 합니다.  기타머신 성능 및 정보- 사용하는 CPU는 Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz, 코어의 개수는 2개, 그리고 캐시의 크기는 25600 KB 임(사용하는 Microcode는 바뀔 수 있음)- 메모리는 약 3.67GB를 가짐실험에 사용한 Lambda 함수import osimport multiprocessingimport timeimport subprocessdef lambda_handler(event, context):mem_bytes = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES')mem_gib = mem_bytes/(1024.**3)num_cores = multiprocessing.cpu_count()#start_time = time.time()print subprocess.check_output ('vmstat -s', shell=True)sum = 0for i in range(1000000):sum += iif sum 000 == 0:print subprocess.check_output ('vmstat -s', shell=True)print subprocess.check_output ('vmstat -s', shell=True)hostname = subprocess.check_output ('hostname', shell=True)cpuinfo = subprocess.check_output ('cat /proc/cpuinfo', shell=True)meminfo = subprocess.check_output('cat /proc/meminfo', shell = True)print hostnameprint '--------------------------------------------------------------\n\n'print 'CPU Information'print cpuinfoprint '--------------------------------------------------------------\n\n'print 'Memory Information'print meminfoprint '\n\n\n\n'참고 자료https://aws.amazon.com/ko/lambda/details/#데이블 #개발 #개발자 #인사이트 #꿀팁 #AWS #조언
조회수 1444

[인공지능 in IT] 서로 다른 우리, 대화할 수 있을까?

설연휴 동안 그간 못 봤던 밀린 TV 프로그램들을 맘껏 즐기며 여유로운 시간을 보냈다. 그 중에서도 여러 분야의 전문가를 초빙해 특강을 해주는 tvN의 '어쩌다 어른'을 보기 시작했다. 몇 년 전 언어인문학을 주제로 한 조승연 작가님편을 보니 새삼 현재 대한민국이 처한 현실을 피부로 느끼게 되더라.< tvN>강연에서 가장 심도있게 다룬 부분은 대한민국 영어교육의 현실이다. 초등학교부터 영어 수업을 듣고, 심지어 말도 제대로 떼기 전인 유아기부터 영어를 주입시키는 것이 어느새 자연스러운 일이 되어버렸다. 하지만, 10년, 20년 이상 영어 교육을 받았는데도 막상 영어로 문서 작업을 하거나, 외국인이 길을 물어보면 식은땀을 흘리는 이유는 무엇일까? 어째서 한국에서는 영어를 제대로 하려는 노력보다, 영어를 아는 노력을 하고 있는 것일까?재미있는 사실은 우리만 영어를 배우려고 애먹는 것이 아니다. 미국인이 한국어를 배울 때에도 비슷한 현상을 겪는다. 강연 중 'FSI(The Foreign Service Institute)'에서 미국인들이 다른 나라 언어를 얼마나 공부해야 소통할 수 있는지에 대한 연구 자료를 공개했다. 언어별 Level 1부터 Level 5까지 다섯 가지 난이도로 구분 되어있고, 이에 따른 총 필요시간으로 구성되어 있는 연구에서, 한국어는 일본어, 중국어와 함께 소통하기 까지 총 2,200시간을 공부해야 하는 Level 5군에 속해 있었다.즉, 전세계 7,000여 개가 넘는 언어 중 한국어는 영어와 문장구조가 완전히 다르기 때문에, 24시간 내내 공부해도 90일 넘게 공부해야 한다는 것. 이렇듯 모국어가 아닌 다른 언어를 배우기 위해서는 어마어마한 시간과 노력이 필요하다. 만약, 단순히 언어를 알기 위해 배우는 것보다, 소통하기 위해 배운다면 흔히들 말하는 'ROI(Return on Investment)'를 더 높일 수 있자 않을까.출처: 동아일보소통을 위한 언어 학습은 비단 사람에게만 해당되는 것이 아니다. 기계와 사람의 소통 역시 요즘과 같은 인공지능 시대에서는 빼놓을 수 없는 부분이다. 몇 년 전부터 업계에서는 '챗봇(Chatbot)' 열풍이 불고있다. 챗봇은 대화(Chat)와 로봇(Robot) 두 단어를 합친 신조어로서, 각종 앱이나 웹을 기반으로 문자를 통해 사용자의 의도를 파악해 대화할 수 있는 인공지능 기계다. 여기에는 '자연어 처리(Natural Language Processing, NLP)', '자연어 이해(Natural Language Understanding, NLU)', '머신러닝(Machine Learning)' 등 수많은 기술이 접목되어 발전 중이다. 현재 챗봇은 나날이 진화하며, 텍스트를 텍스트로만 처리하는 것을 넘어, '음성으로 변환(Text-To-Speech, TTS)'시키거나, '음성을 텍스트로 변환(Speech-To-Text)'시키는 등 다양성에 있어 점점 넓은 범위에 적용되고 있는 추세다.< 출처: Understanding Natural Language Understanding, Bill MacCartney >글로벌 챗봇 시장은 매년 큰 폭으로 성장하고 있는 추세이며, 여러 사업 분야에 걸쳐 사용되고 있다. 북미의 시장조사기관 'Credence Research' 조사에 따르면, 글로벌 챗봇 시장은 2015년부터 2023년까지 연평균 35% 성장할 것으로 예상된다. IT솔루션 기업 'MindBowser'가 조사한 결과, 95%의 기업이 챗봇 활용성에 대해 긍정적인 반응을 보였으며, 고객응대(93%)부터, 마케팅(61%), 상품 주문(47%), 소셜 미디어(32%) 등 사업 분야에서 활용되는 용도 역시 다양한 것으로 밝혀졌다.챗봇은 어떠한 프로세스를 통해 실제로 작동하는지 살펴보기 위해서 사내 엔지니어의 도움을 받았다. 스켈터랩스에서 대화형 인공지능 프로젝트팀에 있는 정태형 엔지니어가 메신저를 통한 간단한 시범 사례를 스크린샷으로 찍어 보여주었다.< 인공지능 메신저 사례, 출처: 스켈터랩스 >여행지를 자동으로 추천해주는 엡에 적용할 수 있는 챗봇과의 대화다. 사용자가 "여행을 가고 싶다"고 말하자 자동으로 '카이트봇'이 반응하고, 여행 기간과 테마를 물어본다. 여기서 사용자가 "여행 기간"을 말하자 챗봇은 자동으로 '3월'과 '7일'을 인식, 이전 질문에서 대답하지 않은 테마에 대해 질문한다. 이렇게 사용자와 챗봇 사이에서 대화를 자연스럽게 주고 받을 수 있는 것은 대화의 구성 요소 중 '의도(Intent)', '개체(Entity)', '맥락(Context)'이 중요한 역할을 한다. 이를 간단히 살펴보도록 하자.의도(Intent)는 사용자가 어떠한 의도로 대화를 하는지를 의미한다. 위 스크린샷의 경우, 여행을 가는 것'이 의도라 할 수 있다. 예를 들어, "여행 가고 싶어"가 아닌 "여행 가볼까?"로 입력하더라도 - 미리 여행을 가는 것에 대한 자연어 기반 패턴이 'Intent Classifier'에 입력되어 있는 상태라면 - 이를 '사용자가 여행을 가고 싶구나'라는 의도로 이해할 수 있는 것이다.개체(Entity)는 사용자의 의도 중에서 실체가 될 수 있는 변수를 말한다. 개체는 사용자가 입력한 문장에서 특정한 변수가 달라질 때 사용된다. 위 스크린샷의 경우, '3월 3일', '해변', '일주일' 등과 같이 주로 명사 형태로 구성된 문장에 들어가는 구성 요소를 말한다.문맥(Context)은 이전 대화를 자연스럽게 이어갈 수 있도록 처리할 수 있는 기능이다. 예를 들어, 사용자가 챗봇에게 "가수 빅뱅의 프로필을 검색해달라"고 요청했다. 그리고 빅뱅의 노래를 듣기 위해 "거짓말 틀어 줘"라고 명령하면, 기존에 빅뱅이라는 가수에 대해 대화하고 있던 문맥을 인식해 God의 거짓말이 아닌 빅뱅의 거짓말을 재생하는 것이다.이 외에도 챗봇에는 '말뭉치(Utterance)', '시나리오(Scenario)', '슬롯채우기(Slot Filling)' 등 다양한 구성요소를 통해 대화를 이어나갈 수 있다. 물론, 아직 100% 인간과 대화하는 기술까지 이르지는 못했다. 하지만, 우문현답하지 않고 사용자 의도를 정확하게 파악하는 수준에 이르러 생활에 편의성을 제공하고 있다.한국어의 경우 언어의 난이도 때문에 국내 기업은 물론 많은 글로벌 IT 기업도 아직 완벽한 수준에 도달하지 못했다. '잘 한다'라는 말만 하더라도 '훌륭하게 하다', '만족할 만하다', '자주 하다' 등의 긍정적인 표현이 있는가 하면, '잘 하는 짓이다' 등의 부정적인 표현인 경우도 흔하기 때문이다. 결국 챗봇도 기계이기 때문에, 여러가지 문장과 상황을 학습시켜 한국어 성능을 향상시켜야만 한다.다시 '어쩌다 어른'으로 돌아가보자. 강연을 마무리할 즈음 조승연 작가는 이렇게 말한다."영어도 결국 언어의 한 종류, 영어를 쓰는 사람들도 우리와 같은 사람, 우리처럼 희로애락을 느끼는 인간입니다. 기계와 얘기하기 위해 법칙에 맞춰 말해야 하는 것이 아니라 그 사람과 감정을 통하게 해주는 어떤 도구입니다."여전히 우리는 챗봇이라는 기계와 소통한다기 보다, 일방적으로 질문을 던지고, 챗봇은 미리 입력되어 있는 규칙 안에서만 답한다. 학습을 통해 수많은 데이터가 축적된다 하더라도, 아직까지 언어를 통해 전달되는 인간의 감정을 완벽히 이해하기에는 부족한 것이 사실이다. 과연 기계가 '법칙'에 맞춰서 말해야 하는 것 이상을 넘어서는 순간이 올까? 우리는 그 순간을 찾아 지금도 노력하고 있는지 모른다.이호진, 스켈터랩스 마케팅 매니저조원규 전 구글코리아 R&D총괄 사장을 주축으로 구글, 삼성, 카이스트 AI 랩 출신들로 구성된 인공지능 기술 기업 스켈터랩스에서 마케팅을 담당하고 있다#스켈터랩스 #기업문화 #인사이트 #경험공유 #조직문화 #인공지능기업 #기술기업
조회수 3839

코딩, 얼마나 배워야 하지?

경영학과 학생 윤수는 코딩을 배우기로 결심했다. 열심히 알바해서 모은 돈으로 학원이나 인강을 알아보는 중.어떤 코딩 부트캠프 홍보물이 눈에 확 들어온다.아무것도 모르는 사람도 3개월이면 안드로이드 개발자가 될 수 있어요. 풀스택 개발자로 취업할 수 있어요. 400만원만 내면~오호... 그럴듯해 보인다. 400만원이 적은 돈은 아니지만 3개월 만에 안드로이드 개발자가 될 수 있다면 괜찮은 투자 아닐까? 그런데 안드로이드 개발자인 친구 신의에게 이 광고를 보여주니 신경질적으로 반응한다. 야, 누구나 3개월 만에 안드로이드 개발자가 될 수 있으면 컴퓨터공학과 나와서 안드로이드만 1년 공부해서 취업한 나는 뭐냐?3개월 만에 안드로이드 개발자로 취업할 수 있다는 말을 믿고 싶긴 한데, 친구 말이 더 현실적인 것 같기도 하다. 그리고 사실 윤수는 신의보다 똑똑하지도 않다. 혼란스럽다.윤수뿐만 아니라 처음 코딩을 배우려는 사람들 모두 비슷한 의문을 갖는다: 완전 레알 평민인 내가 코딩을 배우면 뭘 할 수 있고, 얼마나 금방 할 수 있을까?쓸데없는 희망고문은 제껴 두고, 진짜 현실적으로 코딩을 배우면 할 수 있는 걸 세 가지 단계로 정리해보았다:레벨 1: 누구나 어느 정도의 의지만 있으면 할 수 있음레벨 2: 소질이 있거나 많은 의지가 있으면 할 수 있음레벨 3: 소질이 있고 많은 의지가 있으면 할 수 있음* 생각나는 몇 가지만 적어보았다. 코딩으로 훨씬 많은 것들을 할 수 있다.레벨 1: 누구나 어느 정도의 의지만 있으면 할 수 있음간단한 업무 자동화일상을 편하게 해주는 간단한 프로그램 정도는 누구나 노력하면 만들 수 있다. 몇 가지 예시를 들어보자:내가 자주 틀리는 문제 위주로 나를 시험하는 단어장 프로그램매주 일요일 7시에 엑셀 파일을 읽어서 직업과 연령대에 따라 맞춤형 이메일을 보내주는 프로그램인스타그램에 올리기 좋게 모든 사진을 한 번에 정사각형으로 만들어주고 사진 구석에 회사 로고를 박아주는 프로그램어떤 블로그에 새 글이 올라올 때마다 내용을 긁어와서 이메일로 보내주는 프로그램회사원? 연구원? 학생? 취준생? 각자에게 필요한 프로그램이 무엇인지는 자기 자신이 가장 잘 알 것이다.간단한 데이터 분석 & 데이터 시각화데이터만 있으면 간단한 분석과 시각화 정도는 누구나 해낼 수 있다. 예를 들어서 파이썬의 numpy와 pandas 라이브러리를 사용하면 데이터 분석을, matplotlib을 사용하면 데이터 시각화를 간편하게 할 수 있다. 데이터 분석데이터가 없으면 모으면 된다. 파이썬의 selenium과 beautiful soup을 사용하면 대량의 데이터를 웹사이트에서 긁어올 수 있다.웹사이트 레이아웃 & 워드프레스 사이트 만들기HTML과 CSS를 배우면 웹사이트 레이아웃을 만들 수 있다. 자바스크립트까지 조금 배우면 사이트에 근사한 인터랙션을 넣을 수 있다. 이 정도만 배워놓아도 워드프레스는 수월하게 다룰 수 있을 것이다. HTML, CSS, 자바스크립트를 전문적으로 하는 직업이 바로 "웹 퍼블리셔"다. 웹사이트 전체를 만드는 것이 아니라 웹사이트의 "비주얼"을 담당하는 역할이다.레벨 2: 소질이 있거나 많은 의지가 있으면 할 수 있음모바일 어플, 웹 프런트엔드, 웹 서버아무것도 모르는 사람이 정말 3개월 만에 어플 개발자 혹은 웹 개발자로 취업할 수 있을까?아주 소질 있는 사람이 엄청난 노력을 하면 될 수도 있지만 대부분의 경우에는 불가능하다.시키는 대로 따라하면 세 달 동안 트위터나 인스타그램 비슷한 어플을 만들어낼 수 있을 거다. 그런데 아무런 도움 없이 전혀 다른 어플을 만들어보라고 하면? 아마 95% 이상은 시작조차도 못할 거다. 물론 어플을 빨리 만듦으로써 흥미와 열정이 생긴다면 나름 의미 있는 투자라고 생각한다(그래도 수백 만원은 좀...). 하지만 결국에는 기초가 탄탄해야 하는 법. 모바일 어플이나 웹 개발을 제대로 하고 싶다면 조금 시간을 갖고 준비해보는 걸 권장한다. 심화 데이터 분석 (머신러닝, 딥러닝)파이썬의 scikit-learn, keras, tensorflow 등을 사용하면 머신러닝과 딥러닝 알고리즘을 간편하게 구현하고 사용할 수 있다. 간편하다고 하면서도 레벨 2인 이유는 알고리즘에 대한 최소한의 이해가 필요하기 때문이다. 데이터 분석을 제대로 하기 위해서는 기본적으로 수학적 배경 지식을 갖춰야 한다. IoT, 스마트홈아두이노와 라즈베리파이를 사용하면 재미있는 IoT 혹은 스마트홈 프로젝트를 많이 할 수 있다. 어렵지 않게 되어 있지만, 그래도 코딩 지식과 더불어 하드웨어에 대한 지식도 요구하기 때문에 레벨 1은 아닌 것 같다.2012년에는 UC 버클리의 1학년 학생이 기숙사 방을 스마트홈으로 만들어버린 게 유튜브에서 화제가 되었었다.아두이노레벨 3: 소질이 있고 많은 의지가 있으면 할 수 있음높은 연봉수요에 비해 개발자는 턱없이 부족하다. 덕분에 좋은 개발자는 여기저기서 모셔가겠다고 난리다. 구글 소프트웨어 엔지니어 사원 평균 연봉은 약 1억 4천만원이다 (출저: Glassdoor)하지만 누구나 구글에 취직하거나 스타트업에서 억대 연봉을 받을 수 있다는 헛된 희망은 주고 싶지 않다. 어느 정도의 소질과 많은 노력이 있어야 가능한 일이다. 자신 있다면 도전해보길!* 물론 개발자가 되고 싶지 않거나 될 자신이 없더라도 코딩을 배우는 걸 적극 추천한다. 코딩을 자신의 분야에 결합하면 자신의 가치를 엄청나게 높일 수 있기 때문이다. 예를 들어서 마케터가 코딩을 배우고 그로스 해킹을 할 수 있다면, 일반 마케터보다 훨씬 희소성 있고 가치 있는 일원이 될 수밖에 없다. 어떤 일을 하고 있든 코딩을 배우면 세련되고 효율적인 방식을 찾아낼 수 있을 것이다.세상을 바꾸는 일코딩은 세상을 바꿔왔고 앞으로도 그럴 것이다. 코딩을 잘하면 세상을 바꾸는 기술의 발전에 참여할 수도 있고, 세상을 바꾸는 기술을 만들어낼 수도 있다. 생각해보면:- 페이스북, 인스타그램, 스냅챗, 에어비엔비 (SNS)- 마이크로소프트, 애플 (운영 체제)- 이더리움 (블록체인 기반 스마트 계약)- 코드잇 (코딩 교육 ^^;)모두 20대들이 만들었다. 심지어 인스타그램 창업자 케빈 시스트롬은 간단한 웹사이트를 만들 수 있는 정도의 코딩만 배워서 프로토타입을 만들었다. 우리의 상상과 달리 고수들만 코딩으로 세상을 바꾸는 게 아니다.코딩은 이 시대에 우리가 가질 수 있는 가장 강력한 무기다. 물론 많은 노력이 필요하겠지만, "나도 열심히 하면 세상을 바꿀 수 있다"는 생각을 가지고 코딩을 배워보자!#코드잇#코딩교육 #개발자양성 #교육기업 #인사이트 #경험공유
조회수 4112

[Tech Blog] Go 서버 개발하기

Go 서버 개발을 시작하며   특정 API만 다른 언어로 구현해서 최대의 성능을 내보자! 저희 서버는 대부분 Django framework 위에서 구현된 광고 할당 / 컨텐츠 할당 / 허니스크린 앱 서비스 이렇게 나눌 수 있는데 Python 이라는 언어 특성상 높은 성능을 기대하기가 어려웠습니다. 하지만 세가지 서비스에서 락스크린에서 어떤 컨텐츠나 광고를 보여줄지 결정하는 Allocation(할당) API 가 가장 많이 호출되고 있었는데 빈도로 보면 80% 정도로 높은 비중을 차지하고 있어서 이 Allocation API 들을 성능이 좋은 다른 언어로 구현하면 어떨까 하는 팀내 의견이 있었습니다. Why Go? 저는 예전부터 Java,  C# 등의 컴파일 언어에 익숙해서 기존 Java 와 C, 그리고 Go 라는 최근에 새로 나온 언어 중에서 아래 블로그글과 같이 여러 reference 들을 통해 성능이 좋다는 Go 로 이 API 들을 포팅하는 작업을 시작하게 되었습니다. Go 에 대한 첫 인상은 Java, C계열 언어보다 덜 verbose 보였고 python 보다는 strongly-typed, encapsulated 하다보니 자유도를 제한해서 코드를 보기 쉽게 하는 것을 선호하는 저의 성격과도 잘 맞는 언어였습니다.     출처: Carles Mateo, Performance of several languages서버 개발 환경   Server design How to import libraries  GVT (https://github.com/FiloSottile/gvt) – Go 는 vendering tool 을 통해 dependency 를 관리할 수 있습니다. GVT 의 경우 처음 도입했을 때 별로 유명하지 않았는데 사용법이 간단해서 도입하게 되었습니다. 아래와 같이 참조하고 있는 revision 을 관리해주며 update 통해서 최신 소스를 받아 올수 있습니다.   { "version": 0, "dependencies": [ { "importpath": "github.com/Buzzvil/go-env", "repository": "https://github.com/Buzzvil/go-env", "vcs": "git", "revision": "2d8489d40184a12c4d09d09ce1ff717e5dbb0745", "branch": "master", "notests": true }, ....  Design pattern  Go 언어에서는 package level cycling dependency 를 허용하지 않아서 좀더 명확한 구조를 만들기 좋았습니다. 예를들어 Service 에서는 Controller 를 참조할수 없고 Model 에서는 Controller / Service / DTO 등을 참조할수 없도록 강제했습니다. 모든 API 요청은 Route 를 통해 Controller 에게 전달되고 이 때 생성된 DTO (Data transfer object) 들을 Controller 가 직접 혹은 Service layer 에서 처리하도록 하였고 DB 에 접근할 때는 모델을 통해 혹은 직접 접근하도록 했지만 추후 구조가 복잡해지면 DB 쿼리 등을 담당하는 DAO (Data access object) 를 도입할 계획입니다   Libraries                  요소이름선택 이유NetworkGinWeb 서버이다 보니 네트워크 성능을 최우선으로 고려, 벤치마크 표를 보고 이 라이브러리를 선택Redis & cachego-redis역시 성능을 가장 중요한 지표로 보고 이 라이브러리 선택MysqlGormORM 없이는 개발하기 힘든 시대이죠. 여러 Database를 지원하고 ORM 중에서도 method chaining 을 사용하는 Gorm 을 선택Dynamoguregu dynamoAWS에서 제공하는 Dynamo 패키지를 그대로 사용하면 코드 양이 너무 많아지고 역시 method chaining 을 지원해서 선택Environment variablescaarlos0 envGo 에서는 tag 를 이용하면 좀더 코드를 간결하고 읽기 쉽게 사용할수 있는데 이 라이브러리가 환경변수를 읽어오기 쉽도록 해줌   Redis cache  func SetCache(key string, obj interface{}, expiration time.Duration) error { err := getCodec().Set(&cache.Item{ Key: key, Object: obj, Expiration: expiration, }) return err } func GetCache(key string, obj interface{}) error { return getCodec().Get(key, obj) }  Mysql  var config model.DeviceContentConfig env.GetDatabase().Where(&model.DeviceContentConfig{DeviceId: deviceId}).FirstOrInit(&config)  Dynamo if err := env.GetDynamoDb().Table(env.Config.DynamoTableProfile).Get(keyId, deviceId).All(&profiles); err == nil && len(profiles) > 0 { ... }  Environment variables  var ( Config = ServerConfigStruct{} onceConfig sync.Once ) type ( ServerConfigStruct struct { ServerEnv string `env:"SERVER_ENV"` LogLevel string .... } ) func LoadServerConfig(configDir string) { onceConfig.Do(func() {//최초 한번반 호출되도록 env.Parse(&Config) } }    Unit test   환경 구성 Test 환경에는 Redis / Mysql / Elastic search 등에 대한 independent / isolated 된 환경이 필요해서 이를 위해 docker 환경을 따로 구성하였습니다. Test case 작성은 아래와 같이 package 를 분리해서 작성했습니다.  package buzzscreen_test var ts *httptest.Server func TestMain(m *testing.M) { ts = tests.GetTestServer(m) // 환경 시작 tearDownElasticSearch := tests.SetupElasticSearch() tearDownDatabase := tests.SetupDatabase() code := m.Run() // 여기서 작성한 TestCase 들 실행 // 환경 종료 tearDownDatabase() tearDownElasticSearch() ts.Close() os.Exit(code) }  Mock server는 은 http.RoundTripper interface 를 구현해서 http.Client 의 Transport 멤버로 설정해서 구현했습니다. 아래는 Test case 작성 예제입니다.  httpClient := network.DefaultHttpClient mockServer := mock.NewTargetServer(network.GetHost(MockServerUrl)) .AddResponseHandler(&mock.ResponseHandler{ WriteToBody: func() []byte { return []byte(mockRes) }, Path: "/path", Method: http.MethodGet, }) clientPatcher := mock.PatchClient(httpClient, mockServer) defer clientPatcher.RemovePatch()  Unit test 관련해서는 내용이 방대해서 추후 다른 포스트를 통해 자세히 소개하도록 하겠습니다.  Infra API 요청 분할 AWS Application load balancer 여러 API 중에서 할당 API 를 제외한 요청은 기존의 Django 서버로 요청을 보내고 할당요청에 대해서만 Go서버로 요청을 보내도록 구현하기 위해 먼저 시도 했던 것은 AWS Application load balancer (이후 ALB) 였습니다. ALB 의 특징이 path 로 요청을 구별해서 처리할수 있었기 때문에 Allocation API 만 Go 서버 로 요청이 가도록 구현했습니다.  출처: Amazon Devops Blog, Introducing Application Load Balancer   하지만 이렇게 오랫동안 서비스 하지 못했는데 그 이유는 서버 구성이 하나 더 늘어나고 앞단에 ALB 까지 추가되다 보니 이를 관리하는데 추가 리소스가 들어가게 되어서 어떻게 하면 이러한 비용을 줄일수 있을까 고민하게 되었습니다.   Using docker & nginx  Go로 작성된 서버가 독립적인 Micro service 냐 아니면 Django 서버에서 특정 API 를 독립시켜 성능을 강화한 모듈이냐 의 정체성을 두고 생각해봤을때 후자가 조금더 적합하다보니 Go / Django 서버는 한 묶음으로 관리하는 것이 명확했습니다. Docker 를 도입하면서 nginx container 가 proxy 역할을 하고 path를 보고 Go container / Django container 로 요청을 보내는 구성을 가지게 되었습니다.  글을 마치며   시작은 미약하였으나 끝은 창대하리라 하나의 API를 이전했음에도 불구하고 Allocation API 에 대해서는 약 1/3, 서버 Instance 비용은 1/2.5 수준으로 감소했습니다.   설명: 기존 4개의 Django 인스턴스의 CPU 사용률이 모두 13% 정도 감소, Go 인스턴스의 CPU 사용율은 17% 정도   17 / (13 * 4)  ≒ 1 / 3  충분히 만족할만한 성과가 나와서 그 뒤로 몇가지 API도 Go 로 옮겼고 새로 작성하는 API 는 Go 환경 안에서 직접 구현하는 중입니다. 처음에는 호출이 많은 하나의 API 를 다른 언어로 포팅하기 위해 시작한 작업이었는데 Container 기술을 도입하는 등 서버 Infra 까지 변경하면서 상당히 큰 작업이 뒤따르게 되었습니다. 하지만 이 작업을 하면서 많은 동료들의 도움과 조언이 있었고 결국 완성할수 있었습니다. 이렇게 실험적인 도전을 성공 할수 있는 환경에 여러분을 초대하고 싶습니다! Go언어에 대한 문의나 좋은 의견도 환영합니다.
조회수 1291

린더를 만들고 있는 이유 1.0

여러 인공지능 서비스가 우후죽순 생겨나고 있습니다. 그리고 각각의 '인공지능 비서'들이 내세우는 주요 기능 중 하나는 바로 일정 관리죠. 그럴만도 한것이 일정관리야 말로 인간이 가장 큰 보조를 받을 수 있는 영역 중 하나이기 때문이라고 할 수 있겠습니다.개인 비서가 없어봐서 모르겠지만 영화나 드라마를 보면 주로 훤칠하게 잘생긴, 또는 아름다운 비서가 회장님이 묻기도 전에 그의 다음 일정을 알려줍니다. 내가 언제, 어디서, 무엇을 해야 하는지 끊임 없이 기록하고 상기 시켜주는 사람이 옆에 있다면 나의 삶도 여러모로 편해질수 있지 않을까요.이러한 측면에서 볼 때 다양한 인공지능 서비스가 나오고 있다는 점은 환영 할 일이지만, 그 서비스들이 실질적으로 사람들의 삶에 도움이 되는 기능들을 갖추고 있느냐는 완전히 다른 차원의 질문이 될 수 있습니다. 이름만 인공지능일 뿐이지 할줄 아는 것이라고는 내가 입력한 일정을 당일 아침에 읊어주는 수준이라면, 그것을 '비서'라고 부르기에는 부족할지 모릅니다.대부분의 사람들이 일정을 놓치게 되는 이유는 주로 해당 일정을 기록해두지 않기 때문입니다. 바쁜 생활 속에서 모든 일을 일일히 기록하기는 매우 어렵고, 나중에 해야지라는 생각으로 묻혀두었던 일정들은 어느새 지나있기 마련이죠.진정으로 똑부러지는 일정 도우미라면 내가 일정을 직접 입력하기도 전에 내가 선호할 만한 일정들을 먼저 정리하여 제시할 수 있어야 합니다. 우리는 여러개의 일정 중 가장 끌리는 것을 선택하기만 하면 되는것이죠. 그렇다면 위와 같이 사용자가 일정을 입력하기 전 먼저 선택지를 제시하기 위해서는 무엇이 필요할까요?현재 히든트랙팀에서 제공하고 있는 일정구독서비스, 린더( https://linder.kr )는 화장품 세일일정, 학교 학사일정, 프로야구 경기 일정 등 다양한 일정들을 한데 모아 개인의 캘린더로 구독 받을 수 있도록 돕고 있습니다. 현재까지 약 2만명의 사용자가 7천개가 넘는 다양한 일정들을 받아보고 있죠.아직 린더의 데이터는 아이돌 스케줄, 학사일정, 프로야구 경기일정 등에 국한되어 있지만, 이후 공연 티켓팅, 쇼핑몰 세일 등 다양한 분야로 확장해나갈 계획입니다. 기존에 심한 건망증으로 매번 놓쳤던 티켓팅이나 세일 일정이 있다면 린더를 통해 해당 일정을 놓치지 않고 실행에 옮길수 있게 되는것이죠.내가 직접 기록하지 않더라도 내 캘린더의 표시 되어있는 일정을 통해 행사나 이벤트에 참여할 수 있으며 주요 일정들에 대해서는 푸시알림을 통해 일정 시작 전 행사 정보를 파악 할수 있습니다. 락페스티벌을 좋아하시는분이라면 주요 락페스티벌의 티켓팅 및 공연 일정을 받아볼수 있고, 마라톤을 좋아하시는 분이라면 연간 마라톤 일정을 미리 확인 할 수 있게 되는것이죠.현재 린더는 캘린더를 통해 일정을 제공하고 있지만 이는 어디까지나 린더가 정보를 제공하는 여러 채널 중 하나일뿐입니다. 포화 된 앱 시장에서 돌파구를 찾고자 일시적으로 캘린더 플랫폼을 사용하고 있지만, 저희가 확보하고 있는 일정 데이터는 캘린더 뿐만이 아닌 모바일앱, 챗봇, AI스피커 등 다양한 형태로 제공 될 수 있습니다.캘린더에 표시도 안 한 2학기 수강신청을 10분 전에 내게 먼저 알려줄수 있는 앱이 있다면 멋지지 않을까요. 아침에 일어나자마자 고대하던 신상 구두가 출시 되었음을 알려주는 스피커가있다면 사랑스럽지 않을까요.잊고 있었던 티켓팅, 화장품 세일, 축구 경기, 신상 출시를 알려주는 당신만의 비서를 만들기 위해 저희 팀에서는 지속적으로 서비스를 개선해나가고 있습니다.아직 써보지 못하셨다면 사용해보신후 가감없는 피드백 부탁드리며, 내가 만들어도 이것보다 잘만들겠다 싶으신분이 있으시면 제게 연락주세요 ( [email protected] ). 제가 잘 꼬드겨서 저희팀으로 모셔갈수 있도록 하겠습니다 :)2017년 8월 2일. 목을 다쳐 하루종일 침대에 누워있지만 더 이상 잠은 안오는 어느날 밤.#히든트랙 #챗봇 #기술기업 #개발자 #개발팀 #인사이트 #경험공유

기업문화 엿볼 때, 더팀스

로그인

/