스토리 홈

인터뷰

피드

뉴스

조회수 3001

GUI가이드라인 정의와 목적

S/W 개발자가 디자인대로 화면을 구현할 때, 어떻게 디자인 요소 위치를 잡아야 하는지 정확한 정보가 필요합니다. 이런 정보는 GUI 디자이너가 포토샵과 같은 디자인 툴을 사용하여 개발자가 사용 가능한 형태로 사이즈 정보와 리소스를 만들어 전달하는 작업을 GUI 가이드라인 제작 작업이라 합니다.GUI 가이드 문서 상에는 화면상에 표현되는 모든 GUI 요소들의 정보가 표시가 됩니다. 화면상의 위치 X/Y 좌표값, 디자인 요소의 폭/높이 사이즈 정보, 이미지 파일 리소스명, 폰트 타입, 폰트 크기 등 다양한 그래픽 요소의 정보를 정확하게 수치화 하여 기재한 것입니다.가이드 문서의 양식은 딱 정해진 틀은 없지만, 소위 대기업의 경우 표준 템플릿을 이용합니다. 단말 하나에 탑재되는 앱 별로 수십 벌의 문서를 제작하여 관리해 왔습니다. 현재 과도기적인 단계라 스케치(.sketch) 파일과 가이드라인 문서를 함께 운영하는 곳도 있을 정도입니다.기존에 GUI 가이드 문서 제작을 위해서는 아래와 같은 일련의 순서로 작업을 하였습니다.디자인 시안 작업 > 디자인 시안 확정 > 개발 가능성 리뷰 > 최종 수정 >GUI 가이드라인 문서 제작 & 이미지 파일 리소스 작업이 중에서 가이드 문서 제작 과정을 초점에 두고 살펴보면, GUI 디자이너가 직접 이미지를 자르고 위치와 크기 정보를 확인하여, 파워포인트 문서로 정보를 입력하는 일련에 단순 노가다를 반복적으로 진행하게 됩니다.대부분의 에이전시 신입 디자이너들이 중국집 요리사 탱크트리와 유사하게 최소 2년 정도 GUI 가이드라인 작업을 하고 난 뒤에 시안 디자인 작업을 참여할 수 있는 구조였습니다. 크리에이티브를 위해 디자인 작업에 시간을 일주일 중 3일을 쓰고, 4일은 가이드를 쳐야 할 정도의 노력과 시간이 드는 노동 집약적 작업이었습니다.이렇듯 GUI 가이드라인 문서 제작은 모든 디자인 요소 정보들을 일일이 확인한 후, 파워포인트로 옮겨 적어야 하는 야근의 헬게이트를 열어주는 대표적인 업무였습니다.디자인 완료 후 개발자에게 “디자인을 이렇게 구현해 주세요.” 라고 말하면 얼마나 쉽나요? 근래에는 야근의 대부분을 차지하는 이러한 업무들로부터 스케치 툴이 많은 디자이너를 구해준 셈입니다.업무의 프로세스상 디자이너가 가이드라인 문서와 이미지 리소스 파일들을 넘겨줘야 개발자들이 개발진행을 할 수 있기에 디자이너들은 타이트한 데드라인에 쫓기듯 업무할 수 밖에 없었습니다.이러다 보니, GUI 가이드라인 문서 제작 중 휴먼에러(크기 정보 오타, 이미지 파일 누락 등)로 개발자가 작업하던 도중 디자이너에게 가이드라인 문서 업데이트 요청을 해오는 경우가 매우 빈번했습니다. 또한, 대규모 프로젝트 일수록 가이드라인 문서, 이미지 리소스 파일, PSD 디자인 파일 등 관리해야 할 대상이 많아서 개발자와 디자이너 사이의 커뮤니케이션 빈도수도 잦아지고 많은 비용이 필요했습니다.비단 3년 전만해도 GUI 디자인을 개발자가 구현하기 위해 필요한 정보를 수천 페이지나 되는 파워포인트 문서로 전달했지만, 요즘은 스케치를 활용한 제플린이나 심플리 등과 같은 가이드 정보를 제공해주는 여러 서비스를 이용하여 가이드 문서 제작은 거의 하지 않고 있습니다. 조만간 가이드 문서가 완전히 사라지는 날이 오지 않을까 싶습니다.그 끝에 크래커나인이 일조하는 날이 오기를 바라며 글을 마칩니다.#에이치나인 #디자이너 #개발자 #협업툴 #크래커나인 #솔루션기업
조회수 4021

Eclipse Memory Analyzer 소개

안드로이드 개발을 하다보면 종종 OutOfMemory(OOM)에러를 만나게 됩니다. 이전에 올렸던 포스팅에서도 이 문제로 고생을 했는데요, 메모리 누수 관련 문제는 로직 에러와는 달라서 찾기가 매우 난감한 경우가 많습니다. 이러한 메모리 누수 관련 문제를 해결하기 위한 검사 기능을 제공하는 무료 툴이 있습니다. 바로 Eclipse MAT(Memory Analyzer)(MAT)입니다.Eclipse MATMAT은 사용자로 하여금 힙 메모리의 상황을 파악하게 해주어 메모리 누수 현상과 필요없는 메모리 할당을 감지할 수 있도록 도와줍니다. 또한 자동으로 보고서를 작성하여 어떤 객체들이 메모리 누수를 일으키는지에 대한 추측을 해주는 기능을 제공합니다. MAT은 Eclipse 플러그인이기 때문에 사용하려면 Eclipse가 깔려 있어야 합니다. MAT을 설치하려면 MAT 다운로드 페이지에서 자신의 Eclipse버전에 맞는 파일을 받으시면 됩니다.How to use MATMAT을 설치하였다면 Eclipse화면에서 MAT관련 탭이 뜹니다. 탭을 클릭 하고File -> Open Heap Dump 를 누르면 힙 상황이 기록 된 hprof파일을 읽어올 수 있습니다.탭이 뜨지 않는다면Window -> Open Perspective -> Other에서 Memory Analysis 를 누르면 탭이 뜨는 것을 볼 수 있습니다.hprof 파일을 읽어오면 분석을 시작하고 결과를 Overview 화면에 보여줍니다.파이 차트의 각 부분에 마우스를 갖다 대면 옆의 Inspector 화면에 해당 객체의 정보를 보여주는 것을 볼 수 있습니다.InspectorInspector 창에서는 선택된 객체의 내용을 볼 수 있습니다. 해당 객체의 클래스명과 패키지 명 그리고 해당 객체가 가지고 있었던 변수의 내용을 살펴볼 수 있습니다.유용한 기능들MAT에서 가장 중요하게 살펴볼 기능이라고 한다면 Leak suspoect report와 Dominator tree라고 볼 수 있습니다. Leak suspect와 Dominator tree 둘 다 가장 메모리를 많이 차지하고 있는 객체에 대한 정보를 제공합니다.Leak suspectLeak suspect는 가장 큰 용량을 차지하고 있는 객체들을 좀 더 세분된 파이 도표로 보여줍니다. Problem suspect 1을 보면 현재 이 스레드 객체의 크기가 전체 힙 메모리의 크기 중 19.73%를 점유하고 있다는 것을 알 수 있습니다. 전체의 20% 가까이 차지하고 있다는 것은 이 객체를 OOM의 범인(?)이라고 생각할 근거가 됩니다. 해당 객체에 대한 더 자세한 정보를 얻고 싶다면 Details을 클릭하면 됩니다.Dominator treeDominator tree를 띄우면 현재 덤프 된 매모리 스냅 샷 중 가장 큰 용량을 차지하고 있는 객체 순으로 정렬하여 보여줍니다. Leak suspect와 비슷해 보이지만 더 구체적인 정보를 제공한다는 점이 다릅니다. 따라서 Leak suspect로 현 상황에 대한 힌트를 얻은 후 Dominator tree에서 디테일하게 살펴보는 것이 시간을 절약하는 방법입니다.상위에 있는 몇몇 객체들이 가장 의심 되는 객체들이라고 볼 수 있겠습니다. 왼쪽의 화살표를 클릭함으로써 그 객체가 참조하고 있는 다른 객체들에 대한 정보들을 볼 수 있습니다. 각 객체를 클릭하면 옆에 Inspect창의 내용이 달라지는 것을 볼 수 있습니다.실제 이 스냅 샷은 이전 포스팅의 문제를 해결하려고 떠놓은 스냅 샷인데요, 이 결과를 보고 많은 메모리가 네트워크를 통해 받아오는 스트림을 처리하고 문자열로 가공하는데에 낭비되고 있다는 생각이 들어 다른 방법으로 우회하는 방법을 썼고 결과적으로 문제를 해결 할 수 있었습니다.Android에서 MAT사용법먼저 안드로이드 기기에서 힙 덤프를 수행하여 hprof파일을 생성해야 합니다. hprof파일을 생성하기 위해서 간단하게 취할 수 있는 2가지 방법이 있습니다.1. DDMS를 이용한 추출Eclipse의 DDMS를 이용하여 힙 덤프를 추출할 수 있습니다. 아 방법을 쓰려면 앱의 메니페스트 파일에 WRITE_EXTERNAL_STORAGE 권한을 부여해야 하며, sdcard에 쓸 수 있는 권한이 있어야 합니다. 이 방법을 통해 sdcard경로에 앱 패키지명의 hprof파일이 생성됩니다.2. Heap dump method안드로이드 API에서 제공하는 메서드 중에 hprof파일을 생성하는 메서드인 dumpHprofData가 있습니다. 이 메서드는 Debug 클래스의 메서드인 것을 알 수 있는데, 이 Debug 클래스에는 앱의 상태를 점검할 수 있는 여러 유용한 메서드가 있으므로 나중에 필요하면 사용할 수 있도록 익혀두면 좋습니다.Android hporf 파일 변환앞서 설명한 방법을 적용하여 hprof파일을 추출하였어도 안드로이드에서 추출한 hprof파일은 MAT에서 받아들이는 일반적인 hprof포맷과 다르기 때문에 먼저 변환하는 과정이 필요합니다. 이러한 기능을 제공하는 것이 기본 SDK에 포함된 hprof-conv유틸입니다. 이 유틸은 SDK폴더 내의 tools폴더 안에 있는데 사용하려면 콘솔에서$ hprof-conv <안드로이드용 hprof 파일> <변환할 hprof 파일> 를 치시면 됩니다. 이제 변환된 파일을 MAT에서 열면 분석을 하실 수 있습니다.More tipEclipse Memory Analyser (MAT) - TutorialMemory Analyzer BlogJava Performance blog상기의 사이트들은 MAT과 Java의 메모리 처리에 관련된 내용을 포스팅한 사이트들입니다. 한 번 들러보면 좋은 정보를 얻을 수 있을것입니다.#스포카 #꿀팁 #개발 #개발자 #스킬스택 #스택소개 #인사이트
조회수 1929

나는 이쁜 데일리룩을 보고 싶은걸? \w pose estimation

안녕하세요. 스타일쉐어 백엔드 개발자 김동현입니다.2018년의 스타일쉐어에서는 뷰티, 중고 그리고 데일리룩이라는 피드가 추가로 등장했는데요, 그중 제가 작업했던 데일리룩 피드를 만들게 된 배경과 개발 방향에 대해 공유드리고자 합니다.스타일쉐어 데일리룩#데일리룩 #ootd / 타자 치는 것은 귀찮아데일리룩에 관련된 스타일들만 뽑아내는 방법 중에 가장 간단한 방법은 텍스트로 분리해내는 방법이었을 것입니다.하지만 #데일리룩 #ootd는 사진이나 내용이 관계가 없더라도 들어가 있는 경우가 많았습니다.또한 위의 피드처럼 정성스러운 글을 써주는 유저도 많긴 했지만 자신의 데일리 로그를 남기면서 글을 작성하지 않는 경우도 더러 있었습니다.즉, 단순히 텍스트로만 구별해내기에는 이미지에 대한 질을 확신할 수 없었고, 텍스트가 주된 서비스가 아니다 보니 설명 없는 좋은 이미지들이 많았는데요.우리는 이 이미지들을 놓치고 싶지 않았습니다.그래서 결과적으로 텍스트 대신 이미지를 사용하는 방향을 선택하게 되었습니다.이미지로 어떻게 구별해낼까?다행히도 R-CNN의 높은 인식률과 Pre-Trained 된 모델의 label 중 person이 이미 학습되어있던 터라 별도의 Transfer Learning 없이 이미지 내에서 body parts가 있는지 없는지 찾아내는 것은 아주 어렵지 않았습니다.다만 문제가 있다면 body parts에 들어가는 모든 부분을 person이라고 예측하던 부분이었죠.예를 들자면 아래와 같습니다.다음과 같이 제가 사용한 모델에서는 body parts를 person이라는 라벨로 처리하고 있었습니다.단순히 R-CNN의 person 라벨만을 믿기에는 의도했던 데일리룩 외에도 너무나도 많은 것들이 데일리룩이라는 이름으로 필터링될 것 같았습니다.그래서 또 다른 필터가 하나 더 필요하다는 생각이 들었습니다.Pose EstimationBody Parts 중 우리가 원하는 부분이 사진에 있으면 좋겠다!라는 생각을 곰곰이 하다 보니 우연히 머릿속에 스쳐 지나가는 하나의 장면이 있었습니다.Source: http://graphics.berkeley.edu/papers/Kirk-SPE-2005-06/바로 3D 모델링 중에서 Motion Tracker 에 관련된 장면이었는데요. 이것을 Tracker가 아니라 이미지에서 stick figure를 뽑아낼 수 있으면 되지 않을까?라는 생각이 들었습니다.놀라운 딥러닝의 세계에는 이미 여러 명의 Stick Figure를 뽑아낼 수 있는 경지에 도달해 있었습니다.Source: https://github.com/ZheC/Realtime_Multi-Person_Pose_EstimationPose Estimation 딥러닝 모델을 사용하여 아래와 같은 결과물을 얻어낼 수 있었는데요.이미지 내의 Body Parts의 존재 여부를 알게 되었으니 우리가 원하는 Body Parts가 이미지 내에 있는지 검사할 수 있게 되었습니다.하지만 해당 모델이 마냥 가볍지는 않았기에 사용자의 업로드가 많은 순간에는 예측 Task가 밀리기 시작했습니다.그래서 아주 단순하지만, 효과적인 아이디어들을 적용하였는데요.pose estimation을 하기 전에 R-CNN을 돌린 후 person으로 예측된 bounding box가 있다면 pose estimation 모델을 돌리도록 했습니다.하지만 위의 필터를 통했음에도 원하는 결과물이 안 나오는 경우가 종종 있었는데요.바로 다음과 같은 경우입니다.생각보다 작은 사람의 stick figure도 잘 추출 내어서 해수욕장으로 떠나 찍은 사진 속의 저 멀리 있는 휴양객을 데일리룩으로 잡는 일이 종종 발생했거든요.그래서 위의 조건에 더불어서 person이라고 예측된 bounding box size가 전체 이미지 크기 대비 n % 이상의 크기 일 경우 Pose Estimation을 진행하자는 것이었죠.적당한 크기 이상의 데일리룩들을 뽑아내고 싶었고 사람이 너무 작아서 안 보이는 경우도 피할 수 있었습니다.빠른 분류 속도는 덤이었고요.덕분에 유저들이 올린 콘텐츠 중 데일리룩이라는 범주에 속하는 콘텐츠를 잘 뽑아낼 수 있었습니다.아래는 위의 과정을 거쳐서 Pose Estimation까지 처리되어 데일리룩 사진이라고 판별된 이미지입니다.이다음으론 무엇을 더 해볼 수 있을까요?사진 속의 자세를 알 수 있게 되었으니 좀 더 재밌는 것을 할 수 있을 것 같은데요.예를 들면 K-Means를 적용하면 비슷한 모습의 데일리룩들만 모아볼 수도 있고 스타일쉐어 유저들이 자주 찍는 자세 라던가 유저 별 자세 선호도 등등 재밌는 것들을 할 수 있을 것 같습니다.날 따라 해 봐요 같은 것도 해볼 수 있겠네요 :)같이 해보지 않을래요?아직도 재밌는 것들이 많이 남은 스타일쉐어 에서는 더 많은 것을 하기 위해 개발자분들을 모시고 있습니다 :)백엔드 개발자라고 해서 백엔드 개발에만 국한되지 않고 하고 싶은 것들을 해도 된다, 할 수 있다고 이야기해 주는 회사라고 생각합니다.스타일쉐어를 좀 더 알고 싶으시다면 여기를 눌러 주세요 :)#스타일쉐어 #개발팀 #개발자 #백엔드개발 #개발인사이트 #경험공유 #후기
조회수 1509

레진 기술 블로그 - SVG를 이용해 간단한 웹 게임 만들어보기

근래 소규모로 게임 프로그래밍 스터디를 시작했습니다. 서비스 UI를 개발하는 프론트엔드개발자에게 있어 게임 프로그래밍은 언제나 커튼 뒤에 비친 풍경처럼 흐릿하고 형체를 쉽게 알 수 없는 신비한 존재입니다. 이번에 미약하게나마 커튼을 걷어 창문 너머 펼쳐진 풍경을 감상해 보자는 게 이번 스터디의 개인적인 목표입니다.왜 SVG를 선택했나게임을 만드는 데 어떤 기술을 사용할지 고민했습니다. 일반적인 DOM은 쉽게 객체를 조작할 수 있지만, 문서의 엘리먼트를 추상화한 것에 불과하므로 다양한 도형을 만들거나 좌표계에 사상(寫像, Mapping)1하기 쉽지 않습니다.캔버스는 그래픽 처리에 환상적인 성능을 보여주고 원, 다각형 등 다양한 도형을 그리기 쉽지만 일일이 객체화해야 하고 이를 관리하기 쉽지 않습니다. 여기에 필자가 캔버스를 좀 처럼 써 본 경험이 없어서 무턱대고 사용하기에도 부담을 느꼈습니다.하지만 SVG는 이 두 장점을 모두 갖고 있습니다. 확장 가능한 벡터 그래픽(Scalable Vector Graphics)이라는 이름을 통해서 알 수 있듯이 그래픽 요소를 그리는데 적합한 포멧이며 DOM처럼 추상화된 객체도 지원합니다.어떤 게임을 만들었나필자가 만든 게임은 크롬에 내장된 Running T-Rex와 비슷한 것으로 JUMPING CAR라고 이름을 붙였습니다. 플레이해보고 싶은 분은 uyeong.github.io/jumping-car를 방문하시기 바랍니다.규칙은 단순합니다. 게임을 시작하면 자동차가 달려나가고 이윽고 장애물을 만나게 됩니다. 장애물을 뛰어넘으면 점수가 1씩 증가하지만 부딪히면 게임이 종료됩니다.이 글에서는 게임을 만드는 과정을 소개하기보다 SVG를 이용하면서 알게 된 몇 가지 주요한 내용을 다룹니다.Pattern을 사용한 요소는 느리다이미지를 반복해서 출력할 때 HTML에서는 CSS의 background-url 속성으로 간단히 해결할 수 있습니다. 하지만 SVG에서는 Pattern 요소를 이용해야 합니다.아래 그림처럼 pattern#pat-land 요소를 만들고 이를 rect.parallax에서 사용하여 그림을 반복 출력되도록 합니다. 그리고 rect.parallax를 조금씩 Transform 하여 앞으로 이동하도록 구현합니다.코드는 다음과 같습니다(예제: svg-parallax-test/parallax1).<svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="..."> <defs> <pattern id="pat-land" x="0" y="0" width="..." height="100%" patternUnits="userSpaceOnUse"> <image x="0" y="0" xlink:href="../images/land.png" width="..." height="100%"></image> </pattern> </defs> <g> <rect class="parallax" x="0" y="0" width="..." height="100%" fill="url(#pat-land)" transform="translate(0,0)"></rect> </g> </svg> 표면상으론 전혀 문제가 없는 코드지만 크롬 브라우저에서 이 코드를 실행하면 프레임이 50 이하로 떨어지는 경우도 발생합니다. 이 정도면 육안으로도 화면의 움직임이 매끄럽지 않게 느껴지는 수치입니다.따라서 성능에 영향을 주는 pattern을 제거하고 image 요소로 대체합니다. image 요소는 자동으로 반복할 수 없으므로 두 개의 요소를 이어 붙여 사용합니다(예제: svg-parallax-test/parallax2).<svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="..."> <g> <image x="0" y="0" xlink:href="../images/land.png" width="..." height="100%"></image> <image x="..." y="0" xlink:href="../images/land.png" width="..." height="100%"></image> </g> </svg> 실행 결과 프레임이 안정적이고 육안으로도 이질감을 느낄 수 없습니다. 이처럼 Pattern을 이용한 SVG 요소를 애니메이션 처리할 때에는 주의가 필요합니다.일부 안드로이드 기종에서의 성능 문제pattern을 제거하고 image로 대체하면서 Parallax 처리 시 발생한 문제를 해결할 수 있습니다. 하지만 image로 대체하더라도 일부 안드로이드 기종에서는 여전히 성능 문제가 발생합니다.아래 영상처럼 image 요소를 Transform 할 경우 프레임이 급격하게 떨어집니다. 이는 크롬 개발자 도구에서도 쉽게 발견하기 힘든데 CPU 성능을 10배 줄여 테스트해도 수치상으로는 크게 차이 나지 않기 때문입니다.<style>.video-container { position: relative; padding-bottom: 56.25%; padding-top: 30px; height: 0; overflow: hidden; } .video-container iframe, .video-container object, .video-container embed { position: absolute; top: 0; left: 0; width: 100%; height: 100%; }</style><iframe width="560" height="315" src="https://www.youtube.com/embed/F_-zXf1jb8I?rel=0" frameborder="0" allowfullscreen="">이 처리를 DOM으로 바꿔보면 어떻게 될까. 놀랍게도 큰 차이를 보여줍니다(예제: svg-parallax-test/parallax3).<iframe width="560" height="315" src="https://www.youtube.com/embed/VXQ1aT79D2s?rel=0" frameborder="0" allowfullscreen="">SVG에 대한 최적화 상황은 브라우저마다 조금씩 다릅니다. DOM은 과거부터 최적화 노력이 많이 이뤄졌지만, SVG는 pattern 요소나 다음 절에서 이야기할 리페인팅 문제 등 성능 문제를 일으키는 부분이 아직 남아있습니다.따라서 충돌 계산처럼 특별히 좌표계 연산이 필요 없는 배경은 DOM으로 옮기고 자동차, 장애물만 SVG로 구현했습니다(예제: svg-parallax-test/parallax4).SVG는 항상 페인트를 발생시킨다SVG는 이상하게도 svg 요소의 크기를 고정하더라도 자식 요소를 변경하면 페인팅이 발생합니다. 아래는 svg 요소의 자식 요소인 rect의 좌표를 수정하는 예제 코드입니다.<svg"http://www.w3.org/2000/svg" width="500px" height="500px" viewBox="0 0 500 500"> width="500" height="500" x="0" y="0"> </svg> [removed] setTimeout(() => { rect.setAttribute('x', '100'); }, 3000); [removed] svg는 viewBox로 설정한 사이즈 만큼 내부에 그림을 그립니다. 즉, 내부의 어떠한 그래픽적 변화가 문서에 변화를 일으킬 가능성이 없습니다. 그래서 개인적으로 쉽게 이해가 되지 않는 렌더링 흐름입니다.그러면 SVG 요소의 크기나 좌표를 바꾸지 않고 색상 또는 투명도를 변경하면 어떨까요. 이번에는 rect 요소의 좌표가 아니라 색상을 바꿔봅니다.<svg"http://www.w3.org/2000/svg" width="500px" height="500px" viewBox="0 0 500 500"> width="500" height="500" x="0" y="0"> </svg> setTimeout(() => { rect.setAttribute('fill', '#ebebeb'); }, 3000); 그래도 페인트가 발생합니다. 하지만 앞서 진행한 테스트의 페인팅 시간은 수십 마이크로세컨드로 크게 의미가 없어 보입니다. 그래서 현재 서비스 중인 레진코믹스의 메인페이지에 SVG를 넣고 테스트했습니다.페인팅에 0.51ms가 소요됐습니다. 작다고 느낄 수 있지만 페이지 전반적으로 영향을 줄 수 있으며, 애니메이션 처리 중인 SVG라면 성능적 문제를 발생시킬 수 있는 부분입니다.그래서 svg 요소에 null transforms 핵을 선언해 문서 상위 레벨까지 페인팅이 전파되지 않도록 합니다.<svg"http://www.w3.org/2000/svg" width="500px" height="500px" viewBox="0 0 500 500" style="transform:translate3d(0,0,0)"> width="500" height="500" x="0" y="0"> </svg> 또는 아예 svg 내부의 요소를 개별로 분리하는 방법도 있습니다(참고: Doubling SVG FPS Rates at Khan Academy).<svg> fill="red" transform="translate(2px, 3px)"> fill="blue" transform="scale(2)"> </svg> style="transform:translate(2px, 3px)"> <svg> fill="red"> </svg> style="transform:scale(2)"> <svg> fill="blue"> </svg> 끝으로여기까지 SVG를 이용해 게임을 개발하면서 만나게 된 이슈와 해결 방법을 간단히 정리했습니다.필자는 간단한 게임은 SVG로 만들 수 있고 괜찮은 성능을 보장할 것이라고 기대했습니다. 하지만 현실은 달랐습니다. 이 글에서 다룬 문제 외에도 사파리와 크롬 브라우저의 성능 차이, 자동차를 움직일 때 버벅이는 현상 등 다양한 문제를 해결해야 했습니다. 객체의 개수도 적고 애니메이션도 복잡하지 않은 단순한 게임이었는데 말이죠.다음 게임은 캔버스로 시작하고자 합니다.공간(空間)의 한 점에 대(對)하여, 다른 공간(空間) 또는 동일(同一)한 공간(空間)의 한 점(點)을 어떤 일정(一定)한 법칙(法則)에 의(依)하여 대응(對應)시키는 일 ↩
조회수 1194

Single Layer Perceptron

Single Layer Perceptron이번 포스팅에서는 모든 인공신경망의 기초가 되는 perceptron의 개념에 대해서 배워보고, 이를 이용한 단층 퍼셉트론 구조를 구현해보도록 하겠습니다.퍼셉트론은 여러분이 고등학교 과학시간에 한 번쯤은 들어보았을 인간의 신경망, 뉴런으로부터 고안되었습니다. 퍼셉트론은 여러 개의 신호를 입력받으면, 하나의 신호를 출력합니다. 이 때 퍼셉트론이 출력하는 신호는 전달 혹은 차단이라는 1 또는 0의 값을 갖게됩니다. 직관적인 예시를 들어보도록 하죠. 여러분이 매달 초 용돈, 아르바이트비를 받거나(1) 받지 않는다(0)고 가정해보겠습니다. 여러분의 통장에 입금된 이 두 가지 수익을 input(입력) 신호라고 합니다. 이 때 여러분은 두 개의 수익이 합쳐진 통장 잔고를 확인하고 전부터 갖고 싶던 옷을 살지(1) 혹은 사지 않을지(0)를 결정합니다. 이렇게 여러분이 내리는 결정이 output(출력) 신호가 되는 것입니다.하지만 여러분의 의사결정은 이것보다는 복잡할 것입니다. 용돈은 거의 생활비로만 사용하고, 아르바이트비를 주로 취미생활에 사용한다고 가정해보죠. 그럼 여러분이 옷을 살지 여부를 결정할 때에는 아르바이트비가 들어왔는지가 좀더 중요할 것입니다. 따라서 우리는 각 input(입력) 신호를 그대로 사용하지 않고, 각각에 가중치(weight)를 주어 output(출력) 신호를 결정하게 됩니다. 이것을 도식으로 나타내면 다음과 같습니다. 이처럼 input에 weight가 곱해진 형태가 정해진(혹은 학습된) 임계치를 넘을 경우 1을 출력하고 그렇지 않을 경우 0을 출력하게 하는 것이 퍼셉트론의 동작 원리입니다. 정말 간단하죠! 이는 아래 수식과 같습니다.하지만 임계치를 그때그때 바꿔주는 것은 조금 직관적이지 않습니다(저만 그런가요). 그래서 우리는 아래 형태로 식을 바꾸게 되며, 이 때 추가된 b를 bias 혹은 절편이라고 말합니다. 위 식은 여러분이 중고등학교 수학 수업을 잘 들었다면 굉장히 익숙한 형태일 것입니다. 바로 2차원 좌표축을 그리고 직선을 그었을 때, 그 직선을 기준으로 나뉘는 두 개의 공간을 표현한 식입니다. 역시 말보다는 그림이 이해하기 쉬울테니, 아래에 그림을 그려보도록 하겠습니다.위처럼 공간을 올곧은 직선으로 나누는 것을 선형으로 나눴다고 말합니다. 하지만 직선만으로 공간을 나누는 것은 유연하지 않습니다. 위와 같은 방식으로는 OR, AND, NAND 문제는 해결할 수 있지만, XOR 문제는 해결할 수 없습니다. 이와 같은 문제를 해결하기 위해서는 층을 하나 더 쌓고, 공간을 단순한 선형이 아닌 곡선으로 분리해내어 좀더 유연한 적용이 가능해져야합니다.(사실 XOR은 선형만으로도 층을 하나 더 쌓으면 해결이 가능합니다). 이에 따라 multi layer perceptron(MLP) 의 개념이 등장하고, activation function(활성함수) 의 개념이 등장하게 됩니다. 후에 활성함수의 개념을 배우게 되면, 지금 배운 단순 퍼셉트론은 활성함수로 계단함수를 가진 것과 동일하다는 것을 알게 되실겁니다.정리단층 퍼셉트론은 모든 딥러닝 공부의 시작이다.단층 퍼셉트론은 입력 신호를 받으면 임계치에 따라 0 또는 1의 값을 출력한다.이러한 단층 퍼셉트론은 결국 공간을 선형으로 잘라서 구분하는 것과 동일하다.
조회수 3328

빅데이터 '분석가' '전문가'가 부족한 이유...

업계에서는 대기업이나 공공기관 등의 데이터 분석 수요가 커지면서 빅데이터를 다루거나 데이터 분석가들을 찾는 기업이 늘어난다고 하는 기사나 이야기들이 떠돌아다닌다.한국정보화진흥원에서 발간한 '2015년 빅데이터 시장 현황조사'보고서에 의하면 빅데이터 공급기업과 수요기업 모두 빅데이터 분석가가 필요하다고 내다보고, 많은 데이터 분석가가 필요하다고 이야기했다.분야도 금융을 비롯하여 통신, 커머스 등을 아우르고, IT 관련부서뿐만 아니라, 현업이라고 불리는 마케팅이나 영업도 포함된 관계에서의 데이터 활용을 위해서 빅데이터 '분석가'가 필요하다고 이야기를 한다.죄송하지만.. 한국형 환경에서는 '빅데이터 분석가'나 '전문가'는 그다지 필요 없을 것 같다.1. 변화하지 않는 기업어차피 정해져 있는 프로세서, 내부 R&R과 내부 혁신을 하기 위한 인사이트를 찾고, 데이터 변수를 찾는다고 하더라도 굳이 기업 내부의 변화를 일으키지 않을 것이기 때문에 '진정한 데이터 분석가'는 해당 기업에 무의미할 것이다.정말, 전문가라면 '내부 혁신'에 대한 키워드들을 뽑아줄 텐데... 이런 이야기는 '컨설팅'업체에서도 하지 않고, 내부에서도 '금기'시 해야 할 단어들이 대부분이다.만일, 대기업인 중요 키워드가 '오너'의 키가 문제라고 지적한다면... 아마도, 해당 부서나 관련자들은 움직이지도 못할 것이다.죄송하지만, '내부 혁신'이 불가능하고, '오너'중심의 대기업은 데이터 분석가가 필요하지 않다. 다만, '오너'의 생각을 읽고서 적당하게 마사지된 '데이터'를 보여줄 '외부 데이터 분석'서비스 업체만 필요할 뿐이다.그래서, 국내에서는 데이터 분석 서비스 업체 정도가 적당하다.2. 기업과 조직에 데이터가 없다.프로세스 하단에서 동작하는 수많은 로그들을 추적 감시, 감사하는 시스템이 가동되고 있어야 하며, 고객 서비스를 하는 서비스 집단에서도 하단에서 아이디어가 상단으로 올라가는 환경들이 이미 가동되고 있어야 한다. 데이터의 대부분은 그런 인사이트를 증명하는 근거가 되기 때문이다.이미, 중요한 움직임을 보이고 있을 때에만 '의미 있는 정보'를 추출할 데이터들이 축적되는데... 사실상, 의미 없이 마사지된 '보고서'들만 존재한다.원천적으로 의미 있는 데이터를 추출할 데이터가 있어야 하는데.. 대부분이 왜곡된 정보들이거나, 특정 힘에 의해서 데이터들이 왜곡돼 있다면, 해당 기업과 조직은 데이터가 없다고 봐야 한다.3. 오랜 경험을 축적한 실전 전문가들이 일찍 퇴직한다.빅데이터를 통해서 단지 현황만을 보여주는 것이 아니라, 기업의 미래나 새로운 먹거리를 유도할 수 있는 인사이트를 추출하기 위해서는 해당 도메인이나 해당 마켓에 익숙하고 경험이 풍부한 전문가들이 같이 있어야 한다. 실제, 데이터가 의미하는 방향성이나 수치, 지수가 어떤 것을 의미하는지 읽어 줄 수 있는 것은 데이터 전문가들이 하는 일이 아니다.해당 업무와 해당 도메인의 전문가가 그 '수치'를 읽어 줄 수 있는 것이다.대부분의 기업에서 '실전'이거나 '실제 업무'에 익숙한 전문가나 경험이 축적된 사람들은 하청업체이거나 이미 퇴직한 경험이 풍부한 사람들이다.해당 기업에서는 아무리 데이터가 분석되어도 어떤 의미인지 판독해줄 사람이 없다.4. IT기술 전문가가 필요한 것이 아니다.빅데이터나 머신러닝과 같은 지식화 인사이트는 절대 IT기술이나 주변의 소프트웨어 설루션으로 만들어지는 것이 아니다. 기업 내부에 축적된 '지식'을 기반으로 '사람'을 기준으로 데이터가 만들어진다. 데이터 분석 전문가는 단지, 그것의 가치를 '판정'해줄 수 있는 기준을 마련해줄 뿐이다.대부분의 '한국형'조직들은 데이터 거버넌스 조직도 없으며, 제대로 된 인사시스템이 가동되지 않고 있다. 슬프지만, 빅데이터 전문가들은 내부에서 영입하는 것이 아니라, 내부에서 자생적으로 생성되는 것이다.자생적으로 빅데이터 전문가가 생성되지 않는 조직은 이미, 지식화가 불가능한 형태이기 때문에, 너무 무리하지 말고, 현재 환경에서 연착륙하는 것을 고려하는 것이 최선일 것이다.역시, '한국형'에서는 굳이 '빅데이터 분석가'가 필요한 것이 아니라, '빅데이터 분석가 코스프레'를 하는 사람이 필요한 것 아닌가?오너가 이야기하는 'A'를 'A'처럼 써줄 수 있는 코스프레가 가능한 사람이면 충분한 것 아닌가 한다.
조회수 1805

스켈티인터뷰 / 스켈터랩스의 잡학다이너마이트 변규홍 님을 만나보세요:)

Editor. 스켈터랩스에서는 배경이 모두 다른 다양한 멤버들이 함께 모여 최고의 머신 인텔리전스 개발을 향해 힘껏 나아가고 있습니다. 스켈터랩스의 식구들, Skeltie를 소개하는 시간을 통해 우리의 일상과 혁신을 만들어가는 과정을 들어보세요! 스켈터랩스의 잡학다이너마이트 변규홍 님을 만나보세요:)PART1. About Skelter Labs사진1. 스켈터랩스의 소프트웨어 엔지니어, 변규홍 님Q. 간단한 자기소개를 부탁한다.A. 이름은 변규홍. 스켈터랩스에서 소프트웨어 엔지니어로 일하며, 컴퓨터에게 열심히 한국어를 가르치고 함께 배우고 있다. 대충 20년 전부터 컴퓨터 공부를 시작해서 컴퓨터 관련된 일이라면 사족을 못쓰는 덕후이기도 하다.Q. 현재 스켈터랩스에서 어떤 업무를 맡고있는가.A. 스켈터랩스의 인공지능 대화 엔진 개발 팀인 헤르메스(Hermes)에서 흔히 ‘챗봇’이라 부르는 인공지능 대화 엔진을 만들고 있다. 우리가 만드는 인공지능 대화 엔진은 ‘챗봇을 만들고자 하는 사람들이 누구나 쉽게 챗봇을 만들도록 돕는 편리한 사용'을 목표로 한다. 때문에 비개발자도 이해하기 쉽도록 효율적이고 간편한 UI와 구조로 개발하고 있다. 거기서 나는 어떻게 하면 컴퓨터가 사람이 하는 말을 더 잘 알아듣고 잘 대답할 수 있는지 연구하고 있다. 어떤 처리를 해야하는지, 언어의 어떤 패턴을 인식하는지 등 ‘자연어 처리(Natural Language Processing,NLP)’ 혹은 자연언어처리라고 불리는 기술 전반에 대한 연구를 진행하고 있다.Q. 자연어 처리라는 부분이 생소하다. 언어의 분석이나 처리에 대한 얘기를 더 해줄 수 있나.A. 챗봇 위주로 설명해 보자. 우리가 한국어 문장을 컴퓨터나 스마트폰에 입력할 때, 특히 채팅할 때는 문장의 변화가 심한 편이다. 띄어쓰기를 실수할 수도 있고 급식체같은 축약어를 사용하기도 한다. 같은 의도를 담은 문장이 아주 다르게 표현되는가 하면, 비슷한 문장이 어순이나 표현 한 두 가지만 바뀌어도 전혀 다른 뜻이 되기도 한다. 이러한 인간의 언어를 컴퓨터가 잘 알아들을 수 있도록 분석하고 처리하는 것이다. 입력된 문장에서 어떤 부분이 명사고 어떤 부분이 동사인지를 찾거나, 문장 속에서 어떤 형태소에 집중해야 하는지 분석한다. 그리고 은행 계좌나 전화번호처럼 규칙에 맞는 숫자가 다양하게 입력될 수 있는 경우를 찾아내기도 한다. 이런 과정을 거쳐 사람이 어떤 의도를 갖고 입력한 문장인지, 어떤 정보가 담겨있는지 식별해낼 수 있다.Q. 들어보니 기술에 대한 지식뿐만 아니라 언어학에 대한 조예가 필요한 분야로 보인다.A. 맞다. 이 분야를 전산학(컴퓨터공학)에서는 ‘자연언어처리’라고 하고 언어학에서는 ‘전산언어학(Computational Linguistics)’ 혹은 ‘계산언어학’이라고 한다. 학제 간 학문으로서의 성격이 강한 분야다. 초창기에는 언어학자들이 찾아낸 인간 언어의 구조, 규칙을 컴퓨터공학자 / 전산학자들이 프로그램으로 구현하는 연구가 많았다. 그러다가 애초의 예상보다 인간의 언어 구조가 훨씬 더 복잡하다는 것을 인식한 이후부터는 인간의 언어에서 규칙성을 찾는 과정도 통계적 방법 등을 통해 컴퓨터의 힘을 빌리게 되었다. 최근에는 요즘 화두인 머신러닝 기법을 적극적으로 적용하면서 연구 트렌드가 조금씩 바뀌고 있다. 다양한 규칙에 따라 문장을 분석하기보다, 빅데이터로 정리된 방대한 언어생활 자료를 컴퓨터 스스로 학습하여 문장 속에서 필요한 정보를 찾아내는 식으로의 전환이랄까. 하지만 여전히 좀 더 좋은 결과물을 내려면 언어학에 대한 지식과 규칙성에서 찾아낸 정보들이 필요한 것도 사실이다. 그래서 스켈터랩스에서는 규칙 기반 기법들과 머신러닝 기법 모두를 하이브리드 형태로 결합하여 대화 엔진을 개발하고 있다.Q. 아무리 다양한 형태로 기법을 결합하여 사용하더라도, 엔지니어가 언어학에 대해 연구하기는 쉽지 않아 보인다. 언어학을 별도로 공부하거나 혹은 언어학에 대한 관심을 이전부터 가지고 있었는지.A. 언어학이라기보다는 사실 나는 대학교에서 문학 동아리 활동을 오랫동안 했다. 자연스럽게 다양한 활동을 통해서 문학에 대한 얘기를 하다 보니 언어에 대한 관심도 꽤 높았던 것 같다. 무엇보다 구글코리아의 번역기 개발팀에서 인턴을 하며, 컴퓨터로 인간의 언어를 다루는 것이 굉장히 흥미롭다고 생각했고 꾸준히 관심을 이어왔다. Q. 구글 코리아 인턴 경험이 규홍님에게 여러모로 지대한 영향을 끼친 것으로 알고 있다. 그 얘기를 듣고 싶다.A. 대학에 처음 입학했을 때, 사실 실망감이 더 컸다. 합리적인 의사소통은 막혀있었고, 당시 학교의 학사제도 개편으로 인해 여러모로 시끄러운 상황이었다. 그러던 차에 마침 학교에 구글코리아에서 캠퍼스 리쿠르팅을 왔는데, 선배 중 한 명이 ‘왜 구글은 한국에서 인턴을 채용하지 않습니까' 라고 꽤나 당돌한 질문을 던졌다. 그렇게 구글 코리아 인턴 채용이 열려 면접 기회를 얻게 되었다. 당시 내 이력서에는 대학교 입학 후의 경력이라고는 연극동아리 공연 이력이 전부였기 때문에 일종의 두려움도 컸다. 하지만 일본어로 된 만화책을 컴퓨터에 넣으면 한국어로 번역된 만화책이 튀어나오게 하고, 컴파일(COMPILE) 사의 게임 중 미처 한국어로 번역되지 못한 게임들을 컴퓨터가 알아서 번역해 즐길 수 있게 하는, 그런 컴퓨터 프로그램을 직접 만들고 싶다는 꿈이 더 컸다. 마침 나의 면접관들도 구글 코리아 번역기 개발팀 분들이었다. 그렇게 구글 코리아 번역기 개발팀 인턴으로 입사하게 되었고, 그때의 경험이 나의 꿈의 실현 가능성에 대한 일종의 확신을 주었다.Q. 스켈터랩스에는 어떻게 입사하게 되었나A. 인턴 할 당시의 구글 코리아 사장이 지금 스켈터랩스 창업자, 조원규 대표님이다. 그리고 구글 코리아 면접관이었던 분이 우리 팀의 테크 리더(Tech Leader)를 맡고 있는 이충식 님이기도 하다. 작년 충식 님으로부터 어려운 문제를 풀어야 하는데 같이 한번 풀어보자는 연락을 받았다. 그 문제가 너무 어려울 것 같아서 답장을 망설이고 있었다. 그러다 이전 직장에 대한 염증과 새로운 일에 대한 호기심 등의 마음으로 충식님을 다시 만나 뵈니, 스켈터랩스에서 내가 어렸을 적 꿈꾸던 챗봇을 만들고 계셨다.Q.  스켈터랩스에서의 업무는 이전에 일했던 혹은 알고 있는 다른 개발자의 업무랑 어떻게 다른가. A. 사실 인공지능을 기반으로 한 스타트업에는 뛰어난 사람들이 많은 것 같다. 그러나 스켈터랩스가 다른 회사와 다른 점은 ‘내 동료가 누구인가'에 대한 인식의 범위가 조금 더 넓다는 점이다. 가령 디자이너는 디자이너끼리, 기획자들을 기획자끼리만 협력하고 부서에 따른 책임이나 업무 범위에 대해서 선을 긋는 문화가 흔히 있지 않나. 어떤 직장들은 수직적인 위계 구조를 강요하고 모든 걸 서류로 보고하게 만들기 때문에 일의 효율이 떨어지기도 한다. 그러나 스켈터랩스는 팀 간에, 직무 간에 서로의 업무 영역을 자로 재듯 규정하지 않고 넘나들며, 좀 더 활발한 소통을 추구한다. 덕분에 ‘하나의 공동체'라는 인식을 자연스럽게 가질 수 있다. 서로와 함께 일한다는 것에 대해 우리 스스로 가지는 자긍심도 대단하다. 사내에는 지인을 신규 입사자로 추천하는 채용 제도가 있는데, 그간 내가 일해왔던 회사 중 우리 회사만큼 열심히 지인들에게 추천하는 회사도 없었다. 사실 내가 일하는 회사가 별로면 친구에게 추천도 못 하지 않겠나. 그만큼 서로 만족하고, 자부심을 가지고 일한다는 것을 방증하는 면모인 것 같다.또한 스켈터랩스는 불필요한 서류 업무를 배제하는 대신, 아주 엄격한 코드 리뷰 시스템을 가지고 있다. 내가 과거에 근무했던 회사들은 많은 경우 상대적으로 지금 당장 작동하는 코드를 만들어 내는 것에 집중했다. 물론 이러한 방식이 때로는 실용적이다. 그러나 기능이 잘 작동되는지만 살피다 보니, 숨겨진 버그(Software Bug)가 남겨지고 이것이 뒤늦게 발견되어 더 큰 문제를 일으키기도 했다. 때로는 버그의 존재를 코드 작성자만이 알고 있기도 했다. 이렇듯 단기간 눈앞의 기능에만 집중하다가 코드의 품질이 저해되는 방식으로 개발이 진행되어 언젠가는 다시 수정해야 하는 일거리가 남겨지는 것을 ‘기술 부채(Technical Debt)’라고 부른다. 스켈터랩스의 코드 리뷰 문화는 사소한 영역까지 기술 부채를 남기지 않는다. 궁극적으로는 짧은 기간 완성도 높은 프로그램을 만들 수 있게 해주는 문화다. 엄격한 코드 리뷰가 가능한 것은 스켈터랩스의 개발자 역량이 높기 때문이기도 하다. 개발자들이 모두 기술에 대한 근본적인 이해와 최신 기술에 대한 섭렵을 두루 갖추었기에 타인이 작성한 코드도 바로 이해할 수 있다. 수준 높은 동료와 함께 일하며 피드백 받고 성장할 수 있다는 것은 회사의 굉장한 강점이라고 생각한다.사진2. 규홍 님과 다른 팀원 간의 코드 리뷰 모습.Q. 코드 리뷰 문화가 유익하기도 하지만, 일종의 압박감도 있을 것 같다. A. 압박감으로 여겨본 적은 없다. 한국 사회에서 개발자의 커리어에 대한 얘기를 나누다 보면 자연스럽게 ‘회사 일을 하다 보니 공부할 시간이 없어서 최신 기술을 알지 못해 뒤처진다.'라는 볼멘소리가 나온다. 그러나 스켈터랩스에서는 개발자 모두가 엄격한 코드리뷰를 거치는 과정에서 자연스럽게 더 나은 성능의 코드, 동료가 더 잘 이해할 수 있는 코드, 예상치 못한 예외 상황을 고려하는 코드를 작성하는 법을 실시간으로 배우게 되고, 때로는 그 과정에서 자연스럽게 코드 리뷰자가 제안하는 최신 기술에 대해 공부하고 습득하며 실력을 늘려나간다. 덕분에 코드 리뷰를 마치고 나면, 다음에 어떻게 해야 개선된 코드를 짤 수 있을지에 더 집중할 수 있고 실제로도 더 나은 코드를 작성할 수 있게 된다.물론 이런 문화가 신규 입사자로서는 다소 답답할 수 있을 것 같다. 나 또한 초반에는 ‘굳이 이런 디테일까지 다 잡아가며 이렇게 리뷰를 남겨야 할까'라는 생각을 해본 적도 있다. 그러나 스켈터랩스와 함께하는 시간이 점점 길어질수록, 꼼꼼한 리뷰로 기술 부채를 최소화하는 것이 팀 전체에도, 나의 성장에도 도움이 된다는 걸 느낀다.Q. 아무리 뛰어난 개발자가 있더라도 코드를 작성하는 사람은 한 명인데, 이를 함께 리뷰하다보면 작성된 코드를 이해하지 못하는 경우가 발생하지는 않나.A. 물론 그럴 수 있다. 때문에 스켈터랩스에서는 코드의 공동 소유, 공동 이해 개념을 깊이 이해하고, 잘 지킬 수 있게 만든다. 나만 이해할 수 있는 코드를 작성하면 장기적으로 다른 개발자들의 수정과 응용이 어려워진다. 그래서 스켈터랩스에서는 각 프로그래밍 언어별로 코딩 스타일 가이드를 준수할 것을 권장하고, 코드 리뷰 이전에도 가이드 준수 여부를 점검하는 도구를 활용하고 있다.Q. 스켈터랩스를 자랑한다면.A. 스켈터랩스는 아직 성장 중인, 그래서 ‘함께 만들어 갈 여지가 많은 회사'다. 나는 개인적으로 대기업부터 창업 초창기 단계의 스타트업까지 다양한 회사를 경험했는데, 이러한 과정에서 구성원 한 명 한 명이 회사의 문화와 기술적 원칙을 만들어가는데 얼마나 큰 영향을 주는지를 느꼈다. 스켈터랩스는 다양한 배경을 가진 개발자와 서로 영감을 주고받으며 함께 성장해가는 곳이다. 개발자 직군의 동료들과 비개발자 직군의 동료들이 끊임없이 소통하며 시행착오와 함께 점점 더 나은 기업문화를 만들어가고 있다. 그리고 실제로 이런 문화가 완성도 높은 프로그램을 만드는 데에 긍정적인 기여를 하고 있고, 현재는 성공 경험을 조금씩 안겨주고 있는 단계다. 역량 있는 인재들과 최신의 기술을 활용하여 새로운 결과물을 창출하는 것에 관심 있는 이들이라면 입사를 추천하고 싶다.#스켈터랩스 #사무실풍경 #업무환경 #사내복지 #기업문화 #개발팀 #팀원인터뷰 #팀원소개 #팀원자랑
조회수 1320

에이스프로젝트 추천도서 - 프론트 편

안녕하세요!기업 문화가 좋은 야구게임 개발사에이스프로젝트입니다.기획팀 편에 이어 2탄!에이스프로젝트의 대소사(?)를 책임지는 '프론트'편을 준비했습니다!프론트는 조직문화 담당자부터 인디자이너까지 다양한 인재들로 구성되어 있어요.하는 일이 다양한 만큼 추천도서의 스펙트럼도 넓었는데 그중 다섯 권을 엄선했다고 합니다.에이스프로젝트 프론트가 추천하는한 번쯤은 읽어보면 좋은 추천 도서 Best 5!1. 구글의 아침은 자유가 시작된다 - 라즐로 복[ 이미지 출처 : 예스 24 ]자유롭게 일하는데 성과도 좋은 조직문화, 구글은 어떻게 만들었을까조직문화 담당자들에게 생각할 주제를 던져주는 책2. 배민다움 - 홍성태[ 이미지 출처 : 예스 24 ]회사에 맞는 문화를 만드는 과정에 대한 정리가 잘 되어 있는 책3. 내 문장이 그렇게 이상한가요? - 김정선[ 이미지 출처 : 예스 24 ]칼럼 쓸 때 도움이 많이 됐던 글쓰기 실용서교정교열 경력 20년이 넘었다는 작가분의 내공이 느껴지는 책4. 좋은 문서 디자인 기본 원리 29 - 김은영[ 이미지 출처 : 예스 24 ]"자네는 디자이너도 아닌데 어떻게 이렇게 전달력이 좋나!"좋은 내용을 더 좋게 만들어 주는 문서 디자인 기본서5. 디자이너 사용설명서 - 박창선[ 이미지 출처 : 예스 24 ]프론트 인디자이너의 추천서!디자이너와의 원활한 협업을 원하는 모든 사람들에게 이 책을 추천합니다프론트는 인사, 채용, 회계, 홍보 등 각자의 전문 영역이 있지만 결국은 다 함께 좋은 회사를 만들기 위해 노력하는 팀입니다. 위 다섯 개의 도서는 프론트가 공통적으로 읽고 추천한 도서라고 해요 :-) 이상 "각자, 그리고 함께 조직문화를 만들어가는" 프론트의 추천도서였습니다!다음은 '그래픽팀'의 추천도서로 찾아올게요 ;)
조회수 1072

2016, 개발자의 Life.. 꿈...#1

주변 개발자들의 삶이 매우 행복을 추구하는 삶으로 변해가고 있다는 것을 느낀다. 주변의 개발자들의 모습을 몇 가지 정리해보자. 이를 '지속 개발을 위한 개발자 Life 스타일'이라고 정의하겠다.개발자#A10년 넘게 개발하던 패키지를 기반으로 필요 기능을 최소화하여 1인 개발기업에 성공하였고 제주도로 내려가서 지역에 속한 분들과 호흡하는 삶을 추구하면서도 소프트웨어 개발의 핵심을 잃지 않았다. 정말, MVP 기능에 최대한 집중하면서 필요한 시장 영역을 더 확대하지 않고, 소프트웨어를 개발하고 있는 개발자와 해당 소프트웨어를 사용하는 고객과 시장에 대해서 같이 합리적으로 지속할 수 있는 지속할 수 있는 소프트웨어 개발의 삶을 이루었다.그리고, 그러한 Life환경을 주변에 전파하면서 불과 얼마 전 또 한 명의 구 루급 개발자에게 비슷한 삶의 길을 가르쳐준다. 정말 부러운 개발자들...개발자#B복잡한 업무나 더 많은 보수를 위해서 더 좋은 회사를 찾기보다는 삶이 존재하는 근무시간을 위해서 재택근무를 찾고 있다. 비용도 최대한 낮추면서 생활을 위한 회사를 찾아다니고 있다. 아무래도, 외국계 개발회사를 선택할 것 같다.개발자#C오픈소스 진형에서 인정받는 개발자이다. 본인이 원하는 오픈소스 프로젝트를 추진하는 것을 보장받고 외국계 기업의 원격근무를 선택했다. 보수도 나쁘지 않고, 근무시간은 알아서 하는 것이지만, 원격으로 일하는 것이기 때문에 '능력'을 보여주기 위해 더 많은 시간을 소프트웨어 개발에 투자한다. 굳이, 서울 시내에 있을 필요가 없기 때문에 외각으로 집도 옮겼다.개발자#D일부러, 실리콘 벨리의 스타트업을 선택했다. 조만간 상장 예정인데 매우 큰 혜택을 받을 것 같다. 그 역시 지속 개발이 가능한 삶을 추구한다.2016년 올 초의 개발자 트렌드는 '지속 개발을 위한 Life'를 지향하는 개발자들이 늘어났다고 평가해본다.우리 모두 지속개발이 가능한 삶을 지향해 보는 것은 어떨까나...
조회수 1138

애플리케이션 개발부터 배포까지, AWS CodeStar

OverviewAWS CodeStar를 이용하면 애플리케이션의 개발-빌드-배포까지 빠르게 진행할 수 있습니다. CodeStar는 몇 가지 장점을 가지고 있는데요. 오늘은 간단한 Python App Service Tutorial을 통해 CodeStar를 사용하는 방법을 알아보겠습니다. CodeStar의 장점통합된 UI로 한 번에 여러 활동 관리 가능Continuous Delivery 도구 체인을 구성해 신속한 코드 배포 가능소유자, 기여자 및 최종 사용자 추가로 안전한 협업 가능Dashboard를 사용해 전체 개발 프로세스의 진행 상황 추적 가능CodeStar 사용하기1-1. 처음 CodeStar를 실행하면 나오는 화면입니다. ‘Start a Project’를 누르면 프로젝트 템플릿을 선택할 수 있습니다. 1-2. 이것은 아직 지원되지 않는 지역(Region)에서 노출되는 화면입니다. 2-1. ‘Start a Project’를 클릭하면 프로젝트 템플릿을 선택할 수 있습니다. 2-2. Python과 AWS Lambda를 이용해 Web service를 구현해보겠습니다. 3. Project Name을 지정하고 repository를 선택합니다. 여기서는 AWS CodeCommit으로 선택하여 진행해보겠습니다. CodeCommit의 경우 Repository name을 따로 지정할 수도 있습니다. Repository name까지 지정했다면 Next를 클릭합니다. 4. 아래의 화면은 프로젝트의 흐름입니다. CodeCommit에 소스가 저장되고 AWS CodeBuild를 통해서 Build와 Test가 진행됩니다. 그리고 AWS CloudFormation을 통해서 Deploy가 진행되며 Monitoring은 Amazon Cloud Watch를 통해 진행합니다. CodeStar의 경우 IAM 사용자에 AWSCodeStarFullAccess 관리형 정책을 적용합니다.1) 5. Create Project를 클릭하면 프로젝트가 생성되고, CodeStar 유저 설정을 할 수 있습니다. 6-1. 이제 editor를 선택해봅시다. Command line tools, Eclipse, Visual Studio 등을 고를 수 있습니다. 툴은 언제든지 바꿀 수 있으니 여기서는 Eclipse를 이용하여 프로젝트를 진행하겠습니다. 6-2. See Instructions를 클릭하면 Eclipse를 다운로드 받아 설정하는 방법을 볼 수 있습니다. 6-3. 이제 Eclipse를 설치하고 AWS Toolkit for Eclipse를 설치해보겠습니다. Eclipse의 종류는 Eclipse IDE for java EE Developers 에디션을 설치하겠습니다. 다른 버전은 AWS Toolkit 설치할 때 의존성 문제가 발생할 수 있습니다. 7. Eclipse를 설치하고 Eclipse Marketplace에서 AWS Toolkit for Eclipse 2.0를 설치합니다. 8-1. import를 클릭하고 8-2. AWS -> AWS CodeStar Project를 선택합니다. 8-3. 지역(Region)을 선택하면 해당 지역의 CodeStar 프로젝트를 import 할 수 있습니다. 이 때 CodeCommit의 HTTPS Git credentials를 입력해야 합니다. 9. IAM -> Users -> 사용 계정을 선택해 HTTPS Git credentials for AWS CodeCommit에 가면 User Name과 Password를 Generate 할 수 있습니다. (아래 이미지에 민감한 정보는 삭제했습니다.) 10. CodeStar에서 Project를 Eclipse에 import한 모습입니다. buildspec.yml, index.py, README.md, template.yml이 clone 된 것을 확인할 수 있습니다. 11. 브라우저의 Eclipse 설치 설명 화면에서 back을 클릭해 에디터 선택 화면으로 돌아갑니다. 12. 도쿄 지역에 아직 출시되지 않은 Cloud9은 선택을 마치면 자동으로 셋업이 완료됩니다. 그러나 Eclipse는 Skip을 클릭해야 CodeStar Dashboard로 이동할 수 있습니다. 13. CodeStar Dashboard에 진입하였습니다. IDE는 이미 설정이 끝났으므로 I have already done this를 선택합니다. 화면 하단에 파란색 직육면체가 계속 그려지면 deploy가 완료된 상태가 아니므로 조금 기다렸다가 refresh를 해줍니다. 14-1. deploy가 완료되면 위와 같이 Team wiki tile, Application endpoints, Commit history, Continuous deployment, Application activity등이 나타납니다. 14-2. JIRA를 연동해서 사용할 수도 있는데, 그 내용은 다음에 다루겠습니다. ???? 15. 우선 첫 deploy가 완료된 것을 자축하며 Application endpoints를 클릭합니다. 개발자들에게 굉장히 익숙한 “Hello World”가 나옵니다! 간편하게 소스를 deploy 하여 AWS Api-Gateway와 연결했습니다. 이제 각 파일의 용도에 대한 설명과 새로운 method를 추가하는 작업을 진행해보겠습니다. 16. 이미지처럼 sample.py 파일을 추가하고 아래 코드를 추가합니다. import json import datetime def handler(event, context):     data = {         'output': 'Sample! pathParameters test = ' + event["pathParameters"]["test"]     }     return {'statusCode': 200,             'body': json.dumps(data),             'headers': {'Content-Type': 'application/json'}} 17. 그리고 template.yml에는 아래 내용을 추가합니다. — template.yml —  Sample:     Type: AWS::Serverless::Function     Properties:       Handler: sample.handler       Runtime: python3.6       Role:         Fn::ImportValue:           !Join ['-', [!Ref 'ProjectId', !Ref 'AWS::Region', 'LambdaTrustRole']]       Events:         GetEvent:           Type: Api           Properties:             Path: /sample/{test}             Method: get — 18-1. 이제 수정한 내용을 CodeStar에 반영해보겠습니다. 프로젝트에서 오른쪽 클릭을 해 Team -> Commit을 선택하고 Commit합니다. 18-2. 수정한 파일을 Commit하고 Push합니다. 18-3. Dashboard를 보면 Commit history에 Commit 내용이 반영되었습니다. 19-1. Dashboard에 Continuous deployment를 보면 Source -> Build -> Deploy를 통해서 수정한 내용이 반영되는 것을 실시간으로 확인할 수 있습니다. 이 작업은 생각보다 시간이 많이 소요됩니다. Deploy까지 Succeeded로 완료가 되면 새로 만들어진 URL을 클릭합니다. 19-2. 아래와 같이 pathParameters가 정상적으로 출력되는 것을 확인할 수 있습니다. 20. 이어서 새로 만든 API에 단위테스트를 추가해보겠습니다. sample_test.py라는 파일을 만들고 아래 코드를 추가합니다. — sample_test.py — from sample import handler   def test_sample_handler():         event = {         'pathParameters': {             'test': 'testMessage'         }     }         context = {}         expected = {         'body' : '{"output": "Sample! pathParameters test = testMessage"}'         ,'headers': {             'Content-Type': 'application/json'         },         'statusCode': 200     }         assert handler(event, context) == expected  — 21. 그리고 buildspec.yml 파일을 아래와 같이 수정합니다. — buildspec.yml —  version: 0.2 phases:    install:     commands:       - pip install pytest    pre_build:     commands:       - pytest    build:     commands:       - pip install --upgrade awscli       - aws cloudformation package --template template.yml --s3-bucket $S3_BUCKET --output-template template-export.yml artifacts:   type: zip   files:     - template-export.yml  — 22-1. Commit을 진행합니다. 그리고 다시 Source -> Build -> Deploy 를 거쳐서 Succeeded가 되면 Build 부분의 CodeBuild로 들어가서 Build 결과를 확인합니다. 22-2. 맨 마지막에 Build 결과를 클릭하면 Build 상세 내역을 확인하실 수 있습니다. 22-3. Build logs부분을 보면 sample_test.py를 이용한 단위테스트가 정상적으로 진행된 것을 확인할 수 있습니다. Conclusion지금까지 CodeStar를 이용한 간단한 튜토리얼을 진행했습니다. 다음 화에서는 다양한 방법으로 CodeStar를 활용할 수 있는 방법을 소개하겠습니다. CodeStar에 대한 자세한 내용은 여기를 참조하세요. 참고 1) AWS CodeStar 설정글윤석호 이사 | 브랜디 [email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유 #CTO
조회수 1994

스켈티인터뷰 / 스켈터랩스의 조깨비 조경희 님을 만나보세요:)

Editor. 스켈터랩스에서는 배경이 모두 다른 다양한 멤버들이 함께 모여 최고의 머신 인텔리전스 개발을 향해 힘껏 나아가고 있습니다. 스켈터랩스의 식구들, Skeltie를 소개하는 시간을 통해 우리의 일상과 혁신을 만들어가는 과정을 들어보세요! 스켈터랩스의 조깨비 조경희 님을 만나보세요:)사진1. 스켈터랩스의 조깨비 조경희 님Q. 자기소개를 부탁한다.A. 이름은 조경희, 아이리스 팀에서 소프트웨어 엔지니어로 일하고 있다. 2016년 8월에 입사했으니 이제 스켈터랩스에 합류한 지도 2년이 훌쩍 넘었다.Q. 맡고있는 업무를 설명한다면?A. 우리 팀은 일종의 실시간 맥락 인식(Context Recognition) 기술을 개발하고 있다. 다양한 종류의 맥락 인식이 있겠지만, 현재 우리는 모바일 기기를 주요 디바이스로 삼고있다. 핸드폰을 통해 사용자의 다양한 정보를 수집하고, 우리의 기술이 알아서 사용자의 취향이라던지 성향, 좋아하는 음식부터 음악까지 다양한 정보를 여러 시그널을 바탕으로 추론하고자 한다. 이후에는 사용자에 딱 맞는 ‘추천'까지 제공하는 기술을 개발하는 것이 목표다.Q. 핸드폰 하나로 사용자의 다양한 정보를 수집하고 추론할 수 있다는 부분이 신기하다. 조금 더 자세히 얘기해줄 수 있나.A. 가령 내가 안드로이드 사용자라고 가정해보자. 우리가 택시를 부를 때 흔히 사용하는 것 처럼 내가 현재 위치한 곳을, 즉 장소 정보를 핸드폰은 알아서 수집하고 있다. 우리는 장소를 비롯하여 와이파이나 사운드, 배터리, 자이로센서 등으로부터 시그널을 수집하고, 스트리밍 프로세싱 엔진에 송출한다. 그럼 그 엔진에서 실시간으로 이러한 스트림(정보)를 받고, 받은 데이터를 조합하여 새로운 데이터로 변환한 후 다음 단계를 추론하다. 내가 만일 아침 9시쯤에는 항상 일정한 A라는 장소로 이동하고 있고, A 장소로 이동하는 길목에서 카페에 들러 커피를 한 잔 사는 일과를 가지고 있다면, ‘A는 사용자의 회사이고, 사용자는 출근하기 전 커피를 마시기를 즐기는 사람이다'라고 추론할 수 있다. 우리는 이러한 상황에 대한 추론을 바탕으로, 조금 더 고차원적인 추론을 하거나, 사용자의 취향 및 패턴을 찾는 기술을 개발하고 있다. 궁극적으로는 <아이언맨>에 등장하는 자비스(JARVIS)와 같은 퍼스널 어시스턴트(Personal Assistant)를 세상에 내보이고 싶다. 사실 자비스는 어디까지나 영화 속의 상상이 많이 묻어있고, 현재로서는 갈 길이 멀기도 하다. 하지만 현재 스켈터랩스는 음성 인식이나 이미지(Vision), 챗봇과 같은 다양한 프로젝트를 동시에 진행하고 있으며 각각의 기술력도 뛰어나다. 이 여러가지 기술이 총체적으로 구현된 서비스가 탄생한다면, 일상을 혁신적으로 바꿀 것이라고 생각한다. Q. 지금까지의 개발 상황을 살짝 공개하자면?A. 시장에 공개한 것을 기준으로 하자면, 일단 베타 버전으로 런칭한 앱 서비스 ‘큐(CUE)’ 이야기를 하고 싶다. 간단한 상황 인식을 통해 사용자에게 추천을 제공한다. 가령 강수량이 높게 예고된 날에는 ‘우산 챙겨가'라고 카드를 띄워준다거나, 라면을 즐겨 먹는 사용자에게 ‘오늘은 라면 대신 건강한 샐러드 어때?’라고 말해주기도 한다. 사실 큐에 대한 사용자의 의견은 정말 가지각색이었다. 날씨 예보를 기반으로 한 추천의 경우 ‘너무 뻔해서 의미가 없는 것 같다’ 라고 생각하는 사용자가 있는 반면, 출근 직전과 같은 적시에 카드가 알아서 추천해주니 매우 편하게 느꼈다는 사용자도 있었다. 결국 나는 상황 인식이 사용자에게 유용한 서비스로 와닿기 위해서는 ‘정확성'이 큰 척도라고 생각한다. 적시에, 적절한 장소에서, 나에게 꼭 맞는 추천을 해주는 것, 이를 위해서는 사용자를 정확하게 파악하는 것이 우선되어야 하기 때문이다. 지금까지의 개발이 상황 정보를 적절하게 받을 수 있는 플랫폼 구축 중심이었다면, 현재는 더 자세한 상황을 찾는 쪽으로 초점이 맞추어져 있다. 가령 사용자가 ‘지하철을 타고 이동한다'가 아니라, ‘어느 역에서 지하철에 탑승하여 어느 역에서 내렸다'까지 인식할 수 있는 것이다. 음악도 마찬가지다. 음악과 같이 엔터테인먼트 컨텐츠의 경우 단순히 ‘음악을 듣고 있다'라는 정보가 아니라, 취향 정보가 중요하다. 때문에 ‘어떤 가수의 어떤 음악을 들었다'까지 인식하여 이를 조합한 추론을 만들려고 한다.사진2. 사내 Tech Talk 세미나를 진행하고 있는 경희님Q. 큐의 베타 서비스를 런칭하며 팀원들끼리 자축하던 장면이 떠오른다. 굉장히 뿌듯한 경험이었을 것 같다.A. 나는 사실 뿌듯함 보다는 ‘갈 길이 멀다'라는 생각을 먼저 했다. 베타 버전이기도 했고, 개발한 우리 스스로도 정확성이 기대에 미치지 못하고 있다고 생각했다. 그럼에도 불구하고 런칭을 결정한 이유는 명확하다. 다양한 사용자가 큐를 통해 어떤 경험을 얻고, 어떻게 느끼는지 들어야만 더욱 사용자의 핏에 맞는 정식 버전을 제대로 개발할 수 있을 것이라고 판단했기 때문이다. 모든 서비스가 마찬가지겠지만 나는 큐야 말로 많은 사용자와 함께 만들어가는 서비스라고 생각한다.Q. 경희님 개인의 이야기를 들어보고 싶다. 스켈터랩스에 어떻게 합류하게 되었는가.A. 스켈터랩스의 CTO인 조성진 님과 같은 연구실에서 일했다. 연구를 마친 후 나는 전문연구요원으로 다른 회사에서 일을 했고, 성진님은 구글에 입사한 것으로만 알고 있었는데, 구글을 나와서 회사를 차렸다는 얘기를 듣게되었다. 그때만 해도 대기업이 주는 안정감을 놓칠 수 없어 대기업에 머물러있었다. 하지만 성진님을 자주 만나 스켈터랩스의 프로젝트가 어떠한 방향으로 구체화되고 있는지 들을수록 매력적으로 와닿았다. 대기업의 경우 조직의 구조 때문에 어쩔 수 없이 쪼개진 일에 집중하게 된다. 하지만 스켈터랩스는 구성원들 모두가 자발적으로 참여하여 방향성을 결정 짓고, 개발 환경을 선진적으로 꾸리고 있다는 점도 좋았다. 이러한 요소가 결국 스켈터랩스로의 이직을 결정지었던 것 같다.Q. 스켈터랩스로 이직하여 얻은 가장 큰 성취를 꼽자면?개인적으로 코드리뷰 문화를 통한 개발 실력의 발전을 꼽고 싶다. 다른 조직에서는 다른 사람이 내 코드를 봐주고, 평가하는 것이 마치 자존심 싸움처럼 여겨지곤 했다. 타인의 코드는 일종의 침범할 수 없는 ‘불가침 영역'으로 인식되었다. 하지만 스켈터랩스에서는 코드리뷰가 너무나도 당연하다. 다른 사람에게 코드를 보여주고, 내 코드가 더욱 효율적으로 작동할 수 있도록 바꾸어주는 것이 자연스럽게 이루어지고 있다. 이 과정을 통해 코드를 리뷰하는 사람도, 리뷰받는 사람도 모두가 윈윈(win-win)할 수 있다. 코드리뷰 문화가 익숙하지 않은 사람에게는 이 문화가 마치 일의 효율을 저해하는 것 처럼 여겨질 수 있다. 그러나 결론적으로는 목표에 닿기 위한 가장 빠른 방법이라고 생각한다. 확실히 여러 개발자의 리뷰를 거칠수록, 버그는 적어지고 개인의 실력이 향상될 뿐더러 시야도 넓어질 수 있기 때문이다. 나 또한 같은 경험을 했다. 스켈터랩스에서 몇 개월 근무한 후, 내가 이전에 짜놓은 코드를 보면 ‘어떻게 이렇게 짜놓았지' 싶을 때가 있다. 개발 실력에 관한 이러한 성취를 정량적으로 판단할 수 는 없지만, 회사와 개인이 모두 발전할 수 있는 가장 의미있는 성취라고 생각한다.Q. 반대로 스켈터랩스에서 개발을 하며 가장 어려운 점은 무엇이 있을까.개발 자체에 대한 어려움보다는 방향성에 대한 어려움이 있다. 인공지능이라는 분야는 워낙 넓기도 하고, 상황인식 기술의 경우 근래에 크게 발전하고 있는 것은 맞지만, 세부 기술에 대해서는 시장 자체가 뚜렷하지 않다. 참고할만한 제품도, 경쟁사도 없기 때문에 새로운 시장을 만들어내는 것에 대한 부담이 있다. 언뜻 보기에는 경쟁사가 크게 없는 니치마켓(Niche market)처럼 여겨질 수 있지만, 기술을 쪼개고 쪼개어 들여다보면 하나의 기술을 바탕으로 각각 다른 사용자와 상황을 타깃으로 변주한 다양한 서비스가 등장하는 상황이다. 이러한 기술을 마냥 뭉뚱그린다면 기술에 대한 깊이가 얕아질 수 있고, 특정 상황과 사용자에게만 집중한다면 타깃이 좁아질 위험이 있다. 때문에 시장과 사용자에 대해 매 순간 유추하며 적절한 균형을 가지고 개발을 진행할 수 있도록 노력하고 있다. 사진3. 프로젝트 별 Sync-up 미팅, 짧은 미팅을 통해 업무 효율을 높이고 있다Q. 스켈터랩스의 개발 문화가 타 기업과 확고하게 다르다고 느낀 사례가 있다면, 그 이야기를 구체적으로 듣고싶다.A. 두 가지를 꼽고 싶다. 첫 번째는, 다른 분들도 많이 얘기했을 것 같지만 역시 와 다. 각각 상반기와 하반기에 한 번 씩, 하는 일을 모두 멈추고 일주일 간 원하는 개발에 집중하는 일종의 해커톤이다. 내가 입사한 날이 Demo Days 시작 이틀 전이었다. 입사하자마자 부랴부랴 팀을 만들고, 아이디어를 구체화하여 개발에 매달렸다. Demo Days 기간 내내 팀원들이 밤을 새워가며 개발에 매달리는데, ‘매일 이렇게 일하는 곳인가' 라는 두려움과 ‘이렇게 뛰어난 개발자들이 집중하니까 뚝딱 서비스가 나올 수 있구나'라는 재미를 동시에 느꼈다. 그 기간이 끝나고 보니 역시 매일 그렇게 일하는 것은 아니었다. 일주일 간 그토록 밤을 세워 개발을 할 수 있는 원동력은 ‘내가 원하는 서비스를 직접 만들어볼 수 있다'라는 흥미와 ‘최종 발표일에 어설픈 개발로 쪽팔리고 싶지 않다'라는 감정인 것 같다. 매일 하는 업무에서 벗어나 리프레쉬 할 수 있는 재미요소도 크다. 그 기간의 우리 성과를 돌아보면, 이토록 개발을 사랑하고 기대 수준이 높은 사람들이 모여있으니, 뭘 하던 성공할 것이라는 일종의 확신을 얻을 수 있다. 두 번째는 ‘빠르다'라는 점이다. 새로운 아이디어나 기술에 대해 흥미가 생겼을 때 쉽고 빠르게 팀을 꾸릴 수 있다. 그렇기 때문에 자연스럽게 자신의 흥미와 역량에 맞는 팀을 찾아 이동하는 것도 매우 자발적으로, 빠르게 이루어진다. 오픈 소스 사용도 빠르다. 새로운 기술이나 제품을 들여다보고 싶다면, 그냥 진행해 볼 수 있다. 기존의 큰 회사들은 수직적으로 팀장 급에서 업무를 할당하고 시일에 맞추어 개발을 진행하다 보니, 속도 자체는 빠를 수 있지만 허술한 부분이 생기기 마련이고 새로운 기술을 도입에 있어서도 조심스럽다. 하지만 스켈터랩스에서는 ‘빨리 도입하고 빨리 경험해보자’ 라는 의식을 공통적으로 가지고있다.Q. 개발자는 개발이 막히는 순간도 종종 맞닥뜨릴 것 같다. 그럴 때 어떻게 해결하는지 자신만의 팁을 공유한다면.A. 고민의 양이 아니라, 그저 고민의 끈을 놓지 않고 있는 것이 중요한 것 같다. 나는 개발이 막혔을 때 스트레스를 꽤 많이 받는 편이다. 한 번 막히면 맥주를 마시면서도, 밥을 먹으면서도 항상 머리 한 구석에는 개발 고민을 이어간다. 꿈에서도 하도 코딩을 한 탓에, 와이프가 어느 날 “어젯 밤에도 ‘테스트 코드는 이렇게 해야지’ 라는 잠꼬대 하던데?”라고 말할 정도다. 그러다 신기하게도 개발을 아무 것도 모르는 제 3자와 얘기하다가 번뜩 방법이 떠오르곤 한다. 지극히 일상의 순간, 가령 샤워를 한다거나 멍하니 지하철을 타다가 해결책을 찾기도 한다. 이 방법이 훌륭한 팁은 아닐 수 있지만, 포기하는 것이 아니라 개발에 대한 고민을 놓지않는 것이 중요하다는 얘기를 전하고 싶다.사진4. 경희 님과 아내 분의 투샷Q. 경희님이 회사에서 종종 드라마 얘기를 하는 것을 들었다. 드라마를 많이 보는 편인가, 하루 일과를 듣고 싶다.A. 예전에는 <와우>라는 게임을 정말 많이했다. 덕분에 게임 동호회에도 가입해있는데, 요즘에는 <오버워치>나 <클래시로얄> 정도만 즐기고 있다. 결혼하고 와이프와 시간을 함께 보내면서, TV 시청이 늘었다. 와이프가 워낙 TV를 좋아하기도 하고 함께 집에서 시간을 보낼 수 있는 가장 편리한 방법인 것 같기도 하다. 하루 일과는 그래도 일찍 시작하는 편이다. 와이프는 일곱시 쯤 일어나 출근하는데, 나도 보통은 맞춰서 함께 일어난다. 재택근무를 할 수 있는 환경이다보니, 오전에는 주로 집에서 코딩을 하며 개발에 집중한다. 보통 점심 때 출근을 하거나, 미팅에 맞추어 출근하는 편인데, 오후 시간은 미팅과 개발 모두를 병행해서 꽤 정신 없이 하루가 흘러가는 것 같다.사진5. 게임동호회에 가입하면, 회사의 지원을 받아 게임을 즐길 수 있다.Q. 스켈터랩스에서 이루고 싶은 것을 듣고싶다.A. 나의 꿈이 원래 ‘내가 개발한 기술이나 제품이 최대한 많은 사람에게 편리함을 주는 것'이었다. 우연히도 스켈터랩스의 미션인 “언제 어디서나 우리의 일상을 이해하고, 도와주고, 더 나아지게 하는 머신 인텔리전스의 혁신을 이룬다”와 일치하더라. 덕분에 내 꿈을 이루어나가는 것과 스켈터랩스가 혁신적인 기술을 바탕으로 성장하는 것은 궤를 같이한다. 그것이 내가 스티브잡스 처럼 특정 분야의 스타가 되는 것을 뜻하지는 않는다. 연속성이 있고 확장성이 있는 기술로 우리의 일상을 조금씩 더욱 편리하게 가꾸어나가고 싶다.Q. 마지막 질문이다. 스켈터랩스에 바라는 점이 있다면 무엇인가.A. 내가 입사했을 때만 해도 20명 정도에 불과했던 인원이 현재는 70여 명으로 늘었다. 체감상 인원이 조금씩 느는 것이 아니라 순간적으로 확 늘어나는 시기가 있는 것 같다. 그 때마다 약간의 침체기랄까, 분위기가 변하는 모습이 감지된다. 예전에는 사람이 적기 때문에 자연스레 커뮤니케이션이 자율적이이었지만, 사람이 늘어난 만큼 제한적인 커뮤니케이션 모습을 종종 발견할 수 있었다. 이러한 문제 의식의 발로로 컬쳐커미티(Culture Committee)가 생겨났다. 커미티의 활동 덕분에 매주 1:1로 커피를 마실 수 있는 커피믹스와 같은 제도도 신설되었다. 이렇듯 지속적으로 우리만의 모습을 유지하기 위한 노력이 지속되었으면 좋겠다. “우리는 답을 찾을 것이다. 늘 그랬듯이”, 흔한 명대사지만 스켈터랩스 또한 내부적으로도, 외부적으로 늘 답을 찾아가길 바란다. 물론 나 또한 그 답을 찾는 여정에 함께할 테지만 말이다.
조회수 1667

PyCon2017 첫번째날 후기

아침에 느지막이 일어났다. 어제 회사일로 피곤하기도 했지만 왠지 컨디션이 좋은 상태로 발표를 하러 가야지!라는 생각 때문에 깼던 잠을 다시 청했던것 같다. 일어나 아침식사를 하고 아이 둘과 와이프를 두고 집을 나섰다. 작년 파이콘에는 참가해서 티셔츠만 받고 아이들과 함께 그 옆에 있는 유아교육전을 갔었기에 이번에는 한참 전부터 와이프에게 양해를 구해둔 터였다.코엑스에 도착해서 파이콘 행사장으로 가까이 가면 갈수록 백팩을 메고, 면바지를 입고, 영어 글자가 쓰인 티셔츠를 입은 사람의 비율이 높아지는 것으로 보아 내가 제대로 찾아가고 있구나 라는 생각이 들었다.늦게 왔더니 한산하다.지난번에는 입구에서 에코백과 가방을 나눠줬던 것 같은데 이번에는 2층에서 나눠준다고 한다. 1층이 아무래도 복잡해지니 그런 것 같기도 하고, 2층에서 열리는 이벤트들에도 좀 더 관심을 가져줬으면 하는 것 같기도 하다. 우선 스피커 옷을 받고 싶어서 (솔직히 입고 다니고 싶어서) 2층에 있는 스피커방에 들어갔다.허락 받지 않고 사진찍기가 좀 그래서 옆방을 찍었다첫 번째 키노트는 놓쳤지만 두 번째 키노트는 꼭 듣고 싶었기에 간단히 인사만 하고 티셔츠를 들고 나왔다. (외국에서 오신 연사분과 영어로 대화를 나누고 있어서 자리를 피한것은 아니다.) 나가는 길에 보니 영코더(초등학교 5학년 부터 고등학생 까지 파이썬 교육을 하는 프로그램)을 진행하고 있었다. 의미있는 시도를 하고 있다는 생각이 들었다.이 친구들 2년 뒤에 나보다 잘할지도 모른다.키노트 발표장에 갔더니 아웃사이더님이 뒤에 서 게셨다. 지난 파이콘 때 뵙고 이번에 다시 뵈었으니 파이콘이 사람들을 이어주는 역할을 하는구나 싶었다.키노트에서는 현우 님의 노잼, 빅잼 발표 분석 이야기를 들을 수 있었다. 그리고 발표를 통해 괜히 이것저것 알려줘야만 할 것 같아 발표가 부담스러워지는 것 같다는 이야기를 들었다. 나 또한 뭔가 하나라도 지식을 전달해야 한다는 압박감을 느끼고 있었던 터라 현우 님의 키노트 발표를 듣고 나니 좀 더 오늘을 즐겨야겠다는 생각이 들었다.오늘은 재미있었습니다!현우님 키노트를 듣고 같은 시간(1시)에 발표를 하시는 경업님과 이한님 그리고 내일 발표이신 대명님, 파이콘 준비위원회를 하고 계신 연태님과 함께 식사를 하러 갔다. 가는 길에 두숟갈 스터디를 함께 하고 계신 현주님과 희진 님도 함께했다. 사실 이번에는 발표자도 티켓을 사야 한다고 해서 조금 삐져 있었는데 양일 점심 쿠폰을 주신다고 해서 삐진 마음이 눈 녹듯이 사라졌다.부담 부담식사를 하고 발표를 할 101방으로 들어가 봤다. 아직 아무도 없는 방이라 그런지 괜히 긴장감이 더 생기는 느낌이다. 발표 자료를 열어 처음부터 끝까지를 한번 넘겨 보고 다시 닫았다. 처음에는 가장 첫 발표라 불만이었는데 생각해보니 발표를 빨리 마치고 즐기는 게 훨씬 좋겠다는 생각이 들었다. 발표 자료를 다듬을까 하다가 집중이 되지 않아 밖으로 나갔다. “열린 공간” 현황판에 충동적으로 포스트잇을 하나 붙이고 왔다. 어차피 발표는 나중에 온라인으로도 볼 수 있으니까 사람들과 이야기를 나눠 봐야 겠다 싶었다. (내 발표에는 사람이 많이 왔으면 하면서도, 다른 사람의 발표는 온라인으로 보겠다는 이기적인 생각이라니..)진짜 궁금하긴 합니다다시 발표장으로 돌아왔다. 왠지 모르는 분들은 괜찮은데 아는 분들이 발표장에 와 계시니 괜히 더 불안하다. 다른 분들은 발표자료에 짤방도 많이 넣으셨던데.. 나는 짤방도 없는 노잼 발표인데.. 어찌해야 하나. 하지만 시간은 다가오고 발표를 시작했다.얼굴이 반짝 반짝리허설을 할 때 22분 정도 시간이 걸렸던 터라 조금 당겨서 진행을 했더니 발표를 거의 20분에 맞춰서 끝냈다. 그 뒤에 몇몇 분이 오셔서 질문을 해주셨다. 어리버리 대답을 한 것 같다. 여하튼 내 발표를 찾아오신 분들께 도움이 되었기를. 그리고 앞으로 좀 더 정확한 계산을 하시기를.대단히 발표 준비를 많이 하지도 못하면서 마음에 부담만 쌓아두고 있는 상황이었는데, 발표가 끝나니 아주 홀가분한 마음이 되었다. 발표장을 나가서 이제 부스를 돌아보기 시작했다. 매해 참여해 주고 계신 스마트스터디도 보이고 (정말 안 받고 싶은 ‘기술부채’도 받고 말았다.) 쿠팡, 레진 등 친숙한 회사들이 많이 보였다. 내년에는 우리 회사도 돈을 많이 벌어 여기에 부스를 내고 재미있는 이벤트를 하면 좋겠다는 생각이 들었다.부스를 돌아다니다가 이제 파이콘의 명물이 된 내 이름 찾기를 시작했다. 이름을 찾기가 쉽지가 않다. 매년 참여자가 늘어나서 올해는 거의 2000명에 다다른다고 하니 파이썬 커뮤니티의 성장이 놀랍다. 10년 전에 파이썬을 쓸 때에는 그리고 첫 번째 한국 파이콘이 열릴 때만 해도 꽤 마이너 한 느낌이었는데, 이제 주류가 된 것 같아 내 마음이 다 뿌듯하다. (그리고 내 밥줄이 이어질 수 있는 것 같아 역시 기쁘다)어디 한번 찾아보시라다음으로는 박영우님의 "Django admin site를 커스텀하여 적극적으로 활용하기” 발표를 들으러 갔다. (짧은 발표를 좋아한다.) 알고 있었던 것도 있었지만 커스텀이 가능한지 몰랐던 것들도 있어서 몇 개의 기능들을 킵해 두었다. 역시 컨퍼런스에 오면 내게 필요한 ‘새로운 것’에 대한 실마리를 주워가는 재미가 있다.익숙하다고 생각했지만 모르는것이 많다4시가 되어 OST(Open Space Talk)를 하기로 한 208B 방으로 조금 일찍 갔다. 주제가 뭐였는지는 잘 모르겠는데 주식 투자, Tensor Flow, 비트코인, 머신러닝 등등의 이야기들이 오가고 있었다. 4시가 되어 내가 정한 주제에 대해 관심 있는 사람들이 모였다. 괜히 모일 사람도 없는데 큰방을 잡은 것이 아닐까 하고 생각하고 있었는데, 생각보다 많은 분들이 오셨다.각 회사들이 어떤 도구를 사용하는지 설문조사도 해보고, 또 어떤 개발 방법론을 사용하는지, 코드 리뷰, QA는 어떻게 하고 있는지에 대한 이야기를 나눴다. 다양한 회사에서 다양한 일을 하는 사람들이 모여 있다 보니 생각보다 꽤 재미있게 논의가 진행되었다. 사실 내가 뭔가 말을 많이 해야 할 줄 알았는데, 이야기하고 싶은 분들이 많이 있어서 진행을 하는 역할만 하면 되었다. 마지막으로는 “우리 회사에서 잘 사용하고 있어서 다른 회사에도 추천해 주고 싶은 것”을 주제로 몇 가지 추천을 받은 것도 재미가 있었다.열심히 오간 대화를 적어두긴 했다5시에 OST를 마치고는 바로 집으로 돌아왔다. 오늘 저녁에 아이들을 잘 돌보고 집 청소도 열심히 해두어야 내일 파이콘에 참여할 수 있기 때문이다. 기대된다. 내일의 파이콘도.그리고 정말 감사드린다. 파이콘을 준비해주시고 운영해주고 계신 많은 분들께.#8퍼센트 #에잇퍼센트 #개발자 #개발 #파이썬 #Python #파이콘 #Pycon #이벤트참여 #참여후기 #후기

기업문화 엿볼 때, 더팀스

로그인

/