스토리 홈

인터뷰

피드

뉴스

조회수 1019

[Buzzvil People] Ben Yoo, Software Developer

 Buzzvil People에서는 다양한 배경과 성격 그리고 생각을 지닌 버즈빌리언들을 한 분 한 분 소개하는 시간을 갖습니다. 어떻게 버즈빌에 최고의 동료들이 모여 최고의 팀을 만들어가고 있는 지 궁금하시다면, 색색깔 다양한 버즈빌리언들 한분 한분의 이야기가 궁금하시다면, Buzzvil People을 주목해주세요.1. 간단한 자기 소개 부탁드립니다.  안녕하세요 저는 버즈빌에서 Server engineering 을 맡고 있는 유병우입니다. 회사에서는 Ben 이라는 닉네임을 쓰고 있고 저와 아내 사이에 아기가 하나 있는데 회사에서는 벤, 벤처, 미니벤이렇게 부르고 있습니다. 성격은 매우 Active 해서 웬만한 스포츠는 다 좋아하고 회사에서는 Rock band도 하고 있습니다. 프로그래머! 어린 시절 Basic 이라는 언어로 시작한 프로그래밍이 너무 재밌기도 했고 가능한 많은 사람들에게 유익을 끼치고 싶다는 생각에 Software Engineer 가 되었습니다. 10년 전 병역특례 시절 카카오톡 이전에 존재했던 m&Talk 이라는 무료 메신저 개발을 시작으로 삼성의 Chat@n, 그리고 Line, Naver 외 여러 앱에 들어가는 push notification platform 을 개발한 경험이 있습니다. 전 세계에서 억 단위가 넘는 유저들에게 서비스하고 그 유저들에게 좋은 경험을 선사하는 것이 저에게 더욱 Software 의 매력에 빠지게 만들었던 것 같습니다. 새로운 기능이나 개선사항을 배포하고 나면 유저들의 Feedback 을 보는 것이 아침에 눈을 뜨면 가장 먼저 하는 일이었습니다. (늘 즐겁기만 한 건 아니었습니다. 특히 버그를 배포한 다음 날엔.. -_-a)  2. 어떻게 버즈빌에 오시게 되셨나요?  Infobank 에서의 인연 Infobank 에서의 병역특례를 하면서 m&Talk이라는 메신저를 개발할 때 Product Team의 Jay 는 iPhone 쪽 개발을 주도하고 있었고 저는 Android 쪽 개발을 주도하고 있었습니다. 함께 하나의 Product 을 만들면서 여러 가지 의견을 주고받기도 했고 서로 부족한 부분을 잘 보완해주는 친구이자 동료라는 생각을 많이 했습니다.  창업을 결심 나중에 Jay가 미국에서 함께 잠금화면 서비스를 만들어보자고 절 찾아왔고 그렇게 해서 Slidejoy 라는 회사를 함께 공동창업하게 되었습니다. 당시 좋은 회사에서 만족하며 생활하고 있었고 한 가정의 가장으로서 불안정한 길을 선택하는 것에 대한 두려움이 있었지만 좋은 사람들과 함께 창업이라는 기회는 자주 오지 않는다는 것과 다음의 단순한 생각이 창업의 길로 저를 이끌었습니다.  “뭐, 굶어 죽지는 않겠지.” 버즈빌로 합병 많은 위기들을 헤쳐나가며 Slidejoy 는 계속 성장했고 좋은 기회에 한국에서 비슷한 서비스를 하고 있던 저희보다 규모가 큰 회사인 버즈빌로 합병을 하게 되었습니다.  3. 버즈빌에서 어떤 업무를 담당하고 계신가요?  신기술 & Refactoring  제가 Software 를 개발하면서 가장 중요하게 생각하는 것은 효율 / 훌륭한 Design 을 가지고 있는 프로젝트 설계인데요, 효율을 올리기 위해 Go 와 Kubernetes 등의 기술을 회사에 도입했고 MVP, MVC 와 같은 Design pattern 들을 도입해서 코드를 읽기 쉽고 서로 분리하고 재사용 가능한 구조로 만드는 것에 노력 중입니다.    Go server engineering 실제 업무는 BuzzScreen / HoneyScreen 에서 광고 및 콘텐츠 할당과 Slidejoy 라는 서비스의 API 서버 개발을 맡고 있으며 Slidejoy 클라이언트를 개발했어서 클라이언트 쪽도 조금씩 참여하고 있습니다. 새로운 기술에 관심이 많다 보니 BuzzScreen 과 HoneyScreen 할당 로직을 전부 Go 언어로 포팅했고 비약적인 성능 향상이 있었습니다. (Go 서버 개발하기)  4. 스타트업에서 혹은 광고업계에서 일하는 느낌이 어떠세요?  사람 > 회사 대기업에서의 경험과 다르게 스타트업에서는 한 사람 한 사람이 일당백인 경우가 많은 것 같습니다. 그리고 그런 한 사람에 의해서 회사가 좌지우지 할 수 있는 곳이 스타트업입니다. 회사가 겪는 크고 작은 성장과 위기 모두 그대로 직원들에게 전달 되다 보니 그만큼 Buzzvil 식구들 모두 함께 만들어가는 서비스의 성공에 초점을 맞출 수 있습니다.  모바일 광고 저는 사실 미디어에 큰 흥미가 없고 광고는 더더욱 관심이 없었습니다. 하지만 Mobile 이라는 Big wave 안에서 0에서 출발해서 수억 명이 사용하게 된 급속도로 성장하는 Messenger 를 개발을 몸으로 체험할 수 있었고 모바일 광고 역시 Buzzvil 을 성장시킨 Big wave 였다고 생각합니다. 이렇게 급속도로 변하고 성장하는 시장에서 스타트업에 분명히 가치를 계산할 수 없는 엄청난 기회가 있다고 생각합니다.  5. 이것만큼은 버즈빌이 참 좋다! 어떤 게 있으실까요?  밝고 명랑한 문화 회사 회식 중에서 저는 “친해지길 바래” 라는 테마를 정말 좋아하는데요. 그야말로 정해진 예산 안에서 소수의 사람들끼리 마음껏 놀 수 있습니다. 지난번 친해지길 바래 때는 간단히 막국수 먹고 그 외의 모든 예산을 사격 및 방탈출 등의 액티비티에 쏟아부었습니다. 회식 날 밤에 배가 고픈 건 태어나서 처음이었던 것 같아요. 올해 초에 다녀왔던 전 직원들과 함께 다녀온 Bali 에서의 워크숍도 빠질 수 없습니다. 워낙 서로 친하게 지내다 보니 밤잠을 아껴가며 놀았던 기억이 납니다. 휴양지를 다녀왔는데 한국 돌아와서 1~2주 체력적으로 정말 힘들었던 기억이 나네요. 어느 Slack 채널에서나 난무하는 아재개그와 어처구니없는 3행시, 직원들의 표정이 담긴 얼굴로 만든 이모티콘 등 직원들 사이에서 주고받는 대화에는 늘 위트가 넘칩니다. 다크할거야! 라고 생각할 틈을 주지 않습니다. 비록 웃기지 않더라도 응원해줍니다. 노력은 언젠가 결실을 맺을 것이라 기대하기 때문이죠. 같이 놀고 같이 공부하는 회사 마음껏 교육이나 운동을 할 수 있도록 지원해주는 프로그램이나 무제한 도서구매를 지원하고 다양한 주제의 동아리나 스터디 모임 등이 있고 이걸 회사 차원에서 장려하는 것이 빼놓을 수 없는 Buzzvil 의 특징인 것 같습니다. 머신러닝, 영어스터디, 통기타 등의 스터디 모임과 밴드, 축구, 배드민턴, 테니스, 필라테스 등의 동아리 모임 등 대부분 직원들이 하나 이상의 프로그램에 참여하고 있습니다.  6. 개인적인 목표나 꿈이 있으신가요? 있다면, 버즈빌에서의 경험이 어떻게 도움이 된다고 생각하시나요?  많은 사람들에게 편리함을 제공 잠금화면이라는 대부분 사람들이 기존에 크게 활용되지 않고 있던 공간에 Value 를 만드는 것이 버즈빌에서 더 열심히 프로그램을 개발하게 만드는 원동력입니다. 위에도 기술 했지만 저는 가능한 많은 사람들에게 유익을 끼치고 싶어서 Programming 을 하게 되었고 대부분의 다른 산업과 달리 제가 하는 개발 작업은 하나의 복제품을 생성하는데 Ctrl+C / Ctrl+V 만으로 충분하니까 좋은 제품을 만들면 더욱 발전돼서 긍정적인 영향을 더 널리 끼칠 수 있을 것 같습니다.  다른 개발자들이 읽기 쉬운 코드 실제 제가 일을 하면 할수록 기존의 코드를 구조화하고 모듈화하고 사용하지 않는 코드를 지우는 일에 열심을 가지고 있다는 사실을 알게 되었어요. 확장이나 활용이 가능한 Core 나 Library 쪽 개발을 주로 하면서 어떻게 짜면 제 코드를 사용하는 사람이 덜 혼란스럽고 잘 활용할 수 있는지와 어느 곳에 어떤 설계가 어울리는지도 많이 고민해왔던 것 같습니다 버즈빌에서 버즈스크린이라는 상품을 통해서 저의 이런 성향을 마음껏 발휘하고 있습니다. 여러 Publisher 가 쉽게 사용할 수 있어야 하고 SDK 등을 사용할 때 쉽게 Integration 되어야 하기 때문이죠. ‘내가 짠 코드를 인수인계 받을 사람이 연쇄살인범이고 그 사람은 너의 주소를 알고 있다고 생각하고 코딩하라.’ 라는 말이 있는데요. 누구에게도 부끄럽지 않은 코드를 짜려고 항상 노력합니다. 갈 길이 아직 멀지만 연쇄살인범이라도, 어떻게 이렇게 코드를 (잘?) 설계했는지 의논하러 오게 만드는 것이 저의 꿈입니다.     *고성장 스타트업 버즈빌의 채용공고(전문연구요원 포함)를 확인하고 싶으면 아래 버튼을 눌러주세요!
조회수 5099

100일 간의 챗봇 디자인 실패기-1편

디자인 학도로서 4년 넘게 학교에서 UI/UX를 공부했다. 또래에 비해 학교를 오래 다녔으며 해당 분야에 대한 관심도 남달랐거니와, 심지어는 UI 디자인 소프트웨어를 만드는 회사에 다닌 경험이 있는 만큼 실무적으로는 아직 많이 부족할 지라도 이론만큼은 이제 어느 정도 자신이 있다고 생각했다.그런데 대체 이 녀석은 또 뭐지. 챗봇이라니.   지난 1월, 새로운 사업을 결심한 팀원들과 사업구상을 하며 챗봇이라는 아이템을 마주하게 되었다. 우리가 챗봇에 대한 무한 신뢰를 했던 이유는 한 가지였다. '일상적 편리함에 있어 메신저만 한 것은 없다'는 것.한때 SNS에 화제가 되었던 '엄마의 메모장'챗봇은 이미 한 차례 미국 본토를 강타하고 조금씩 국내 시장에 진입하고 있던 상황이었고, 새로운 기술에 호기심을 가진 우리 팀은 챗봇에 희망을 품고 해당 분야에 대한 학습을 진행하기 시작했다.  자연어 처리, 형태소 분석 등 기술적인 부분들을 개발팀원들이 검토하고 있는 동안 디자이너로서 챗봇에 대한 리서치를 시작하려는 찰나, 아무리 검색을 해도 평소에 비해 아무것도 나오지 않는 매우 당황스러운 시추에이션이 발생했다.  일반적인 웹이나 어플리케이션 기획의 경우 이미 레퍼런스 삼을 만한 사례가 충분히 있었고, 설령 국내 자료 중에 없다고 한들 영어로 조금만 검색해보면 해외 자료들을 금세 찾을 수 있었다. 그러나 챗봇은 상황이 달랐다. 영어권 챗봇 또한 이제 막 성장하는 단계인 만큼 해외 챗봇 사례 중에서도 이렇다 할 벤치마킹 대상을 찾는 것이 쉽지 않았다.우선 우리가 만들고자 한 챗봇은 '일정' 관련 봇이었다. '자연스러운 대화를 이해하여 사용자의 일정 입력을 돕는 챗봇이 있다면 어떨까'라는 것이 우리의 가설이었다.괜찮지 않을까?지난 4년 간 학교에서 배운 과정대로라면 브레인스토밍, AEIOU, 컨셉맵핑, 유저 인터뷰, 포커스그룹 인터뷰 등에 걸친 여러 기법들을 통해 디자인을 시작해야 했다. 하지만 현 상황은 우리가 대체 정확히 무엇을 만드는 것인지에 대한 정의조차 내려지지 않은 상태였다.이 챗봇의 기능은 무엇이며, 타겟은 누구이고, 어떻게 구현될 수 있는 걸까. 너무나 생소한 분야였던 만큼 우선 첫 한 달 동안은 챗봇 관련 국내외 글을 꾸준히 읽기 시작했다. 4차 산업혁명, 완전자동화 등 챗봇에 대한 여러 이론적인(쓸데없는) 내용들이 있었지만 그중에서도 유독 눈에 띄는 글이 하나 있었다.https://chatbotsmagazine.com/bots-hype-or-glory-656f4d614efb#.g6s68jvkgI was an undercover-bot for 2 months. Here is what I learned.Bots: hype or glory?chatbotsmagazine.com 해당 글의 주요 내용을 번역 및 요약하자면 이러하다.- UX 매니아로서, 그 수많은 챗봇 중에 쓸만한 게 없더라.- 그래서 챗봇을 개발하기 전 직접 실험을 해보기로 했다.- 약 2달간 직접 서비스 내에 사용자를 돕는 봇인'척' 했다(틈틈이 사람이라고 힌트는 줬다).- 우리 서비스를 사용하는 사용자들은 컴퓨터나 기술을 좋아하는 사람들이 아닌, 일반인이었다.- 봇이 아닌 사람이 실시간으로 응대한다고 인지는 시켜주었지만 사실 신경 쓰는 사람은 없었다.본문은 '아직 챗봇은 기술적으로도, 시대적으로도 준비가 되지 않았다'로 최종 결론을 지으며 마무리되는데, 이미 챗봇에 콩깍지가 씌여 있던 나에게는 그저 앞부분의 내용이 중요할 뿐이었다."사람이 챗봇인 척 테스트를 한다고?"서비스 기획 및 디자인에 갈피를 못 잡고 있었던 우리 팀은 긴말할 것 없이 곧바로 실행에 들어갔다. 대학교 게시판에 피실험자 알바 구인 글을 올리고 약 30명의 캘린더 유저를 확보했다. 실험에 대한 대략적인 안내사항은 이러했다.1. 우리는 현재 일정 관련 챗봇을 만들기 위해 수동으로 실험 중이며, 주 기능은 '일정등록' 이다.2. 구글 또는 네이버 캘린더 작성 권한을 사용자로부터 공유받아 일정을 입력한다(캘린더 공유 기능 활용).3. 사용자는 최소 주 1회 이상 카톡을 통해 캘린더에 일정을 입력하여야 한다(페이 지급 조건).4. 사용자는 챗봇에게 일정 등록뿐만이 아닌 일정 관련 어떠한 요청도 할 수 있다.5. 이에 대한 예시로 문자/메일 분석, 공개 캘린더 추가, 키워드 일정 추천 등을 제시한다.6. 대화의 형태는 정해져 있지 않으며 원하는 어떠한 형태(말투, 축약어, 신조어)로든 가능하다.응대에 사용한 옐로아이디 관리자 툴지금은 플러스친구로 업데이트된 카카오톡 옐로아이디 관리자 툴을 활용하여 사용자들과 대화(채팅)를 진행했다. 데스크탑용 웹 인터페이스를 통해 대화를 입력할 수 있었기에 입력 속도는 빨랐지만 사용자가 언제 무슨 말을 걸어올지 도저히 예측이 불가능했다. 팀 내 개발자들이 자연어 처리에 대한 공부를 지속하는 동안 운영을 맡은 팀원과 함께 2명이서 상시 대기하며 사용자들의 요청에 응대했다.운영 초기 우리가 기대했던 이상적인 요청들은 이러했다.하지만 현실은 아래와 같았다.목적어 및 각각의 형태소가 매우 명료하고 명확한, 챗봇 개발 시 자동화가 가능한 텍스트들을 기대하고 있었지만 실상 대부분의 요청은 실제 사람이 개입하지 않는 이상 과연 처리가 가능할까 싶은 내용들이 태반이었다.텍스트 입력 시간도 사용자마다 다 제각각이었다. 아침 일과를 시작할 때 일정을 입력하는 사용자들이 있는 반면 하루를 정리하며 다음날 일정을 계획하는 사용자들도 있었다. 밥을 먹다가도, 샤워를 하다가도 옐로아이디 알람이 울리면 컴퓨터로 달려가 응답을 했다. 아무리 상시 대기를 한다 해도 잠은 자야 했기에 결국 자정부터 다음날 아침 8시까지는 옐로 아이디의 자동 응답기능을 활용하여 '잠시만 기다려주세요'를 출력하였다.(물론 잠시는 아니었지만)여러 시행착오를 거쳐 약 한 달 간의 기나긴 응대 끝에 실험이 종료되었고, 우리는 사용자들을 대상으로 설문 및 인터뷰를 진행하였다.우선 가장 중요하게 생각한 전체 캘린더 일정 입력률(데스크탑/모바일 캘린더를 포함한 모든 입력) 대비 카톡을 통한 일정 입력률은 약 절반 정도로 확인되었다.카톡을 통한 일정 입력률 / 전체 일정 입력률  = 51%이와 더불어 '카톡을 통해 캘린더에 일정을 등록하는 방식에 대해 불편한 점'을 질문한 결과1. 즉각적이지 않은, 늦은 응답 - 40%2. 개인 일정 정보 유출에 대한 불안 - 20%3. 익숙하지 않은 카톡 입력의 불편함 - 13.3%순으로 응답함을 확인하였다.생각보다 나쁘지 않은 결과였다.비록 입력 된 내용들을 정형화 하기가 쉽지는 않았지만, 기대했던 것에 비해 카톡을 통한 입력률이 높은 편이었고 가장 큰 문제점으로 지적된 '늦은 응답'과 '개인 정보 유출'은 챗봇 개발을 통해 개선할 수 있을 것으로 기대했다. 자동화를 통해 즉각적으로 응답할 수 있을뿐더러 사람의 개입을 없애 개인 일정 정보 유출을 방지할 수 있을 것이라는 판단 하에 챗봇 개발을 진행하였다.그렇게 한달 간 입력받은 텍스트 데이터를 활용, 약 2주 간의 개발 끝에 간단한 일정 등록 기능을 갖춘 일정 관리 챗봇, 린더봇이 탄생하게 되었다.https://www.youtube.com/watch?v=zSRYRYfzTFo2편에서 계속...#히든트랙 #챗봇 #기술기업 #개발자 #개발팀 #인사이트 #경험공유
조회수 1349

개발팀의 유행어 제조기, Mark를 만나다

 * 2015년에 작성된 글입니다편집자 주: 잔디에는 현재 40명 가까운 구성원들이 일본, 대만, 한국 오피스에서 일하고 있습니다. 국적, 학력, 경험이 모두 다른 멤버들. 이들이 어떤 스토리를 갖고 잔디에 합류했는지, 잔디에서 무슨 일을 하고 있는지 궁금해하시는 분들이 많았습니다.  이에 잔디 블로그에서는 매 주 1회 ‘맛있는 인터뷰’라는 인터뷰 시리즈로 기업용 사내 메신저 ‘잔디’를 만드는 사람들의 이야기를 다루고자 합니다. 인터뷰는 매 주 선정된 인터뷰어와 인터뷰이가 1시간 동안 점심을 함께 하며 다양한 이야기를 나누며 진행됩니다. 인터뷰이에 대해 궁금한 점은 댓글 혹은 이메일([email protected])을 통해 문의 부탁드립니다.인터뷰 시작에 앞서 편집자 스스로 잔디의 개발팀에 궁금한 점이 있었다. 매 주 수요일 아침 8시, 오피스 근처 카페에서 스터디를 하는 그들의 문화가 바로 그 것이다. 회사의 강요가 아닌 공부를 하겠다는 자발적인 이유로 모인다는 그들. 그들 중 한 명인 Mark를 이번 주 맛있는 인터뷰에 어렵게 모시게 되었다.세렝게티의 한 마리 표범과 같은 그의 눈빛이 향한 곳은 가.츠.나.베반갑습니다. 우리 좀 걷지 않았나요? 회사에서 꽤나 멀리 떨어진 ‘오무라안’을 온 특별한 이유가 있다면?회사 바로 앞에 있는 ‘탄’보다는 조금 고급스러운 일식 레스토랑이에요. 우연히 알게 된 곳인데 맛이 딱 제 취향이라 즐겨 찾습니다. 항상 가츠나베를 먹는데요. 그 맛은.. 말로 형용하기 어렵네요.가츠나베성애자이시군요. 얼마나 있는지 모르겠으나 ‘맛있는 인터뷰’ 독자들을 위해 인사 부탁드립니다.안녕하세요, 부산 남자 Mark입니다. 잔디에 합류한 지 약 두 달 정도 되었어요. 잔디에서는 Front-end 개발 업무를 맡고 있습니다.주로 어떤 일을 하시나요?쉽게 말하자면 사용자들이 접하는 부분을 책임지는 역할이에요. 지금은 Jihoon, Young과 함께 일하고 있는데 궁합이 잘 맞는 것 같아요. 사람이 적으면 할 수 있는 일이 한정되어 있고 반면 사람이 많으면 커뮤니케이션이 힘든데 저희 세 명은 예외인 것 같습니다.왔노라, 보았노라, 달렸노라Mark님만의 유행어가 있더라고요?‘가자!’ 를 말씀하시는 것 같은데요. 맞나요? (웃음) 비글로벌 서울 2015 우승 후, 뒷풀이 회식에서 흥에 겨워 술과 함께 외친 ‘가자!’가 다른 분들에게 인상적으로 각인되었던 것 같아요.네, 저도 그 자리에 있었는데요. 굉장히 인상적이었어요. 술이 센 편이신 것 같은데요?아니에요. 사실 술을 잘 하는 편도, 자주 마시는 편도 아니에요. 주량이라면 소주 두 병 정도? 그 날은 저희 회사가 좋은 일도 있고 해서 평소보다 많이 마시긴 했지만 기분이 좋았던 게 그런 사태를 만든 주된 이유인 듯 합니다.잔디 비글로벌 서울 2015 우승!잔디의 개발자 채용 과정이 다른 곳에 비해 까다롭다고 들었어요. 직접 경험하신 분으로서 어땠는지 여쭤볼 수 있을까요?정말 까다로워요. 다른 곳도 코딩시험을 보기는 하는데 잔디는 인사부에서 1차 코딩 시험을 보고 2차 면접에서는 왜 그렇게 코딩을 했는지 설명을 해야 합니다. 그리고 나서 인성 면접을 봤습니다. (잔디에서는 이 면접을 Behavior Interview 라고 부르며, 여러 부서의 인원들이 참여해 해당 인터뷰이가 함께 일할 사람으로서 적합한지 판단하게 된다 – 편집자 주)마치 수험생 같다는 느낌이 들었어요. 면접 과정 중에는 ‘뭐 이리 깐깐하게 굴어?’ 라는 생각을 했었는데, 지금 돌이켜 보면 이런 과정을 거쳐 합류한 인재들이 모여 있어 잔디가 빠르게 성장할 수 있지 않을까 추측해 봅니다.잔디에서의 생활은 어떤가요?신기한 점이 참 많은 것 같아요. 좋은 점은 출중한 능력을 가진 분들이 많다는 점이에요. 그분들을 통해 배울 점도 많고, 개인적으로는 분발해야겠다는 생각을 하게 해요. 많은 자극을 받고 있어요.신기한 점이라면 어떤 부분일까요?예를 들면 아침에 출근하면 Dan(CEO)이 제게 다가와 영어로 말을 건네는 것이 가장 신기한 것 같아요. 당황스러우면서도 한편으로는 신기해요.이건 개인적으로 궁금한 건데요. 개발팀의 아침 스터디에 대해 어떻게 생각하시나요?사실 아직 참여해 보진 못했어요. 잔디 개발팀에서는 매주 아침 8시까지 나와서 자발적으로 스터디를 하고 있는데요. 강요가 아닌 자발적으로 업무 외에 스터디를 한다는 점이 참 인상 깊어요.그렇군요. 질문을 좀 바꿔볼게요. 쉬는 날엔 뭐 하시나요? 부산 사람이니 야구?보통 쉬는 날엔 서울에 있는 친구들을 만나거나 게임을 해요. 야구는 부산 사람이다 보니.. 삶의 일부 같은 느낌이죠. 우리가 공기를 좋아하거나 싫어할 수 없듯, 야구 역시 좋아하거나 싫어할 수 있는 대상이 아니에요.보통 ‘부산 사람=야구’라고 생각하는데 Mark도 여기에 해당하는 분이었군요. 게임은 어떤 걸 즐겨 하시나요?WOW(Wolrd of Warcraft)라고 아세요? 저는 게임에 있어서 저만의 철학이 있어요. 게임에도 레벨이 존재한다고 생각하는데요. 모바일 게임을 아주 안 하는 것은 아니지만 모바일 게임에 투자하는 시간은 아깝다고 느껴져요. 물론 개인적인 생각입니다.록타르.. 피바람을 몰고올 Mark여..그러면 Mark가 생각하기에 게임으로서 ‘와우’는 어느 정도 레벨인가요?제가 알고 있는 게임들 중 와우는 Top3에 듭니다. 물론 생각을 깊게 해 본 적은 없어서 나머지 2개에 뭘 넣어야 할지 고민해야겠지만 와우는 정말 잘 만든 수작이에요.이제 곧 휴가철이잖아요. 부산 여행 추천 장소 좀 해주세요.외지 사람들은 보통 해운대 많이 가는데, 사실 부산 사람들은 해운대를 잘 안가요. 사람이 너무 많잖아요? 부산 여행 장소를 찾으신다면 개인적으로 을숙도를 추천하고 싶어요. 여긴 가족 단위 여행객이 많은 곳인데요. 서울 사람들이 한강을 찾듯 부산 사람들은 을숙도를 찾아요.이번 여름 휴가는 을숙도로!을숙도? 섬인가요?네, 섬이긴 한데 엄청 큰 다리로 육지와 연결되어 있어서 차를 타고 들어갈 수 있는 곳이에요. 공원이 잘 조성되어 있어요. 자전거도 빌려 탈 수 있고 까페도 있어서 여행 장소로는 딱이에요.축구장도 엄청 많아서 축구 동호회 분들이 자주 찾으시는데요. 사람으로 북적거리지 않는 부산 여행지를 찾는다면 이번 여름 여행은 을숙도로 가보세요. 참고로 을숙도에는 음식점이 많지 않아요. 저 같은 경우, 을숙도 갈 때마다 도시락을 챙겨가곤 합니다.다음은 맛있는 인터뷰의 고정 코너 ‘어서 말을 해’입니다. Jinho가 남긴 질문 ‘잔디를 한문장으로 표현한다면?’에 대해 답을 주신다면?잔디란 ‘기회’ 입니다. IT 업에서 제가 어디까지 능력을 발휘할 수 있을지 확인해볼 수 있는 좋은 기회이기 때문이죠. 좀 진부한가요?전~혀 진부하지 않아요. 멋진 답변을 주셨으니 다음 인터뷰이를 위해 질문 하나 남겨주시겠어요?저는 이걸 꼭 물어보고 싶어요. ‘최근 3년 동안 당신에게 가장 행복했던 일은?’Mark와 개인적으로 얘기를 나눠보고 싶었는데 이렇게 소원이 이뤄졌네요. 개인적으로 뿌듯한 인터뷰였습니다.감사해요. 잘 좀 편집해 주세요.#토스랩 #잔디 #JANDI #개발팀 #개발자 #개발 #팀원소개 #팀원인터뷰 #팀원자랑 #기업문화 #사내문화 #조직문화
조회수 1892

Tips for building fast portrait segmentation network with TensorFlow Lite

PrefaceDeep learning has led to a series of breakthroughs in many areas. However, successful deep learning models often require significant amounts of computational resources, memory and power. Deploying efficient deep learning models on mobile devices became the main technological challenge for many mobile tech companies.Hyperconnect developed a mobile app named Azar which has a large fan base all over the world. Recently, Machine Learning Team has been focusing on developing mobile deep learning technologies which can boost user experience in Azar app. Below, you can see a demo video of our image segmentation technology (HyperCut) running on Samsung Galaxy J7. Our benchmark target is a real-time (>= 30 fps) inference on Galaxy J7 (Exynos 7580 CPU, 1.5 GHz) using only a single core.Figure 1. Our network runs fast on mobile devices, achieving 6 ms of single inference on Pixel 1 and 28 ms on Samsung Galaxy J7. Full length video. There are several approaches to achieve fast inference speed on mobile device. 8-bit quantization is one of the popular approaches that meet our speed-accuracy requirement. We use TensorFlow Lite as our main framework for mobile inference. TensorFlow Lite supports SIMD optimized operations for 8-bit quantized weights and activations. However, TensorFlow Lite is still in pre-alpha (developer preview) stage and lacks many features. In order to achive our goal, we had to do the following:Understand details of TensorFlow and Tensorflow Lite implementation.Design our own neural network that can fully utilize optimized kernels of TensorFlow Lite. (Refer to 1, 2 and 3)Modify TOCO: TensorFlow Lite Optimizing Converter to correctly convert unsupported layers. (Refer to 4)Accelerate several quantized-layers with SIMD optimized code. (Refer to 5 and 6)We are willing to share our trials and errors in this post and we hope that readers will enjoy mobile deep learning world :)1) Why is depthwise separable layer fast in Tensorflow Lite ?Implementing low-level programs requires a bit different ideas and approaches than usual. We should be aware that especially on mobile devices using cache memory is important for fast inference.Figure 2. Memory access requires much more energy (640 pJ) than addition or multiplication.Accessing cache memory (8 pJ) is much cheaper than using the main memory (table courtesy of Ardavan Pedram) In order to get insight into how intrinsics instructions are implemented in Tensorflow Lite, we had to analyze some implementations including depthwise separable convolution with 3x3 kernelsBelow we describe some of the main optimization techniques that are used for building lightweight and faster programs.Loop UnrollingCan you spot the difference between the following two code fragments?for (int i = 0; i < 32; i++) { x[i] = 1; if (i%4 == 3) x[i] = 3; } for (int i = 0; i < 8; i++) { x[4*i ] = 1; x[4*i+1] = 1; x[4*i+2] = 1; x[4*i+3] = 3; } The former way is what we usually write, and the latter is loop-unrolled version of former one. Even though unrolling loops are discouraged from the perspective of software design and development due to severe redundancy, with low-level architecture this kind of unrolling has non-negligible benefits. In the example described above, the unrolled version avoids examining 24 conditional statements in for loop, along with neglecting 32 conditional statements of if.Furthermore, with careful implementation, these advantages can be magnified with the aid of SIMD architecture. Nowadays some compilers have options which automatically unroll some repetitive statements, yet they are unable to deal with complex loops.Separate implementation for each caseConvolution layer can take several parameters. For example, in depthwise separable layer, we can have many combinations with different parameters (depth_multiplier x stride x rate x kernel_size). Rather than writing single program available to deal with every case, in low-level architectures, writing number of case-specific implementations is preferred. The main rationale is that we need to fully utilize the special properties for each case. For convolution operation, naive implementation with several for loops can deal with arbitrary kernel size and strides, however this kind of implementation might be slow. Instead, one can concentrate on small set of actually used cases (e.g. 1x1 convolution with stride 1, 3x3 convolution with stride 2 and others) and fully consider the structure of every subproblem.For example, in TensorFlow Lite there is a kernel-optimized implementation of depthwise convolution, targeted at 3x3 kernel size:template <int kFixedOutputY, int kFixedOutputX, int kFixedStrideWidth, int kFixedStrideHeight> struct ConvKernel3x3FilterDepth8 {}; Tensorflow Lite further specifies following 16 cases with different strides, width and height of outputs for its internal implementation:template <> struct ConvKernel3x3FilterDepth8<8, 8, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 4, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 2, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 1, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 2, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 4, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<1, 4, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 1, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 2, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 4, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 1, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 2, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 4, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 1, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<1, 2, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<1, 4, 2, 2> { ... } Smart Memory Access PatternSince low-level programs are executed many times in repetitive fashion, minimizing duplicated memory access for both input and output is necessary. If we use SIMD architecture, we can load nearby elements together at once (Data Parallelism) and in order to reduce duplicated read memory access, we can traverse the input array by means of a snake-path.Figure 3. Memory access pattern for 8x8 output and unit stride, implemented in Tensorflow Lite's depthwise 3x3 convolution. The next example which is targeted to be used in much smaller 4x1 output block also demonstrates how to reuse preloaded variables efficiently. Note that the stored location does not change for variables which are loaded in previous stage (in the following figure, bold variables are reused):Figure 4. Memory access pattern for 4x1 output and stride 2, implemented in Tensorflow Lite's depthwise 3x3 convolution. 2) Be aware of using atrous depthwise convolutionAtrous (dilated) convolution is known to be useful to achieve better result for image segmentation[1]. We also decided to use atrous depthwise convolution in our network. One day, we tried to set stride for atrous depthwise convolution to make it accelerate computation, however we failed, because the layer usage in TensorFlow (≤ 1.8) is constrained.In Tensorflow documentation of tf.nn.depthwise_conv2d (slim.depthwise_conv2d also wraps this function), you can find this explanation of rate parameter.rate: 1-D of size 2. The dilation rate in which we sample input values across the height and width dimensions in atrous convolution. If it is greater than 1, then all values of strides must be 1.Even though TensorFlow doesn’t support strided atrous function, it doesn’t raise any error if you set rate > 1 and stride > 1. <!-- The output of layer doesn't seem to be wrong. -->>>> import tensorflow as tf >>> tf.enable_eager_execution() >>> input_tensor = tf.constant(list(range(64)), shape=[1, 8, 8, 1], dtype=tf.float32) >>> filter_tensor = tf.constant(list(range(1, 10)), shape=[3, 3, 1, 1], dtype=tf.float32) >>> print(tf.nn.depthwise_conv2d(input_tensor, filter_tensor, strides=[1, 2, 2, 1], padding="VALID", rate=[2, 2])) tf.Tensor( [[[[ 302.] [ 330.] [ 548.] [ 587.]] [[ 526.] [ 554.] [ 860.] [ 899.]] [[1284.] [1317.] [1920.] [1965.]] [[1548.] [1581.] [2280.] [2325.]]]], shape=(1, 4, 4, 1), dtype=float32) >>> 0 * 5 + 2 * 6 + 16 * 8 + 9 * 18 # The value in (0, 0) is correct 302 >>> 0 * 4 + 2 * 5 + 4 * 6 + 16 * 7 + 18 * 8 + 20 * 9 # But, the value in (0, 1) is wrong! 470 Let’s find the reason why this difference happened. If we just put tf.space_to_batch and tf.batch_to_space before and after convolution layer, then we can use convolution operation for atrous convolution (profit!). On the other hand, it isn’t straightforward how to handle stride and dilation together. In TensorFlow, we need to be aware of this problem in depthwise convolution.3) Architecture design principles for efficient segmentation networkUsually segmentation takes more time than classification since it has to upsample high spatial resolution map. Therefore, it is important to reduce inference time as much as possible to make the application run in real-time.It is important to focus on spatial resolution when designing real-time application. One of the easiest ways is to reduce the size of input images without losing accuracy. Assuming that the network is fully convolutional, you can accelerate the model about four times faster if the size of input is halved. In literature[2], it is known that small size of input images doesn’t hurt accuracy a lot.Another simple strategy to adopt is early downsampling when stacking convolution layers. Even with the same number of convolution layers, you can reduce the time with strided convolution or pooling within early layers.There is also a tip for selecting the size of input image when you use Tensorflow Lite quantized model. The optimized implementations of convolution run best when the width and height of image is multiple of 8. Tensorflow Lite first loads multiples of 8, then multiples of 4, 2 and 1 respectively. Therefore, it is the best to keep the size of every input of layer as a multiple of 8.Substituting multiple operations into single operation can improve speed a bit. For example, convolution followed by max pooling can be usually replaced by strided convolution. Transpose convolution can also be replaced by resizing followed by convolution. In general, these operations are substitutable because they perform the same role in the network. There are no big empirical differences among these operations. <!-- substitutable -->Tips described above help to accelerate inference speed but they can also hurt accuracy. Therefore, we adopted some state-of-the-art blocks rather than using naive convolution blocks.Figure 5.  Atrous spatial pyramid pooling (figure courtesy of Liang-Chieh Chen) Atrous spatial pyramid pooling[1] is a block which mimics the pyramid pooling operation with atrous convolution. DeepLab uses this block in the last layer.We also substitute most of the convolution layers with efficient depthwise separable convolution layers. They are basic building blocks for MobileNetV1[3] and MobileNetV2[4] which are well optimized in Tensorflow Lite.4) Folding batchnorm into atrous depthwise convolutionWhen quantizing convolution operation followed by batchnorm, batchnorm layer must be folded into the convolution layers to reduce computation cost. After folding, the batchnorm is reduced to folded weights and folded biases and the batchnorm-folded convolution will be computed in one convolution layer in TensorFlow Lite[5]. Batchnorm gets automatically folded using tf.contrib.quantize if the batchnorm layer comes right after the convolution layer. However, folding batchnorm into atrous depthwise convolution is not easy.In TensorFlow’s slim.separable_convolution2d, atrous depthwise convolution is implemented by adding SpaceToBatchND and BatchToSpaceND operations to normal depthwise convolution as mentioned previously. If you add a batchnorm to this operation by including argument normalizer_fn=slim.batch_norm, batchnorm does not get attached directly to the convolution layer. Instead, the graph will look like the diagram below: SpaceToBatchND → DepthwiseConv2dNative → BatchToSpaceND → BatchNorm The first thing we tried was to modify TensorFlow quantization to fold batchnorm bypassing BatchToSpaceND without changing the order of operations. With this approach, the folded bias term remained after BatchToSpaceND, away from the convolution layer. Then, it became separate BroadcastAdd operation in TensorFlow Lite model rather than fused into convolution. Surprisingly, it turned out that BroadcastAdd was much slower than the corresponding convolution operation in our experiment:Timing log from the experiment on Galaxy S8 ... [DepthwiseConv] elapsed time: 34us [BroadcastAdd] elapsed time: 107us ... To remove BroadcastAdd layer, we decided to change the network itself instead of fixing TensorFlow quantization. Within slim.separable_convolution2d layer, we swapped positions of BatchNorm and BatchToSpaceND. SpaceToBatchND → DepthwiseConv2dNative → BatchNorm → BatchToSpaceND Even though batchnorm relocation could lead to different outputs values compared to the original, we did not notice any degradation in segmentation quality.5) SIMD-optimized implementation for quantized resize bilinear layerAt the time of accelerating TensorFlow Lite framework, conv2d_transpose layer was not supported. However, we could use ResizeBilinear layer for upsampling as well. The only problem of this layer is that there is no quantized implementation, therefore we implemented our own SIMD quantized version of 2x2 upsampling ResizeBilinear layer.Figure 6. 2x2 bilinear upsampling without corner alignnment. To upsample image, original image pixels (red circles) are interlayed with new interpolated image pixels (grey circles). In order to simplify implementation we do not compute pixel values for the bottommost and rightmost pixels, denoted as green circles.for (int b = 0; b < batches; b++) { for (int y0 = 0, y = 0; y <= output_height - 2; y += 2, y0++) { for (int x0 = 0, x = 0; x <= output_width - 2; x += 2, x0++) { int32 x1 = std::min(x0 + 1, input_width - 1); int32 y1 = std::min(y0 + 1, input_height - 1); ResizeBilinearKernel2x2(x0, x1, y0, y1, x, y, depth, b, input_data, input_dims, output_data, output_dims); } } } Every new pixel value is computed for each batch separately. Our core function ResizeBilinearKernel2x2 computes 4 pixel values across multiple channels at once.Figure 7. Example of 2x2 bilinear upsampling of top left corner of image. (a) Original pixel values are simply reused and (b) – (d) used to interpolate new pixel values. Red circles represent original pixel values. Blue circles are new interpolated pixel values computed from pixel values denoted as circles with black circumference. NEON (Advanced SIMD) intrinsics enable us to process multiple data at once with a single instruction, in other words processing multiple data at once. Since we deal with uint8 input values we can store our data in one of the following formats uint8x16_t, uint8x8_t and uint8_t, that can hold 16, 8 and 1 uint8 values respectively. This representation allows to interpolate pixel values across multiple channels at once. Network architecture is highly rewarded when channels of feature maps are multiples of 16 or 8:// Handle 16 input channels at once int step = 16; for (int ic16 = ic; ic16 <= depth - step; ic16 += step) { ... ic += step; } // Handle 8 input channels at a once step = 8; for (int ic8 = ic; ic8 <= depth - step; ic8 += step) { ... ic += step; } // Handle one input channel at once for (int ic1 = ic; ic1 < depth; ic1++) { ... } SIMD implementation of quantized bilinear upsampling is straightforward. Top left pixel value is reused (Fig. 7a). Bottom left (Fig. 7b) and top right (Fig. 7c) pixel values are mean of two adjacent original pixel values. Finally, botom right pixel (Fig. 7d) is mean of 4 diagonally adjacent original pixel values.The only issue that we have to take care of is 8-bit integer overflow. Without a solid knowledge of NEON intrinsics we could go down the rabbit hole of taking care of overflowing by ourself. Fortunately, the range of NEON intrinsics is broad and we can utilize those intrinsics that fit our needs. The snippet of code below (using vrhaddq_u8) shows an interpolation (Fig. 7d) of 16 pixel values at once for bottom right pixel value:// Bottom right output_ptr += output_x_offset; uint8x16_t left_interpolation = vrhaddq_u8(x0y0, x0y1); uint8x16_t right_interpolation = vrhaddq_u8(x1y0, x1y1); uint8x16_t bottom_right_interpolation = vrhaddq_u8(left_interpolation, right_interpolation); vst1q_u8(output_ptr, bottom_right_interpolation); 6) Pitfalls in softmax layer and demo codeThe first impression of inference in TensorFlow Lite was very slow. It took 85 ms in Galaxy J7 at that time. We tested the first prototype of TensorFlow Lite demo app by just changing the output size from 1,001 to 51,200 (= 160x160x2)After profiling, we found out that there were two unbelievable bottlenecks in implementation. Out of 85 ms of inference time, tensors[idx].copyTo(outputs.get(idx)); line in Tensor.java took up to 11 ms (13 %) and softmax layer 23 ms (27 %). If we would be able to accelerate those operations, we could reduce almost 40 % of the total inference time!First, we looked at the demo code and identified tensors[idx].copyTo(outputs.get(idx)); as a source of problem. It seemed that the slowdown was caused by copyTo operation, but to our surprise it came from int[] dstShape = NativeInterpreterWrapper.shapeOf(dst); because it checks every element (in our case, 51,200) of array to fill the shape. After fixing the output size, we gained 13 % speedup in inference time.<T> T copyTo(T dst) { ... // This is just example, of course, hardcoding output shape here is a bad practice // In our actual app, we build our own JNI interface with just using c++ code // int[] dstShape = NativeInterpreterWrapper.shapeOf(dst); int[] dstShape = {1, width*height*channel}; ... } The softmax layer was our next problem. TensorFlow Lite’s optimized softmax implementation assumes that depth (= channel) is bigger than outer_size (= height x width). In classification task, the usual output looks like [1, 1(height), 1(width), 1001(depth)], but in our segmentation task, depth is 2 and outer_size is multiple of height and width (outer_size » depth). Implementation of softmax layer in Tensorflow Lite is optimized for classification task and therefore loops over depth instead of outer_size. This leads to unacceptably slow inference time of softmax layer when used in segmentation network.We can solve this problem in many different ways. First, we can just use sigmoid layer instead of softmax in 2-class portrait segmentation. TensorFlow Lite has very well optimized sigmoid layer.Secondly, we could write SIMD optimized code and loop over depth instead of outer_size. You can see similar implementation at Tencent’s ncnn softmax layer, however, this approach has still its shortcomings. Unlike ncnn, TensorFlow Lite uses NHWC as a default tensor format:Figure 8. NHWC vs NCHW In other words, for NHWC, near elements of tensor hold channel-wise information and not spatial-wise. It is not simple to write optimized code for any channel size, unless you include transpose operation before and after softmax layer. In our case, we tried to implement softmax layer assumming 2-channel output.Thirdly, we can implement softmax layer using pre-calculated lookup table. Because we use 8-bit quantization and 2-class output (foreground and background) there are only 65,536 (= 256x256) different combinations of quantized input values that can be stored in lookup table:for (int fg = 0; fg < 256; fg++) { for (int bg = 0; bg < 256; bg++) { // Dequantize float fg_real = input->params.scale * (fg - input->params.zero_point); float bg_real = input->params.scale * (bg - input->params.zero_point); // Pre-calculating Softmax Values ... // Quantize precalculated_softmax[x][y] = static_cast<uint8_t>(clamped); } } ConclusionIn this post, we described the main challenges we had to solve in order to run portrait segmentation network on mobile devices. Our main focus was to keep high segmentation accuracy while being able to support even old devices, such as Samsung Galaxy J7. We wish our tips and tricks can give a better understanding of how to overcome common challenges when designing neural networks and inference engines for mobile devices.At the top of this post you can see portrait segmentation effect that is now available in Azar app. If you have any questions or want to discuss anything related to segmentation task, contact us at [email protected]. Enjoy Azar and mobile deep learning world!References[1] L. Chen, G. Papandreou, F. Schroff, H. Adam. Rethinking Atrous Convolution for Semantic Image Segmentation. June 17, 2017, https://arxiv.org/abs/1706.05587[2] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna. Rethinking the Inception Architecture for Computer Vision. December 11, 2015, https://arxiv.org/abs/1512.00567[3] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, April 17, 2017, https://arxiv.org/abs/1704.04861[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. January 18, 2018, https://arxiv.org/abs/1801.04381[5] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D. Kalenichenko. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. December 15, 2017, https://arxiv.org/abs/1712.05877
조회수 4104

서버 비용을 70%나 줄인 온디맨드 리사이징 이야기

비트윈의 서버에는 사용자들이 올리는 수많은 사진이 저장되어 있습니다. 2016년 3월 기준으로 커플들이 데이트에서 찍은 사진, 각자의 프로필 사진, 채팅을 나누며 올린 재미있는 짤방까지 약 11억 장의 사진이 저장되어 있습니다. 비트윈에서는 이러한 사용자들의 소중한 추억을 잘 보관하고, 사용자들의 요청을 빠르고 비용 효율적으로 처리하기 위해서 많은 노력을 기울이고 있습니다. 이번 포스팅에서는 비트윈 개발팀이 사용자들의 사진 처리를 보다 효율적으로 하기 위해서 어떠한 노력을 하였는지 공유하고자 합니다.기존의 아키텍쳐¶비트윈 사용자가 채팅창이나 모멘츠 탭에서 사진을 업로드 할 경우, 해당 사진은 업로더 서버라고 불리는 전 세계 각지에 퍼져 있는 사진 업로드 전용 서버 중 가장 가까운 서버를 자동으로 찾아서 업로드 됩니다. 업로더 서버는 사진을 해당 AWS Region의 S3 bucket에 적재하고, 미리 지정된 크기의 썸네일을 자동으로 생성하여 역시 S3에 저장합니다. 그리고 Tokyo Region에 있는 비트윈 메인 서버에 이 결과를 토큰 형태로 전송하여 DB에 그 정보를 저장하도록 합니다. 이러한 과정을 통해서 일반 HTTP request보다 훨씬 큰 용량을 가지고 있는 사용자의 사진이 최대한 적은 지연시간을 가지고 업로드되도록 합니다.사용자가 올린 사진은 원본이 S3에 저장됨과 동시에 미리 정해진 사이즈로 썸네일을 생성해서 저장된다.하나의 사진이 대략 5장에서 6장의 서로 다른 크기의 썸네일로 리사이징이 되는데, 이는 클라이언트의 디스플레이 크기에 따라서 최적화된 이미지를 내려주기 위함이었습니다. 예를 들어서 아주 작은 썸네일이면 충분한 채팅 프로필 표시 화면을 그리기 위해서 사용자가 올린 3백만 픽셀이나 되는 원본 사진을 받아서 클라이언트가 리사이징 하는 것은 지연 시간뿐 아니라 과도한 데이터 사용이라는 측면에서 효율적이지 않기 때문에 작게 리사이징 해놓은 사진을 내려주는 것이 더 바람직합니다.비트윈 사용자들의 넘치는 사랑(?)에 비트윈은 출시 후 5년 동안 약 11억 장, 썸네일을 모두 합치면 66억 장의 사진을 저장하게 되었습니다. 이 사진은 전부 AWS S3에 저장되어 있으며, 썸네일을 합친 총 용량은 2016년 3월 기준 무려 738TB였습니다. 이에 따라 사진을 저장하기 위한 S3 비용이 전체 인프라 운영 비용에서 상당 부분을 차지하게 되었습니다.기존 아키텍쳐의 비효율성¶비트윈 팀은 어느 날 위와 같은 기존의 사진 전송 아키텍쳐에 의문을 가지게 되었습니다. 비트윈 서비스가 다른 서비스와 가장 다른 특징 중의 하나는 커플 간의 데이터는 그 둘 사이에서만 공유된다는 점입니다. 일반적인 웹사이트 같은 경우, 하나의 게시물 혹은 이미지가 수천 수 만명의 유저에게 전달되지만 비트윈에서는 그렇지 않습니다. 즉, 개별 사진의 Fan-out이 작다는 점을 특징으로 가지고 있습니다.그리고 클라이언트에서 LRU를 기반으로 한 파일 캐쉬를 사용하고 있는데, 이를 통해서 위에서 말씀드린 채팅창 프로필 사진 같은 경우 클라이언트에서 캐쉬될 가능성이 매우 커지게 됩니다. 그리고 CDN으로 사용하고 있는 AWS의 CloudFront에서도 약 30~40%의 추가적인 Cache hit을 얻을 수 있었습니다. 즉, 이미 Fan-out이 낮은 리소스가 높은 Cache hit rate를 가지는 사용패턴을 가지고 있는 셈이 됩니다.더군다나 사용자의 디바이스 사이즈에 따라서 미리 리사이징 해놓은 썸네일 중 일부는 아예 사용하지 않는 사용패턴이 나타나기도 합니다. 아이패드와 같은 큰 디스플레이를 가진 클라이언트를 쓰는 사용자와 아이폰4를 사용하는 사용자가 필요로 하는 썸네일의 크기는 다를 수밖에 없기 때문입니다.아래의 그래프는 S3 접근 로그를 분석해서 파악한 특정 기간 내에 같은 해상도를 가지는 썸네일을 클라이언트가 한 번 이상 재요청 하는 비율을 나타내는 그래프입니다. 하루 내에 같은 해상도의 사진을 요청하는 경우는 10% 가 되지 않으며, 한 달 안에도 33% 정도에 불과한 것을 알 수 있습니다.특정 기간 내에 S3에 저장된 썸네일이 다시 요청되는 비율결국 비트윈 팀은 미리 여러 해상도의 썸네일을 준비해서 저장해 놓은 아키텍쳐보다는 사용자가 요청할 때 그 요청에 알맞게 리사이징된 썸네일을 새로 생성해서 내려주는 게 훨씬 비용 효율적이라는 결론에 도달하게 됩니다.새로운 아키텍쳐¶Skia¶하지만 이러한 온디맨드-리사이징 아키텍쳐로의 변환에 가장 큰 걸림돌이 있었습니다. 바로 사진의 리사이징에 오랜 시간이 걸린다는 점이었습니다. 비록 아키텍쳐 변화를 통해서 저희가 얻을 수 있는 비용 이득이 크더라도, 비트윈 사용자 경험에 느린 사진 리사이징이 방해가 되어서는 안 되었습니다.이때 저희가 찾은 것이 바로 Skia 라이브러리였습니다. Skia 라이브러리는 Google에 의해서 만들어진 2D 그래픽 라이브러리로써, 크롬이나 안드로이드, 모질라 파이어폭스 등에 사용되고 있었습니다. 그리고 이 라이브러리는 CPU 아키텍쳐에 따라서 인스트럭션 레벨로 매우 잘 최적화가 되어 있었습니다. 저희가 기존에 쓰고 있던 ImageMagicK에 비해서 거의 4배 속도로 이미지 리사이징을 처리할 수 있었으며, 총 CPU 사용량도 더 적었습니다. 저희는 이 라이브러리를 Python으로 wrapping한 PySkia라는 라이브러리를 내부적으로 만들어서 사진 리사이징에 사용하기로 하였습니다.WebP¶저희는 여기서 한발 더 나아가 보기로 했습니다. 단순히 리사이징만 Skia로 대체하는 것이 아니라, 원본 사진의 저장도 더 효율적으로 할 방법을 찾게 되었습니다. 그 결과 자연스럽게 떠오른 것이 비트윈 스티커 시스템에서 사용되었던 WebP 방식이었습니다. WebP 역시 구글이 만든 이미지 인코딩 방식으로써, 비슷한 화질을 가지는 JPEG에 비해서 약 26% 정도의 용량이 절약된다는 점에서 장점이 있습니다.온디멘드-리사이징¶위에서 언급한 대로 Skia 리사이징과 WebP 원본 저장을 합하여 아래와 같이 필요한 해상도의 사진을 그때그때 리사이징 하는 온디멘드-리사이징 아키텍쳐로 옮겨가게 되었습니다.사용자가 올린 사진은 원본이 WebP로 변환되어 S3에 저장된다. 클라이언트의 요청이 있을 때는 그때그때 요청한 사이즈로 리사이징한 썸네일을 생성해서 내려준다.리사이저 서버가 사용자의 요청을 받아서 원하는 해상도의 사진을 리사이징해서 내려주기까지 채 100ms가 걸리지 않는데, 이 정도면 사용자의 경험에 영향을 주지 않는다고 판단하였습니다. 리사이저 서버는 업로더 서버와 함께 세계 각지의 AWS Region에 배포되어 있으며, 이는 사용자가 요청한 사진을 최대한 빨리 받아가기 위함입니다.기존 사진 마이그레이션¶위와 같은 아키텍쳐 전환을 통해서 새롭게 업로드 되는 사진들은 원본만 WebP로 변환되어 저장한 후 요청이 들어올 때만 온디멘드 리사이징이 되지만, 그동안 비트윈 사용자들이 축적해 놓은 11억 장의 사진은 여전히 여러 사이즈의 썸네일로 미리 리사이징이 되어 있는 비효율적인 상태였습니다. 저희는 이 사진들도 마이그레이션하는 작업에 착수했습니다.11억 장이나 되는 원본 사진들을 전부 WebP로 변환하고, 나머지 50억 장의 미리 생성된 썸네일 사진을 지우는 작업은 결코 간단한 작업이 아니었습니다. 저희는 이 작업을 AWS의 Spot Instance와 SQS를 통해서 비용 효율적으로 진행할 수 있었습니다.Auto Scaling with Spot instance¶마이그레이션 작업은 크게 다섯 단계로 이루어져 있습니다.커플 단위로 작업을 쪼개서 SQS에 쌓아놓습니다.Worker가 SQS로부터 단위 작업을 받아와서, 해당 커플에 존재하는 모든 사진을 WebP로 변환하고 S3에 올립니다.S3로의 업로드가 확인되면, 그 변경 사항을 DB에 적습니다.기존 썸네일 사진들을 삭제합니다.기존 썸네일이 삭제되었다는 사실을 DB에 적습니다.작업을 하는 도중에 얼마든지 Worker가 중단되거나 같은 커플에 대한 작업이 두 번 중복되어서 이루어질 위험이 있습니다. 이를 위해서 마이그레이션 작업을 멱등적으로 구성하여서 사용자의 사진이 손실되는 등의 사고가 발생하지 않도록 하였습니다. 중간마다 DB에 접근해서 변경된 내용을 기록해야 하는 작업의 특성상, 작업의 병목 구간은 비트윈 DB였습니다. 그리고 사진 인코딩을 바꾸는 작업의 특징상 많은 CPU 자원이 소모될 것으로 생각하였습니다.DB에 부담이 가지 않는 범위내에서 많은 CPU 자원을 끌어와서 작업을 진행해야 할 필요성이 생긴 것입니다. 이 조건을 만족하게 하기 위해서 SQS를 바라보는 Worker들로 Auto-scaling group을 만들었습니다. 그리고 이 Auto-scaling group은 c3.2xlarge와 c3.4xlarge spot instance로 구성되어 있으며, DB의 CPU 사용량을 메트릭으로 하여 Scaling이 되도록 하였습니다. 작업은 주로 DB의 부하가 적은 새벽 시간에 집중적으로 이루어졌으며, 이 인코딩 작업은 대략 4일 정도가 소모되었습니다. 작업 과정에서 Tokyo Region에 있던 c4.2xlarge와 c3.4xlarge spot instance를 최대 140대를 사용했고, 총 사용 시간은 6,767시간이었습니다. 사용한 instance의 계산 능력을 ECU로 환산하면 총 303,933 ECU · hour를 작업에 사용하였습니다. 마이그레이션에 사용된 EC2 비용을 바탕으로 계산해 보면, 백만 장의 WebP 인코딩을 위해서 사용한 비용이 $1.8 밖에 되지 않았다는 것을 알 수 있습니다.작업 과정에서 AWS 서비스에 의외의 병목 구간이 있다는 것을 알게 되었는데, S3 단일 버킷에 1분당 1천만 개 이상의 object에 대한 삭제 요청이 들어오면 Throttling이 걸린다는 사실과 SQS의 in-flight message의 개수가 12만 개를 넘을 수 없다는 것입니다.결과¶위의 아키텍쳐 변화와 마이그레이션 작업 후 저희의 S3 비용은 70%가 넘게 감소했으며 전체 인프라 비용의 상당 부분이 감소하였습니다. 온디멘드 리사이징으로의 아키텍쳐 변화는 Storage 비용과 Computation 비용 사이의 교환이라고 볼 수 있는데, 아래 그래프에서 볼 수 있듯이 확연한 비용 절감을 달성할 수 있었습니다.총 마이그레이션 비용¶항목사용량비용 ($)EC2 spot instance6,767 hrs1,959.11SQS188,204,10489.59S3 Put/Get Requests2,492,466,8605,608.34총비용7,657.04마이그레이션 결과¶항목Before MigrationAfter Migration감소량 (%)S3 # of objects6.65 B1.17 B82.40S3 storage738 TB184 TB75.06비용 감소¶사진 저장과 리사이징에 관련된 비용이 68% 감소하였음못다 한 이야기¶이번 포스팅에서는 최근에 있었던 비트윈 사진 아키텍쳐의 변화에 대해서 알아보았습니다. 주로 사용자의 경험을 방해하지 않는 조건에서 비용을 아끼는 부분에 중점을 두고 저희 비트윈의 아키텍쳐 변화에 대해서 설명해 드렸습니다. 하지만 이 글에서 미처 언급하지 못한 변화나 개선 사항들에 대해서는 다루지 못했습니다. Tokyo Region에서 멀리 떨어져 있는 사용자를 위해서 전 세계 여러 Region에 사진 저장/전송 서버를 배포하는 일이나, 사진을 로딩할 때 낮은 해상도로부터 차례대로 로딩되도록 하는 Progressive JPEG의 적용, 사진을 아직 받아오지 못했을 때 Placeholder 역할을 할 수 있는 사진의 대표색을 찾아내는 방법 등이 그것입니다. 이에 관해서는 후에 자세히 다뤄보도록 하겠습니다.정리¶비트윈 개발팀에서는 많은 인프라 비용을 소모하는 기존 썸네일 저장 방식을 개선하여 70%에 가까운 비용 절감 효과를 보았습니다. 기존의 썸네일을 미리 생성해놓는 방식으로부터 클라이언트가 요청할 때 해당 크기의 썸네일을 리사이징해서 내려주는 방식으로 변경하였고, WebP와 Skia등의 새로운 기술을 적용하였습니다. 이를 통해서 사용자 경험에는 거의 영향을 주지 않은 상태로 비용 절감 효과를 볼 수 있었습니다.저희는 언제나 타다 및 비트윈 서비스를 함께 만들며 기술적인 문제를 함께 풀어나갈 능력있는 개발자를 모시고 있습니다. 언제든 부담없이 [email protected]로 이메일을 주시기 바랍니다!
조회수 4957

Gradle Dependency 분리하기

본 포스팅은 아래 코드를 보시면 좀 더 이해하기 쉽습니다.build.gradledependencies-variable.gradledependencies-classpath.gradledependencies-app.gradleGradle 의 역할Gradle 은 이제 안드로이드 개발에 있어서 그 중심이 되는 빌드 환경입니다. 안드로이드 빌드에 대한 기본 설정 뿐만 아니라 빌드에 필요한 Task 를 지정하거나 의존성을 추가할 수 있습니다.특히 의존성에서 일반적인 서비스들은 다양한 오픈소스를 활용하게 됩니다. 네트워크 라이브러리, 이미지 라이브러리, DI 라이브러리, Support 라이브러리,Play-Service 라이브러리 등등 이젠 프로젝트를 시작함에 있어서 기본적으로 10개 이상의 라이브러리를 추가하게 됩니다. 이러한 라이브러리들이 많아질수록 필연적으로 빌드 스크립트가 길어지게 됩니다. 이는 나중에 빌드에 관련된 코드를 추가/수정할 때 유지보수에 영향을 끼치게 됩니다.Gradle 의존성 분리하기토스랩에서는 꽤 많은 숫자의 라이브러릴 사용하고 있습니다. 테스트용 라이브러리들까지 포함해서 60여개의 라이브러리를 쓰고 있습니다. 이러한 라이브러리 코드들이 1개의 빌드 스크립트 안에 포함되어 진다면 라이브러리의 버전을 변경하거나 수정하는 작업을 할 때에는 불가피하게 시간이 소요될 수 밖에 없습니다.그에 따라 Gradle 에서 라이브러리들을 변수화 해서 분리하는 작업을 하였습니다.1. 라이브러리 변수화 하기ext { retrofit = 'com.squareup.retrofit2:retrofit:2.1.0' retrofit2_gson = 'com.squareup.retrofit2:converter-gson:2.1.0' retrofit2_rxjava2 = 'com.jakewharton.retrofit:retrofit2-rxjava2-adapter:2.1.0' } 가장 간단한 변수화였습니다. 하지만 Retrofit 은 관련 라이브러리들이 함께 수반되기 때문에 버전명을 다시 분리하였습니다.2. 라이브러리 버전 변수화 하기ext { retrofit_version = '2.1.0' retrofit = "com.squareup.retrofit2:retrofit:$retrofit_version" retrofit2_gson = "com.squareup.retrofit2:converter-gson:$retrofit_version" retrofit2_rxjava2 = "com.jakewharton.retrofit:retrofit2-rxjava2-adapter:$retrofit_version" } 하지만 버전명과 라이브러리이름이 함께 있는 것이 깔끔해보이진 않습니다. 그래서 아래와 같이 바꿨습니다.3. 라이브러리 이름과 버전의 분리ext { retrofit = '2.1.0' } ext.dependencies = [ retrofit2 : "com.squareup.retrofit2:retrofit:$ext.retrofit", retrofit2_gson : "com.squareup.retrofit2:converter-gson:$ext.retrofit", retrofit2_rxjava2 : "com.jakewharton.retrofit:retrofit2-rxjava2-adapter:$ext.retrofit_rxjava2", ] 실제에는 다음과 같이 사용하면 됩니다.dependencies { compile rootProject.ext.dependencies.retrofit2 compile rootProject.ext.dependencies.retrofit2_gson compile rootProject.ext.dependencies.retrofit2_rxjava2 } 이제 라이브러리를 변수화 해서 분리를 하였습니다.이제 변수로 지정한 라이브러리들은 build.gradle 파일안에 존재하게 됩니다.// build.gradle ext { retrofit = '2.1.0' } ext.dependencies = [ retrofit2 : "com.squareup.retrofit2:retrofit:$ext.retrofit", retrofit2_gson : "com.squareup.retrofit2:converter-gson:$ext.retrofit", retrofit2_rxjava2 : "com.jakewharton.retrofit:retrofit2-rxjava2-adapter:$ext.retrofit_rxjava2", ] buildscript { // blah blah } 라이브러리가 3개뿐이니 깔끔해보이는군요. 하지만 토스랩의 라이브러리는 60여개 입니다. 변수명도 60여개라는 말이죠. 그래서 라이브러리 변수들만 파일을 분리하기로 했습니다.4. 라이브러리 변수를 파일로 분리하기// dependencies-variable.gradle ext { retrofit = '2.1.0' } ext.dependencies = [ retrofit2 : "com.squareup.retrofit2:retrofit:$ext.retrofit", retrofit2_gson : "com.squareup.retrofit2:converter-gson:$ext.retrofit", retrofit2_rxjava2 : "com.jakewharton.retrofit:retrofit2-rxjava2-adapter:$ext.retrofit_rxjava2", ] // build.gradle apply from :'dependencies-variable.gradle' buildscript { // blah blah } 이제 좀 교통정리가 되어가는 기분이네요.하지만 app 의 build.gradle 을 보았습니다.// app 의 build.gradle apply plugin: 'com.android.application' dependencies { // 라이브러리 60개 compile rootProject.ext.dependencies.library.retrofit2 compile rootProject.ext.dependencies.library.retrofit2_gson compile rootProject.ext.dependencies.library.retrofit2_rxjava2 } android { // 중략 } 뭔가 잘못되어 가고 있습니다. 여전히 dependencies 가 큰 부분을 차지하고 있습니다.5. app.dependencies 분리하기이제 dependencies 를 분리할 차례입니다.// dependencies-app.gradle repositories { jcenter() } dependencies { compile fileTree(dir: 'libs', include: ['*.jar']) compile rootProject.ext.dependencies.library.retrofit2 compile rootProject.ext.dependencies.library.retrofit2_gson compile rootProject.ext.dependencies.library.retrofit2_rxjava2 compile rootProject.ext.dependencies.library.okhttp3 compile rootProject.ext.dependencies.library.okhttp3_logging compile rootProject.ext.dependencies.library.stetho_okhttp3 } // app 의 build.gradle apply from: 'dependencies-app.gradle' 이제 dependencies 와 관련된 스크립트가 분리되었습니다.하지만 저 apply from 이 항상 app 의 build.gradle 에 따라 붙어야 하는 것이 아쉽습니다. 그래서 buildscript 에 아예 추가하기로 하엿습니다.6. 빌드 스크립트에 dependencies 추가 동작하기먼저 빌드 스크립트용 스크립트를 만들겠습니다.// dependencies-classpath.gradle rootProject.buildscript.repositories { jcenter() } rootProject.buildscript.dependencies { classpath rootProject.ext.dependencies.classpath.android } 그리고 buildscript 가 시작될 때 모든 dependencies 스크립트가 인식할 수 있게 하겠습니다. 인식할 스크립트는 다음과 같습니다.dependencies-variable.gradle - 라이브러리 변수 저장dependencies-classpath.gradle - 빌드용 스크립트 저장dependencies-app.gradle - 라이브러리 추가 스크립트 저장rootProject 의 build.gradle 를 아래와 같이 변경합니다.// rootProject 의 build.gradle buildscript { apply from: "dependencies-variable.gradle" apply from: "dependencies-classpath.gradle" } apply from: 'dependencies-app.gradle' 위와 같이 변경을 하면 빌드스크립트가 동작하는 시점에 변수를 인식하고 빌드용 스크립트를 인식합니다.하지만 앱용 라이브러리 추가 스크립트는 아직 준비가 덜 되었습니다. “app” 프로젝트가 인식이 된 시점에 라이브러리가 추가되어야 하기때문에 처음 만들었던 스크립트로는 한계가 있습니다.그래서 아래와 같이 변경하겠습니다.// dependencies-app.gradle rootProject.allprojects { project -> if (project.name == 'app') { project.afterEvaluate { repositories { jcenter() } dependencies { compile fileTree(dir: 'libs', include: ['*.jar']) compile rootProject.ext.dependencies.library.retrofit2 compile rootProject.ext.dependencies.library.retrofit2_gson compile rootProject.ext.dependencies.library.retrofit2_rxjava2 } } } } afterEvaluate 는 프로젝트의 인식이 완료되면 동작이 되는 함수이기 때문에 모든 것이 끝나고 dependencies 가 추가되는 것으로 이해하시면 됩니다.정리위의 과정을 거침으로써 gradle 파일은 좀 더 나뉘었지만 app 의 build.gradle 은 안드로이드 프로젝트 그 자체에 집중 할 수 있도록 하였습니다.이렇게 나누었던 본래의 목적은 의존성 라이브러리와 코드 품질 관리용 스크립트가 1개의 스크립트 파일에 담겨지면서 관리하는 데 있어서 큰 문제가 발생하게 되었습니다. 그에 따라 각각을 나누고 그 목적에 맞도록 각가의 파일 만들었습니다.라이브러리의 변수용 파일buildscript 용 classpath 를 관리하는 파일본 프로젝트의 라이브러리 의존성 관리 파일참고 소스Github : https://github.com/ZeroBrain/DataBind-MVVM-Sample#토스랩 #잔디 #JANDI #개발 #개발후기 #인사이트
조회수 17484

Nodejs 기반의 개발 환경 클린하게 재 구성하기

다양한 언어 기반으로 개발 환경을 구축하여 만들다보면, 소프트웨어 버전관리 해야할 일이 흔히 생기곤 한다. 특히, 종종 대격변이 있는 버전의 판올림으로인해 충돌이 나거나 심볼릭 링크가 유실되는 경우들이 간혹 있는데 이번에도 그런 케이스였다.최근 node.js 기반으로 다양한 프로젝트 (vue.js, react.js등)를 진행하다가 이것저것 환경을 만지고 고치다보니 결국 node.js 를 완전히 클린하게 삭제해야 할 일이 생겼다.아마 이 환경에 결정타를 먹인 것이 OSX 환경에서 El Capitan에서 작업하던 Node.js를 그대로 high sierra로 OSX를 판올림 하면서 퍼미션 권한의 문제가 생긴건지, 노드 패키지 관리나 npm이 정상적으로 동작하지 않으면서 개발환경을 재 설정 할 수 밖에 없게 되었는데, 그 과정에 기름을 부어버리듯 당시에 brew로 설치한 노드가 brew로 삭제가 되지 않는 문제가 발생해버렸다.결국 환경을 처음부터 재 설치 해야하는 과정을 겪어야했는데 기존에 설치된 다양한 패키지 모듈의 찌꺼기들이 남아서 한방에 클린 설치를 할 수 있는 방법이 없을까 싶어 구글링을 해본 결과 앞서서 수많은 시행착오를 겪은 선배님들의 아주 좋은 작업 방식이 있어서 아래에 방법을 공유해본다.요세미티에서 nodejs 정리하는 법 [1]Uninstall nodejs from OSX Yosemite# 첫번째:lsbom -f -l -s -pf /var/db/receipts/org.nodejs.pkg.bom | while read f; do  sudo rm /usr/local/${f}; donesudo rm -rf /usr/local/lib/node /usr/local/lib/node_modules /var/db/receipts/org.nodejs.*# 완전히 nodejs + npm 을 날려버리는 방법 :# /usr/local/lib 경로로 가서 node 와 관련된 노드 모듈을 전부 삭제cd /usr/local/libsudo rm -rf node*# /usr/local/include 경로로 가서 node 와 관련된 노드 모듈 전부 삭제cd /usr/local/includesudo rm -rf node*# 만약 brew 로 인스톨을 했다면 아래와 같은 방법으로 삭제도 가능함. (저는 아래는 brew자체가 망가졌었는지 판올림으로 인한 권한 문제인지 brew로는 삭제 불가능했음.)brew uninstall node# home 디렉토리나 local, lib, include등의 폴더와 관련된 모든 파일은 아래의 경로에 있으니 찾아 들어가서 삭제cd /usr/local/binsudo rm -rf /usr/local/bin/npmsudo rm -rf /usr/local/bin/nodels -las# 아마 혹시 모르니까 클린하게 아래의 명령어도 한번 돌려주자sudo rm -rf /usr/local/share/man/man1/node.1sudo rm -rf /usr/local/lib/dtrace/node.dsudo rm -rf ~/.npmhomebrew를 사용하는 유저들 중에 npm이 제대로 동작하지 않으면 아래와 같은 방법으로도 처방이 가능하다. [2]rm -rf /usr/local/lib/node_modulesbrew uninstall nodebrew install node --without-npmecho prefix=~/.npm-packages >> ~/.npmrccurl -L https://www.npmjs.com/install.sh | sh클린하게 설치를 끝나고 react-native를 컴파일하는 과정에서 깃에 관련된 오류가 발생한다면 아래의 방법을 사용해보자. [3]오류메세지 :xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools), missing xcrun at: /Library/Developer/CommandLineTools/usr/bin/xcrun솔루션 :xcode-select --install엘케피탄에서 하이시에라로 osx를 업데이트 하면서 homebrew의 링크가 깨졌다면 아래의 방법으로 다시 붙여준다. [4]sudo chown -R "$USER":admin /usr/localsudo chown -R "$USER":admin /Library/Caches/Homebrewbrew link libpng참고 출처 :[1] : https://gist.github.com/TonyMtz/d75101d9bdf764c890ef[2] : https://stackoverflow.com/questions/32893412/command-line-tools-not-working-os-x-el-capitan-macos-sierra-macos-high-sierra[3] : https://stackoverflow.com/questions/39778607/error-running-react-native-app-from-terminal-ios[4] : https://github.com/mikepurvis/ros-install-osx/issues/28 #더팀스 #THETEAMS #풀스택개발자 #Node.js #백엔드 #인사이트 #꿀팁
조회수 1531

블로그 운영 방법에서 엿보는 VCNC의 개발문화 - VCNC Engineering Blog

 VCNC에서 엔지니어링 블로그를 시작하고 벌써 새로운 해를 맞이하였습니다. 그동안 여러 글을 통해 VCNC 개발팀의 이야기를 들려드렸습니다. 이번에는 엔지니어링 블로그 자체를 주제로 글을 적어보고자 합니다. 저희는 워드프레스나 텀블러와 같은 일반적인 블로깅 도구나 서비스를 사용하지 않고 조금은 개발자스럽다고 할 수 있는 특이한 방법으로 엔지니어링 블로그를 운영하고 있습니다. 이 글에서는 VCNC 개발팀이 엔지니어링 블로그를 운영하기 위해 이용하는 방법들을 소개하고자 합니다. 그리고 블로그를 운영하기 위해 방법을 다루는 중간중간에 개발팀의 문화와 일하는 방식들에 대해서도 간략하게나마 이야기해보고자 합니다.블로그에 사용하는 기술들Jekyll: Jekyll은 블로그에 특화된 정적 사이트 생성기입니다. GitHub의 Co-founder 중 한 명인 Tom Preston-Werner가 만들었으며 Ruby로 작성되어 있습니다. Markdown을 이용하여 글을 작성하면 Liquid 템플릿 엔진을 통해 정적인 HTML 파일들을 만들어 줍니다. VCNC 엔지니어링 블로그는 워드프레스같은 블로깅 도구를 사용하지 않고 Jekyll을 사용하고 있습니다.Bootstrap: 블로그 테마는 트위터에서 만든 프론트엔드 프레임워크인 Bootstrap을 이용하여 직접 작성되었습니다. Bootstrap에서 제공하는 다양한 기능들을 가져다 써서 블로그를 쉽게 만들기 위해 이용하였습니다. 덕분에 큰 공을 들이지 않고도 Responsive Web Design을 적용할 수 있었습니다.S3: S3는 AWS에서 제공되는 클라우드 스토리지 서비스로서 높은 가용성을 보장합니다. 일반적으로 파일을 저장하는 데 사용되지만, 정적인 HTML을 업로드하여 사이트를 호스팅하는데 사용할 수도 있습니다. 아마존의 CTO인 Werner Vogels 또한 자신의 블로그를 S3에서 호스팅하고 있습니다. VCNC Engineering Blog도 Jekyll로 만들어진 HTML 파일들을 아마존의 S3에 업로드 하여 운영됩니다. 일단 S3에 올려두면 운영적인 부분에 대한 부담이 많이 사라지기 때문에 S3에 올리기로 하였습니다.CloudFront: 브라우저에서 웹페이지가 보이는 속도를 빠르게 하려고 아마존의 CDN서비스인 CloudFront를 이용합니다. CDN을 이용하면 HTML파일들이 전 세계 곳곳에 있는 Edge 서버에 캐싱 되어 방문자들이 가장 가까운 Edge를 통해 사이트를 로딩하도록 할 수 있습니다. 특히 CloudFront에 한국 Edge가 생긴 이후에는 한국에서의 응답속도가 매우 좋아졌습니다.s3cmd: s3cmd는 S3를 위한 커맨드 라인 도구입니다. 파일들을 업로드하거나 다운로드 받는 등 S3를 위해 다양한 명령어를 제공합니다. 저희는 블로그 글을 s3로 업로드하여 배포하기 위해 s3cmd를 사용합니다. 배포 스크립트를 실행하는 것만으로 s3업로드와 CloudFront invalidation이 자동으로 이루어지므로 배포 비용을 크게 줄일 수 있었습니다.htmlcompressor: 정적 파일들이나 블로그 글 페이지들을 s3에 배포할 때에는 whitespace 등을 제거하기 위해 htmlcompressor를 사용합니다. 또한 Google Closure Compiler를 이용하여 javascript의 길이도 줄이고 있습니다. 실제로 서버가 내려줘야 할 데이터의 크기가 줄어들게 되므로 로딩속도를 조금 더 빠르게 할 수 있습니다.블로그 관리 방법앞서 소개해 드린 기술들 외에도 블로그 글을 관리하기 위해 다소 독특한 방법을 사용합니다. 개발팀의 여러 팀원이 블로그에 올릴 주제를 결정하고 서로의 의견을 교환하기 위해 여러 가지 도구를 이용하는데 이를 소개하고자 합니다. 이 도구들은 개발팀이 일할 때에도 활용되고 있습니다.글감 관리를 위해 JIRA를 사용하다.JIRA는 Atlassian에서 만든 이슈 관리 및 프로젝트 관리 도구입니다. VCNC 개발팀에서는 비트윈과 관련된 다양한 프로젝트들의 이슈 관리를 위해 JIRA를 적극적으로 활용하고 있습니다. 제품에 대한 요구사항이 생기면 일단 백로그에 넣어 두고, 3주에 한 번씩 있는 스프린트 회의에서 요구사항에 대한 우선순위를 결정합니다. 그 후 개발자가 직접 개발 기간을 산정한 후에, 스프린트에 포함할지를 결정합니다. 이렇게 개발팀이 개발에 집중할 수 있는 환경을 가질 수 있도록 하며, 제품의 전체적인 방향성을 잃지 않고 모두가 같은 방향을 향해 달릴 수 있도록 하고 있습니다.VCNC 개발팀이 스프린트에 등록된 이슈를 얼마나 빨리 해결해 나가고 있는지 보여주는 JIRA의 차트.조금만 생각해보시면 어느 부분이 스프린트의 시작이고 어느 부분이 끝 부분인지 아실 수 있습니다.위와 같은 프로젝트 관리를 위한 일반적인 용도 외에도 엔지니어링 블로그 글 관리를 위해 JIRA를 사용하고 있습니다. JIRA에 엔지니어링 블로그 글감을 위한 프로젝트를 만들어 두고 블로그 글에 대한 아이디어가 생각나면 이슈로 등록할 수 있게 하고 있습니다. 누구나 글감 이슈를 등록할 수 있으며 필요한 경우에는 다른 사람에게 글감 이슈를 할당할 수도 있습니다. 일단 글감이 등록되면 엔지니어링 블로그에 쓰면 좋을지 어떤 내용이 포함되면 좋을지 댓글을 통해 토론하기도 합니다. 글을 작성하기 시작하면 해당 이슈를 진행 중으로 바꾸고, 리뷰 후, 글이 발행되면 이슈를 해결한 것으로 표시하는 식으로 JIRA를 이용합니다. 누구나 글감을 제안할 수 있게 하고, 이에 대해 팀원들과 토론을 하여 더 좋은 글을 쓸 수 있도록 돕기 위해 JIRA를 활용하고 있습니다.JIRA에 등록된 블로그 글 주제들 중 아직 쓰여지지 않은 것들을 보여주는 이슈들.아직 제안 단계인 것도 있지만, 많은 주제들이 블로그 글로 발행되길 기다리고 있습니다.글 리뷰를 위해 Pull-request를 이용하다.Stash는 Attlassian에서 만든 Git저장소 관리 도구입니다. GitHub Enterprise와 유사한 기능들을 제공합니다. Jekyll로 블로그를 운영하는 경우 이미지를 제외한 대부분 콘텐츠는 평문(Plain text)으로 관리 할 수 있게 됩니다. 따라서 VCNC 개발팀이 가장 자주 사용하는 도구 중 하나인 Git을 이용하면 별다른 시스템의 도움 없이도 모든 변경 내역과 누가 변경을 했는지 이력을 완벽하게 보존할 수 있습니다. 저희는 이런 이유로 Git을 이용하여 작성된 글에 대한 변경 이력을 관리하고 있습니다.또한 Stash에서는 GitHub와 같은 Pull request 기능을 제공합니다. Pull request는 자신이 작성한 코드를 다른 사람에게 리뷰하고 메인 브랜치에 머지해 달라고 요청할 수 있는 기능입니다. 저희는 Pull request를 활용하여 상호간 코드 리뷰를 하고 있습니다. 코드 리뷰를 통해 실수를 줄이고 개발자 간 의견 교환을 통해 더 좋은 코드를 작성하며 서로 간 코드에 대해 더 잘 이해하도록 노력하고 있습니다. 새로운 개발자가 코드를 상세히 모른다 해도 좀 더 적극적으로 코드를 짤 수 있고, 업무에 더 빨리 적응하는데에도 도움이 됩니다.어떤 블로그 글에 대해 리뷰를 하면서 코멘트로 의견을 교환하고 있습니다.코드 리뷰 또한 비슷한 방법을 통해 이루어지고 있습니다.업무상 코드 리뷰 뿐만 아니라 새로운 블로그 글을 리뷰하기 위해 Pull request를 활용하고 있습니다. 어떤 개발자가 글을 작성하기 위해서 가장 먼저 하는 것은 블로그를 관리하는 Git 리포지터리에서 새로운 브랜치를 따는 것입니다. 해당 브랜치에서 글을 작성하고 작성한 후에는 새로운 글 내용을 push한 후 master 브랜치로 Pull request를 날립니다. 이때 리뷰어로 등록된 사람과 그 외 개발자들은 내용에 대한 의견이나 첨삭을 댓글로 달 수 있습니다. 충분한 리뷰를 통해 발행이 확정된 글은 블로그 관리자에 의해 master 브랜치에 머지 되고 비로소 발행 준비가 끝납니다.스크립트를 통한 블로그 글 발행 자동화와 보안준비가 끝난 새로운 블로그 글을 발행하기 위해서는 일련의 작업이 필요합니다. Jekyll을 이용해 정적 파일들을 만든 후, htmlcompressor 통해 정적 파일들을 압축해야 합니다. 이렇게 압축된 정적 파일들을 S3에 업로드 하고, CloudFront에 Invalidation 요청을 날리고, 구글 웹 마스터 도구에 핑을 날립니다. 이런 과정들을 s3cmd와 Rakefile을 이용하여 스크립트를 실행하는 것만으로 자동으로 이루어지도록 하였습니다. VCNC 개발팀은 여러 가지 업무 들을 자동화시키기 위해 노력하고 있습니다.또한, s3에 사용하는 AWS Credential은 IAM을 이용하여 블로그를 호스팅하는 s3 버킷과 CloudFront에 대한 접근 권한만 있는 키를 발급하여 사용하고 있습니다. 비트윈은 특히 커플들이 사용하는 서비스라 보안에 민감합니다. 실제 비트윈을 개발하는데에도 보안에 많은 신경을 쓰고 있으며, 이런 점은 엔지니어링 블로그 운영하는데에도 묻어나오고 있습니다.맺음말VCNC 개발팀은 엔지니어링 블로그를 관리하고 운영하기 위해 다소 독특한 방법을 사용합니다. 이 방법은 개발팀이 일하는 방법과 문화에서 큰 영향을 받았습니다. JIRA를 통한 이슈 관리 및 스프린트, Pull request를 이용한 상호간 코드 리뷰 등은 이제 VCNC 개발팀의 문화에 녹아들어 가장 효율적으로 일할 수 있는 방법이 되었습니다. 개발팀을 꾸려나가면서 여러가지 시행 착오를 겪어 왔지만, 시행 착오에 대한 반성과 여러가지 개선 시도를 통해 계속해서 더 좋은 방법을 찾아나가며 지금과 같은 개발 문화가 만들어졌습니다. 그동안 그래 왔듯이 앞으로 더 많은 개선을 통해 꾸준히 좋은 방법을 찾아 나갈 것입니다.네 그렇습니다. 결론은 저희와 함께 고민하면서 더 좋은 개발문화를 만들어나갈 개발자를 구하고 있다는 것입니다.
조회수 1202

AWS Batch 사용하기

OverviewAWS Batch는 배치 컴퓨팅 작업을 효율적으로 실행할 수 있게 도와줍니다. 배치 작업량과 리소스 요청을 기반으로 최적의 리소스 수량 및 인스턴스 유형을 동적으로 프로비져닝합니다. AWS Batch에서는 별도의 관리가 필요 없기 때문에 문제 해결에 집중할 수 있습니다. 별도의 추가 비용은 없습니다. 배치 작업을 저장 또는 실행할 목적으로 생성된 AWS 리소스(인스턴스 등)에 대해서만 비용을 지불하면 됩니다. 이번 포스팅에서는 간단한 튜토리얼로 AWS Batch 사용 방법을 크게 11개의 Step으로 알아보겠습니다. 이렇게 진행하겠습니다.AWS에서 제공하는 Dockerfile, fetch&run 스크립트 및 myjob.sh 다운로드Dockerfile를 이용하여 fetch&run 스크립트를 포함한 Docker 이미지 생성생성된 Docker 이미지를 ECR(Amazon Elastic Container Registry)로 푸쉬간단한 샘플 스크립트(myjob.sh)를 S3에 업로드IAM에 S3를 접속 할 수 있는 ECS Task role 등록Compute environments 생성Job queues 생성ECR을 이용하여 Job definition 생성Submit job을 통해 S3에 저장된 작업 스크립트(myjob.sh)를 실행하기결과 확인 STEP1. AWS에서 제공하는 Dockerfile, fetch&run 스크립트 및 myjob.sh 다운로드AWS Batch helpers페이지에 접속합니다.    2. /fetch-and-run/에서 Dockerfile, fetchandrun.sh, myjob.sh 다운로드합니다.STEP2. Dockerfile을 이용하여 fetch&run 스크립트를 포함한 Docker 이미지 생성Dockerfile을 이용해서 Docker 이미지를 빌드합니다.잠시 Dockerfile의 내용을 살펴보겠습니다.FROM amazonlinux:latestDocker 공식 Repository에 있는 amazonlinux 의 lastest 버젼으로 빌드RUN yum -y install which unzip aws-cliRUN을 통해 이미지 빌드 시에 yum -y install which unzip aws-cli를 실행ADD fetch_and_run.sh /usr/local/bin/fetch_and_run.shADD를 통해 Dockerfile과 같은 디렉토리에 있는 fetch_and_run.sh를 /usr/local/bin/fetch_and_run.sh에 복사 WORKDIR /tmp컨테이너가 동작할 때 /tmp를 기본 디렉토리로 설정USER nobody컨테이너 실행 시 기본 유저 설정 ENTRYPOINT [“/usr/local/bin/fetch_and_run.sh”]컨테이너 실행 시 /usr/local/bin/fetch_and_run.sh를 call shell에 docker 명령을 통해 이미지 생성shell : docker build -t fetch_and_run . 실행하면 아래와 같은 결과가 출력됩니다.[ec2-user@AWS_BRANDI_STG fetch-and-run]$ docker build -t fetch_and_run . Sending build context to Docker daemon 8.192kB Step 1/6 : FROM amazonlinux:latest latest: Pulling from library/amazonlinux 4b92325dc37b: Pull complete Digest: sha256:9ee13e494b762db41b9db92a200f6784b78da5ac3b0f974fb1c38feb7f636474 Status: Downloaded newer image for amazonlinux:latest ---> 81bb3e78db3d Step 2/6 : RUN yum -y install which unzip aws-cli ---> Running in 1f5293a2294d Loaded plugins: ovl, priorities Resolving Dependencies --> Running transaction check ---> Package aws-cli.noarch 0:1.14.9-1.48.amzn1 will be installed --> Processing Dependency: python27-jmespath = 0.9.2 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-botocore = 1.8.13 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-rsa >= 3.1.2-4.7 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-futures >= 2.2.0 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-docutils >= 0.10 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-colorama >= 0.2.5 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-PyYAML >= 3.10 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: groff for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: /etc/mime.types for package: aws-cli-1.14.9-1.48.amzn1.noarch ---> Package unzip.x86_64 0:6.0-4.10.amzn1 will be installed ---> Package which.x86_64 0:2.19-6.10.amzn1 will be installed --> Running transaction check ---> Package groff.x86_64 0:1.22.2-8.11.amzn1 will be installed --> Processing Dependency: groff-base = 1.22.2-8.11.amzn1 for package: groff-1.22.2-8.11.amzn1.x86_64 ---> Package mailcap.noarch 0:2.1.31-2.7.amzn1 will be installed ---> Package python27-PyYAML.x86_64 0:3.10-3.10.amzn1 will be installed --> Processing Dependency: libyaml-0.so.2()(64bit) for package: python27-PyYAML-3.10-3.10.amzn1.x86_64 ---> Package python27-botocore.noarch 0:1.8.13-1.66.amzn1 will be installed --> Processing Dependency: python27-dateutil >= 2.1 for package: python27-botocore-1.8.13-1.66.amzn1.noarch ---> Package python27-colorama.noarch 0:0.2.5-1.7.amzn1 will be installed ---> Package python27-docutils.noarch 0:0.11-1.15.amzn1 will be installed --> Processing Dependency: python27-imaging for package: python27-docutils-0.11-1.15.amzn1.noarch ---> Package python27-futures.noarch 0:3.0.3-1.3.amzn1 will be installed ---> Package python27-jmespath.noarch 0:0.9.2-1.12.amzn1 will be installed --> Processing Dependency: python27-ply >= 3.4 for package: python27-jmespath-0.9.2-1.12.amzn1.noarch ---> Package python27-rsa.noarch 0:3.4.1-1.8.amzn1 will be installed --> Processing Dependency: python27-pyasn1 >= 0.1.3 for package: python27-rsa-3.4.1-1.8.amzn1.noarch --> Processing Dependency: python27-setuptools for package: python27-rsa-3.4.1-1.8.amzn1.noarch --> Running transaction check ---> Package groff-base.x86_64 0:1.22.2-8.11.amzn1 will be installed ---> Package libyaml.x86_64 0:0.1.6-6.7.amzn1 will be installed ---> Package python27-dateutil.noarch 0:2.1-1.3.amzn1 will be installed --> Processing Dependency: python27-six for package: python27-dateutil-2.1-1.3.amzn1.noarch ---> Package python27-imaging.x86_64 0:1.1.6-19.9.amzn1 will be installed --> Processing Dependency: libjpeg.so.62(LIBJPEG_6.2)(64bit) for package: python27-imaging-1.1.6-19.9.amzn1.x86_64 --> Processing Dependency: libjpeg.so.62()(64bit) for package: python27-imaging-1.1.6-19.9.amzn1.x86_64 --> Processing Dependency: libfreetype.so.6()(64bit) for package: python27-imaging-1.1.6-19.9.amzn1.x86_64 ---> Package python27-ply.noarch 0:3.4-3.12.amzn1 will be installed ---> Package python27-pyasn1.noarch 0:0.1.7-2.9.amzn1 will be installed ---> Package python27-setuptools.noarch 0:36.2.7-1.33.amzn1 will be installed --> Processing Dependency: python27-backports-ssl_match_hostname for package: python27-setuptools-36.2.7-1.33.amzn1.noarch --> Running transaction check ---> Package freetype.x86_64 0:2.3.11-15.14.amzn1 will be installed ---> Package libjpeg-turbo.x86_64 0:1.2.90-5.14.amzn1 will be installed ---> Package python27-backports-ssl_match_hostname.noarch 0:3.4.0.2-1.12.amzn1 will be installed --> Processing Dependency: python27-backports for package: python27-backports-ssl_match_hostname-3.4.0.2-1.12.amzn1.noarch ---> Package python27-six.noarch 0:1.8.0-1.23.amzn1 will be installed --> Running transaction check ---> Package python27-backports.x86_64 0:1.0-3.14.amzn1 will be installed --> Finished Dependency Resolution Dependencies Resolved ================================================================================ Package                              Arch   Version            Repository                                                                           Size ================================================================================ Installing:  aws-cli                              noarch 1.14.9-1.48.amzn1  amzn-main 1.2 M  unzip                                x86_64 6.0-4.10.amzn1     amzn-main 201 k  which                                x86_64 2.19-6.10.amzn1    amzn-main  41 k  Installing for dependencies:  freetype                             x86_64 2.3.11-15.14.amzn1 amzn-main 398 k  groff                                x86_64 1.22.2-8.11.amzn1  amzn-main 1.3 M  groff-base                           x86_64 1.22.2-8.11.amzn1  amzn-main 1.1 M  libjpeg-turbo                        x86_64 1.2.90-5.14.amzn1  amzn-main 144 k  libyaml                              x86_64 0.1.6-6.7.amzn1    amzn-main  59 k  mailcap                              noarch 2.1.31-2.7.amzn1   amzn-main  27 k  python27-PyYAML                      x86_64 3.10-3.10.amzn1    amzn-main 186 k  python27-backports                   x86_64 1.0-3.14.amzn1     amzn-main 5.0 k  python27-backports-ssl_match_hostname                                       noarch 3.4.0.2-1.12.amzn1 amzn-main  12 k  python27-botocore                    noarch 1.8.13-1.66.amzn1  amzn-main 4.1 M  python27-colorama                    noarch 0.2.5-1.7.amzn1    amzn-main  23 k  python27-dateutil                    noarch 2.1-1.3.amzn1      amzn-main  92 k  python27-docutils                    noarch 0.11-1.15.amzn1    amzn-main 1.9 M  python27-futures                     noarch 3.0.3-1.3.amzn1    amzn-main  30 k  python27-imaging                     x86_64 1.1.6-19.9.amzn1   amzn-main 428 k  python27-jmespath                    noarch 0.9.2-1.12.amzn1   amzn-main  46 k  python27-ply                         noarch 3.4-3.12.amzn1     amzn-main 158 k  python27-pyasn1                      noarch 0.1.7-2.9.amzn1    amzn-main 112 k  python27-rsa                         noarch 3.4.1-1.8.amzn1    amzn-main  80 k  python27-setuptools                  noarch 36.2.7-1.33.amzn1  amzn-main 672 k  python27-six                         noarch 1.8.0-1.23.amzn1   amzn-main  31 k Transaction Summary ================================================================================ Install 3 Packages (+21 Dependent packages) Total download size: 12 M Installed size: 51 M Downloading packages: -------------------------------------------------------------------------------- Total 1.0 MB/s | 12 MB 00:12 Running transaction check Running transaction test Transaction test succeeded  Running transaction   Installing : python27-backports-1.0-3.14.amzn1.x86_64                    1/24   Installing : python27-backports-ssl_match_hostname-3.4.0.2-1.12.amzn1    2/24   Installing : python27-setuptools-36.2.7-1.33.amzn1.noarch                3/24   Installing : python27-colorama-0.2.5-1.7.amzn1.noarch                    4/24   Installing : freetype-2.3.11-15.14.amzn1.x86_64                          5/24   Installing : libyaml-0.1.6-6.7.amzn1.x86_64                              6/24   Installing : python27-PyYAML-3.10-3.10.amzn1.x86_64                      7/24   Installing : mailcap-2.1.31-2.7.amzn1.noarch                             8/24   Installing : python27-ply-3.4-3.12.amzn1.noarch                          9/24   Installing : python27-jmespath-0.9.2-1.12.amzn1.noarch                  10/24   Installing : python27-futures-3.0.3-1.3.amzn1.noarch                    11/24   Installing : python27-six-1.8.0-1.23.amzn1.noarch                       12/24   Installing : python27-dateutil-2.1-1.3.amzn1.noarch                     13/24   Installing : groff-base-1.22.2-8.11.amzn1.x86_64                        14/24   Installing : groff-1.22.2-8.11.amzn1.x86_64                             15/24   Installing : python27-pyasn1-0.1.7-2.9.amzn1.noarch                     16/24   Installing : python27-rsa-3.4.1-1.8.amzn1.noarch                        17/24   Installing : libjpeg-turbo-1.2.90-5.14.amzn1.x86_64                     18/24   Installing : python27-imaging-1.1.6-19.9.amzn1.x86_64                   19/24   Installing : python27-docutils-0.11-1.15.amzn1.noarch                   20/24   Installing : python27-botocore-1.8.13-1.66.amzn1.noarch                 21/24   Installing : aws-cli-1.14.9-1.48.amzn1.noarch                           22/24   Installing : which-2.19-6.10.amzn1.x86_64                               23/24   Installing : unzip-6.0-4.10.amzn1.x86_64                                24/24   Verifying  : libjpeg-turbo-1.2.90-5.14.amzn1.x86_64                      1/24   Verifying  : groff-1.22.2-8.11.amzn1.x86_64                              2/24   Verifying  : unzip-6.0-4.10.amzn1.x86_64                                 3/24   Verifying  : python27-pyasn1-0.1.7-2.9.amzn1.noarch                      4/24   Verifying  : groff-base-1.22.2-8.11.amzn1.x86_64                         5/24   Verifying  : aws-cli-1.14.9-1.48.amzn1.noarch                            6/24   Verifying  : python27-six-1.8.0-1.23.amzn1.noarch                        7/24   Verifying  : python27-dateutil-2.1-1.3.amzn1.noarch                      8/24   Verifying  : python27-docutils-0.11-1.15.amzn1.noarch                    9/24   Verifying  : python27-PyYAML-3.10-3.10.amzn1.x86_64                     10/24   Verifying  : python27-botocore-1.8.13-1.66.amzn1.noarch                 11/24   Verifying  : python27-futures-3.0.3-1.3.amzn1.noarch                    12/24   Verifying  : python27-ply-3.4-3.12.amzn1.noarch                         13/24   Verifying  : python27-jmespath-0.9.2-1.12.amzn1.noarch                  14/24   Verifying  : mailcap-2.1.31-2.7.amzn1.noarch                            15/24   Verifying  : python27-backports-ssl_match_hostname-3.4.0.2-1.12.amzn1   16/24   Verifying  : libyaml-0.1.6-6.7.amzn1.x86_64                             17/24   Verifying  : python27-rsa-3.4.1-1.8.amzn1.noarch                        18/24   Verifying  : freetype-2.3.11-15.14.amzn1.x86_64                         19/24   Verifying  : python27-colorama-0.2.5-1.7.amzn1.noarch                   20/24   Verifying  : python27-setuptools-36.2.7-1.33.amzn1.noarch               21/24   Verifying  : which-2.19-6.10.amzn1.x86_64                               22/24   Verifying  : python27-imaging-1.1.6-19.9.amzn1.x86_64                   23/24   Verifying  : python27-backports-1.0-3.14.amzn1.x86_64                   24/24 Installed:   aws-cli.noarch 0:1.14.9-1.48.amzn1        unzip.x86_64 0:6.0-4.10.amzn1   which.x86_64 0:2.19-6.10.amzn1   Dependency Installed:   freetype.x86_64 0:2.3.11-15.14.amzn1   groff.x86_64 0:1.22.2-8.11.amzn1   groff-base.x86_64 0:1.22.2-8.11.amzn1   libjpeg-turbo.x86_64 0:1.2.90-5.14.amzn1   libyaml.x86_64 0:0.1.6-6.7.amzn1   mailcap.noarch 0:2.1.31-2.7.amzn1   python27-PyYAML.x86_64 0:3.10-3.10.amzn1   python27-backports.x86_64 0:1.0-3.14.amzn1   python27-backports-ssl_match_hostname.noarch 0:3.4.0.2-1.12.amzn1   python27-botocore.noarch 0:1.8.13-1.66.amzn1   python27-colorama.noarch 0:0.2.5-1.7.amzn1   python27-dateutil.noarch 0:2.1-1.3.amzn1   python27-docutils.noarch 0:0.11-1.15.amzn1   python27-futures.noarch 0:3.0.3-1.3.amzn1   python27-imaging.x86_64 0:1.1.6-19.9.amzn1   python27-jmespath.noarch 0:0.9.2-1.12.amzn1   python27-ply.noarch 0:3.4-3.12.amzn1   python27-pyasn1.noarch 0:0.1.7-2.9.amzn1   python27-rsa.noarch 0:3.4.1-1.8.amzn1   python27-setuptools.noarch 0:36.2.7-1.33.amzn1   python27-six.noarch 0:1.8.0-1.23.amzn1   Complete! Removing intermediate container 1f5293a2294d  ---> 5502efa481ce Step 3/6 : ADD fetch_and_run.sh /usr/local/bin/fetch_and_run.sh  ---> 1b69173e586f Step 4/6 : WORKDIR /tmp Removing intermediate container a69678c65ee7  ---> 8a560dd25401 Step 5/6 : USER nobody  ---> Running in e063ac6e6fdb Removing intermediate container e063ac6e6fdb  ---> e5872fd44234 Step 6/6 : ENTRYPOINT ["/usr/local/bin/fetch_and_run.sh"]  ---> Running in e25af9aa5fdc Removing intermediate container e25af9aa5fdc  ---> dfca872de0be Successfully built dfca872de0be Successfully tagged awsbatch-fetch_and_run:latest docker images 명령으로 새로운 로컬 repository를 확인할 수 있습니다.shell : docker images [ec2-user@AWS_BRANDI_STG fetch-and-run]$ docker images REPOSITORY TAG IMAGE ID CREATED SIZE fetch_and_run latest dfca872de0be 2 minutes ago 253MB amazonlinux              latest              81bb3e78db3d        2 weeks ago         165MB STEP3. ECR에서 repository 생성아래는 ECR 초기 화면입니다.fetch_and_run이란 이름으로 Repository 생성합니다. 3. Repository 생성이 완료되었습니다.STEP4. ECR로 빌드된 이미지를 pushECR에 docker login후 빌드된 Docker 이미지에 태그합니다. shell : aws ecr get-login --no-include-email --region ap-northeast-2 빌드된 docker 이미지에 태그하세요.shell : docker tag fetch_and_run:latest 000000000000.dkr.ecr.ap-northeast-2.amazonaws.com/fetch_and_run:latest 태그된 docker 이미지를 ECR에 push합니다.shell: docker push 000000000000.dkr.ecr.ap-northeast-2.amazonaws.com/fetch_and_rrun:latest 아래는 ECR fetch_and_run Repository에 푸쉬된 Docker 이미지입니다.STEP5. 간단한 샘플 스크립트(myjob.sh)를 S3에 업로드아래는 간단한 myjob.sh 스크립트입니다.#!/bin/bash date echo "Args: $@" env echo "This is my simple test job!." echo "jobId: $AWS_BATCH_JOB_ID" sleep $1 date echo "bye bye!!" 위의 myjob.sh를 S3에 업로드합니다.shell : aws s3 cp myjob.sh s3:///myjob.sh STEP6. IAM에 S3를 접속할 수 있는 ECS Task role 등록Role 등록 화면에서 Elastic Container Service 선택 후, Elastic Container Service Task를 선택합니다.AmazonS3ReadOnlyAccess Policy를 선택합니다.아래 이미지는 Role에 등록 하기 전 리뷰 화면입니다.Role에 AmazonS3ReadOnlyAccess가 등록된 것을 확인합니다.STEP7. Compute environments 생성AWS Batch 콘솔에서 Compute environments를 선택하고, Create environment 선택합니다.Compute environment type은 Managed와 Unmanaged 두 가지를 선택할 수 있습니다. Managed는 AWS에서 요구사항에 맞게 자원을 관리해주는 것이고, Unmanaged는 직접 자원을 관리해야 합니다. 여기서는 Managed를 선택하겠습니다.Compute environment name을 입력합니다.Service Role을 선택합니다. 기존 Role을 사용하거나 새로운 Role을 생성할 수 있습니다. 새 Role을 생성하면 필수 역할 (AWSBatchServiceRole)이 생성됩니다.Instnace Role을 선택합니다. 기존 Role을 사용하거나 새로운 Role을 생성할 수 있습니다. 새 Role을 생성하면 필수 역할(ecsInstanceRole)이 생성됩니다.EC2 key pair에서 기존 EC2 key pair를 선택합니다. 이 key pair를 사용하여 SSH로 인스턴스에 접속할 수 있지만 이번 글의 예제에서는 선택하지 않겠습니다.Configure your compute resources Provisioning Model은 On-Demand와 Spot이 있습니다. 차이점은 Amazon EC2 스팟 인스턴스를 참고해주세요. 여기서는 On-Demand를 선택합니다.Allowed instance types에서는 시작 인스턴스 유형을 선택합니다. optimal을 선택하면 Job queue의 요구에 맞는 인스턴스 유형을 (최신 C, M, R 인스턴스 패밀리 중) 자동으로 선택합니다. 여기서는 optimal을 선택하겠습니다.Minimum vCPUs는 Job queue 요구와 상관없이 Compute environments에 유지할 vCPU 최소 개수입니다. 0을 입력해주세요.Desired vCPUs는 Compute environment에서 시작할 EC2 vCPU 개수입니다. Job queue 요구가 증가하면 필요한 vCPU를 Maximum vCPUs까지 늘리고 요구가 감소하면 vCPU 수를 Minimum vCPUs까지 줄이고 인스턴스를 제거합니다. 0을 입력해주세요.Maximum vCPUs는 Job queue 요구와 상관없이 Compute environments에서 확장할 수 있는 EC2 vCPU 최대 개수입니다. 여기서는 256을 입력합니다.Enable user-specified Ami ID는 사용자 지정 AMI를 사용하는 옵션입니다. 여기서는 사용하지 않겠습니다.Networking VPC Id 인스턴스를 시작할 VPC를 선택합니다.Subnet을 선택합니다.Security groups를 선택합니다.그리고 EC2 tags를 지정하여 생성된 인스턴스가 이름을 가질 수 있게 합니다. Key : Name, Value : AWS Batch InstanceCreate을 클릭해 Compute environment를 생성합니다.아래 이미지는 생성된 Compute environment입니다.STEP8. Job queues 생성AWS Batch 콘솔에서 Job queues - Create queue를 선택합니다.Queue name을 입력합니다.Priority는 Job queue의 우선순위를 입력합니다. 우선순위가 1인 작업은 우선순위가 5인 작업보다 먼저 일정이 예약됩니다. 여기서는 5를 입력하겠습니다.Enable Job queue가 체크되어 있어야 job을 등록할 수 있습니다.Select a compute environment에서 Job queue와 연결될 Compute environment을 선택합니다. 최대 3개의 Compute environment를 선택할 수 있습니다.생성된 Job queue, Status가 VALID면 사용 가능합니다.STEP9. ECR을 이용하여 Job definition 생성AWS Batch 콘솔에서 Job definitions - Create를 선택합니다.Job definition name을 입력하고 이전 작업에서 만들 IAM Role을 선택하세요, 그리고 ECR Repository URI를 입력합니다. 000000000000.dkr.ecr.ap-northeast-2.amazonaws.com/fetch_and_runCommand 필드는 비워둡시다.vCPUs는 컨테이너를 위해 예약할 vCPU의 수, Memory(Mib)는 컨테이너에 제공할 메모리의 제한, Job attempts는 작업이 실패할 경우 다시 시도하는 최대 횟수, Execution timeout은 실행 제한 시간, Ulimits는 컨테이너에 사용할 사용자 제한 값입니다. 여기서는 vCPUs는 1, Memory(MiB)는 512, Job Attempts는 1로 설정, Execution timeout은 기본값인 100 그리고 Limits는 설정하지 않습니다.vCPUs: 컨테이너를 위해 예약할 vCPU의 개수Memory(Mib): 컨테이너에 제공할 메모리의 제한Jop attempts: 작업이 실패할 경우 다시 시도하는 최대 횟수Execution timeout: 실행 제한 시간Ulimits: 컨테이너에 사용할 사용자 제한 값User는 기본값인 nobody로 선택 후, Create job definition을 선택합니다.Job definitions에 Job definition이 생성된 것을 확인할 수 있습니다.STEP10. Submit job을 통해 S3에 저장된 작업 스크립트(myjob.sh)를 실행하기AWS Batch 콘솔에서 Jobs를 선택합니다. Job을 실행할 Queue를 선택하고 Submit job을 선택합니다.Job run-time1)Job name을 입력합니다.2)Job definition을 선택합니다.3)실행될 Job queue를 선택합니다.Environment Job Type을 선택하는 부분에서는 Single을 선택합니다. Array 작업에 대한 자세한 내용은 어레이 작업 페이지를 참고해주세요.Job depends on은 선택하지 않습니다.자세한 내용은 작업 종속성 페이지를 참고해주세요.Environment Command에서 컨테이너에 전달할 명령을 입력합니다. 여기서는 [“myjob.sh”, “30”] 를 입력해주세요. vCPUs, Memory, Job attempts와 Execution timeout은 job definition에 설정된 값을 가져옵니다. 이 Job에 대한 설정도 가능합니다.Parameters를 통해 job을 제출할 때 기본 작업 정의 파라미터를 재정의 할 수 있습니다. Parameters에 대한 자세한 내용은 작업 정의 파라미터 페이지를 참고해주세요.Environment variables는 job의 컨테이너에 환경 변수를 지정할 수 있습니다. 여기서 주의할 점은 Key를 AWS_BATCH로 시작하면 안 된다는 것입니다. AWS Batch에 예약된 변수입니다.Key=BATCH_FILE_TYPE, Value=script Key=BATCH_FILE_S3_URL, Value=s3:///myjob.shSubmit job을 선택합니다.Job이 Submitted 된 화면입니다.Dashboard를 보시면 Runnable 상태로 대기 중인 것을 확인할 수 있습니다.STEP11. 결과 확인CloudWatch > Log Groups > /aws/batch/job에서 실행 로그를 확인할 수 있습니다.Conclusion간단한 튜토리얼로 AWS Batch를 설정하고 실행하는 방법을 알아봤습니다.(참 쉽죠?) 다음 글에서는 AWS Batch의 Array 또는 Job depends on등의 확장된 기능들을 살펴보겠습니다. 참고1) AWS Batch – 쉽고 효율적인 배치 컴퓨팅 기능 – AWS2) AWS Batch 시작하기 - AWS Batch3) Amazon ECR의 도커 기본 사항 - Amazon ECR글윤석호 이사 | 브랜디 [email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 1769

제니퍼에서 새로운 가능성을 실험하라

제니퍼는 기업 내부망에 설치되는 On-Premise 방식의 소프트웨어 제품이다. 12년 넘게 국내 점유율 1위를 지키고 있는 제품이다보니 그만큼 고객의 요구사항도 다양하다. 대부분의 솔루션 회사는 제품 개발 초기에 단일 소스코드를 유지하며 개발하는 것을 추구했을 것이다. 하지만 비즈니스를 하다보면 특정 고객을 위한 기능을 추가할 수 밖에 없는 상황이 오게 된다. 보통 이런 경우에는 숨겨진 기능으로 개발하거나 고객사 별로 소스코드를 다르게 가져가기도 한다.기존의 제니퍼를 사용하는 고객들은 애플리케이션 모니터링만이 아닌 브라우저나 스마트폰 같은 클라이언트 영역과 데이터베이스 관리 시스템까지 연계된 통합 모니터링을 하고자하는 요구사항을 오랫동안 요청했었다. 모니터링 제품 간의 연계를 생각하면 약간 생소하게 생각할 수 있는데, 특정 데이터를 수집하고, 이를 가공하여 사용자에게 보여주는 단순한 매커니즘의 하나라고 생각하면 이해가 쉬울 것 같다.즉, 다른 종류의 데이터를 하나의 화면에서 볼 수 있는 통합 환경을 제공해야 한다. 그래서 최근에는 오픈소스로 배포되고 있는 엘라스틱서치나 상용 제품인 스플렁크 같은 로그분석 솔루션이 주목받고 있다. 하지만 위와 같은 제품들을 사용하여 제니퍼 성능 데이터와 연계하여 통합 환경을 구축한다는 것은 말처럼 간단하지 않다. 제품을 구매하고 학습하는 비용이 생각보다 크고, 통합을 위한 별도의 시스템이 갖춰져야 한다는 것은 고객의 입장에서 큰 부담이 된다. 이러한 부담을 덜어주기 위해서 제니퍼는 실험실이라 불리우는 확장 기능을 제공한다. 실험실은 워드프레스의 플러그인과 비슷한 성격을 가지며 코드 레벨 영역에서 확장될 수 있다. 실험실은 처음부터 다른 모니터링 제품과의 연계를 위해 개발된 것은 아니었다. 기획 초기에는 방대한 제니퍼 데이터를 좀 더 다양한 형태의 화면으로 제공하기 위함이었는데, 아무래도 실험적인 요소가 강하다보니 기존의 대시보드나 분석 같은 범주로 들어가기에는 완성도 측면이나 제니퍼의 방향성에 영향을 미칠 수 있다는 판단에 별도의 범주로 만들게 되었다.  실험실이란 이름은 구글 메일의 실험실에서 따온 것인데, 아직 개발 중인 실험적 기능을 위한 테스트 공간이고, 언제든지 변경 또는 중단되거나 사라질 수 있다. 그리고 모든 실험실 소스코드는 깃허브를 통해 공개하는 것이 기본 정책이다. 제니퍼소프트 깃허브에 가보면 실제로 다수의 실험실 프로젝트가 존재한다는 것을 알 수 있다. 그 중 한가지만 간략하게 소개하자면 사용자 관점의 웹 서비스 모니터링 제품인 아르고스와 연계하여 브라우저나 스마트폰 같은 사용자 관점의 성능 데이터를 제니퍼 트랜잭션 데이터와 연계하여 분석할 수 있는 기능을 제공한다. 실은 그동안 고객들에게 사용자 관점의 성능 모니터링에 대한 요구사항이 많았지만 제니퍼 본연의 영역과 확연하게 다른 측면이 있어서 요구사항을 수용하는데 많은 고민이 필요했다. 그래서 우리는 관련된 솔루션 업체를 찾았고, 상호 간의 비즈니스 협력을 통해 서로의 부족한 부분을 보완하기로 결정했다. 실험실은 제니퍼가 시도하고 있는 새로운 기능을 미리 체험해 볼 수 있을 뿐만이 아니라 오픈소스나 관련된 솔루션과의 연계를 하기 위한 화면을 제공할 수 있다. 뿐만 아니라 코드 레벨 영역에서 확장을 하는 것이다보니 제품의 커스터마이징 범위가 넓어진다. 즉, 화면에 대한 고객의 요구사항이 제니퍼의 방향성과 크게 다르더라도 많은 고민을 하지 않고 충분히 원하는 것을 구현해줄 수 있다. 과거와 달리 동일한 데이터라도 좀 더 시각적인 화면을 요구하는 요즘같은 시기에 실험실은 이러한 시도를 하기에 좋은 방법이 된다.제니퍼는 화면 단위의 확장 기능인 실험실 뿐만이 아니라 트랜잭션 데이터가 수집되는 시점이나 특정 이슈가 발생할 때, 생성되는 이벤트 데이터를 어댑터를 통해 전달받을 수 있다. 어댑터도 실험실과 마찬가지로 코드 레벨 영역에서 확장할 수 있다. 실시간으로 전달받은 트랜잭션 데이터는 별도의 스토리지에 저장하여 목적에 맞게 조회해서 사용할 수 있다. 특히 이벤트 관련 어댑터는 가장 많이 사용되는 제니퍼 확장 기능이며, 고객사의 관제시스템 연동에 주로 사용된다.  실험실은 어댑터와 달리 제니퍼 서버에서 전달받은 데이터를 처리만 하는 단순한 구조가 아니었다. 제니퍼와 독립적인 화면 구성에 필요한 모든 요소들을 갖춰야했기 때문에 고려해야할 것들이 너무 많았다.  그럼에도 불구하고 만들게 된 이유는 단순히 필자의 편리함을 위해서였다. 평소에 데이터 시각화에 관심이 많았기 때문에 이미 존재하는 방대한 제니퍼 데이터를 다양한 방식으로 표현하기 위한 시도를 했었다.하지만 상용 솔루션인 제니퍼에 테스트 코드를 필자 임의로 추가해서 배포하거나 숨긴 기능으로 만들기에는 꽤 부담스러운 일이었다. 그렇다고 별도의 소스코드로 다르게 가지고 가기에는 관리 측면에서 어려움이 있다. 그렇기 때문에 기존의 제니퍼 소스코드를 참조만 하되 서로 독립적으로 개발하는 형태를 생각하게 되었다. 이렇게 필자의 편리함을 위해 시작한 실험실이지만 오픈소스나 다른 솔루션과의 연동을 위한 화면을 제공하고, 새로운 제니퍼 기능에 대한 비전을 시사하거나 고객의 피드백을 수용하는 용도로 확장되었다.소프트웨어 개발을 하다보면 제품이 추구하는 방향과 달라서, 또는 구현은 가능하지만 소모되는 리소스 비용이 부담이 될 경우, 그리고 특정 사용자를 위한 특화된 기능을 구현할 때, 모두가 만족할만한 기능이라는 확신이 없다면 제대로 진행하기가 어려운게 현실이다. 사실 새로 시도하는 기능은 시기와 때에 따라 앞에서 고려했던 것들과 다르게 평가되는 경우도 있다.그래서 아무리 작은 아이디어라도 시도를 해보는 것 자체만으로도 큰 의미가 있으며, 새로운 가능성을 발견하는 계기가 될 수 있다. 다만 현재는 제니퍼 기능 확장에 대한 기반 정도만 갖춰진 시작 단계라서 관련된 API 문서나 개발 도구에 대한 지원이 미흡한 것이 아쉬움으로 남는다. 다음 편에서는 자바 개발자 대상으로 실험실을 직접 구현하는 방법에 대해 알아볼 것이다.
조회수 5332

안드로이드 백그라운드 서비스 개발시 고려해야 할 사항

지난 시간엔 사운들리 백엔드에 대해 설명을 드렸었죠. 이번 시간엔 사운들리 서비스중 클라이언트에 해당하는 안드로이드 SDK, 그 중에서도 백그라운드 서비스에 초점을 맞추어 설명을 해 볼까 합니다.안드로이드의 특징 중 하나로 Service 를 들 수 있습니다. 이 서비스란 녀석은 백그라운드에서 실행 될 수 있다는 점이 가장 큰 특징인데요. 물론 iOS 에서도 일부 지원은 합니다만 매우 제한적인 경우(음악 재생 등)에만 사용 가능합니다.제가 생각하는 백그라운드 서비스 개발 시 유의 사항은 아래와 같습니다.동작 기간 - 상시 동작 해야 하는가, 특정 조건에서 특정 작업을 할때만 동작 해야 하는가글로벌 프로세스 사용 유무 - 서로 다른 어플리케이션에서 접근이 가능 해야 하는가동작 조건 - 특정 시간 혹은 기간마다 동작 해야 하는가, 특정 이벤트 발생시 동작 해야 하는가그 외에도 많은 부분들이 있지만 일단 저 정도만 고려해도 개인적인 생각으로는 충분히 개발 가능하다고 생각 합니다.그러면 각각에 대해서 좀 더 자세하게 알아 볼까요?1. 동작 기간동작 기간에 대해서 이야기 하기 전에 먼저 유저 레벨에서 가장 많이 사용하는 Service 와 IntentService 의 차이점에 대하여 짚고 넘어가보겠습니다.Service 를 상속`Context#startService//Context#stopService` 혹은 `Context#bindService(w/BIND_AUTO_CREATE)//Context#unbindService` 를 통해 수명 조절 (Service 내에서 Service#stopSelf 를 호출하는 방법도 있습니다.)Service 시작된 이후에 커뮤니케이션 가능수명 종료 API(stopService or unbindService) 를 호출 하기 전에는 프로세스가 사라지지 않음 (물론 LMK에 의해서 종료 된다던지 등등이 있지만 여기서는 논외로 하겠습니다.)IntentService 를 상속startService 를 통해 서비스를 시작함사용자가 따로 수명 관리를 할 필요가 없음상기 특징을 보면 Service 는 상시 동작하는 서비스에, IntentService 는 특정 조건에서 동작하는 서비스에 더 특화된 것을 볼 수 있습니다.사운들리 서비스는 백그라운드에서 상시 신호를 감지해야 하므로 Service 를 상속해서 쓰고 있습니다.2. 글로벌 프로세스 사용 유무안드로이드 컴포넌트 속성 중 android:process  속성을 소문자로 시작하는 이름을 쓰면 글로벌 프로세스로 사용 할 수 있습니다. 글로벌 프로세스니까 당연히 다른 어플리케이션에서도 접근이 가능하답니다.아래와 같은 경우에는 글로벌 프로세스를 사용 할 때 더 이점이 있습니다.불필요한 리소스 사용 자제 - 서버와 통신하는 모듈의 경우, 여러 앱에서 동일한 모듈이 사용 될 때 하나의 통로만 사용 하는 것이 네트워크 리소스를 적게 먹습니다.공유 불가능한 자원 사용 - 사운들리 SDK 가 이 경우에 해당합니다. 비가청 대역 음파를 사용하는 특성상 마이크를 사용 해야 하나 안드로이드에서는 서로 다른 어플리케이션 간의 마이크 공유가 불가능합니다.하지만 일반적인 어플리케이션 서비스는 굳이 글로벌 프로세스를 쓸 필요가 없습니다. 모듈 버전에 따른 실행, 데이터 공유 등 골치 아픈게 이것저것이 아니에요... ㅠ3. 동작 조건동작 조건은 크게 time base 와 event base 로 나눌 수 있는데요. 각각의 경우에 서비스를 동작 시킬 트리거를 다르게 쓰는 것이 좋습니다.동작 조건에 따라 안드로이드에서 사용 가능한 트리거는 아래와 같습니다.시간 기반 (time base)AlarmManager 의 alarm API (set, setExact, setExactAndAllowWhileIdle 등)Android System Broadcast (ACTION_TIME_TICK 등)GCM Message이벤트 기반 (event base)Android System Broadcast (ACTION_SCREEN_ON, ACTION_POWER_CONNECTED 등)GCM Message그 외 각종 어플리케이션 사용시 발생되는 이벤트위에서 이야기한 것을 표로 정리하면 아래와 같습니다.동작 기간동작 조건사용해야할 서비스동작 트리거그 외상시동작시간기반 동작Service 를 상속 받아 startService 서비스 시작bindService 를 통해 서비스와 연결하여 커뮤니케이션해당 Service 는 START_STICKY 로 실행AlarmManager 혹은 서버에서 주기적으로 동작하는 GCM Message 사용글로벌 프로세스를 사용 해야 한다면 android:process 속성을 사용이벤트 기반 동작System Broadcast 혹은 GCM Message, JobService 등을 사용작업 할때만 동작시간 기반 동작IntentService 를 상속받아 startservice 로 실행Intent 에 작업 관련된 파라매터를 전달AlarmManager 혹은 서버에서 주기적으로 동작하는 GCM Message 사용이벤트 기반 동작System Broadcast 혹은 GCM Message, JobService 등을 사용Etc. 유의해야 할 부분추가로 백그라운드 서비스 개발 시 유의해야 할 점들을 기술 해 보겠습니다.i) 배터리 절전 기술안드로이드 버전이 올라갈수록, 그리고 벤더들의 기술력이 높아질수록 배터리 절전 기술 역시 발전합니다. 이러한 기술들은 사용자 입장에서는 반가운 기술이지만 개발자들에게는 종종 절망을 선사합니다 ㅜㅜ사운들리 서비스도 개발 과정에서 각종 절전 기술 때문에 고생을 했는데요, 크게 고생한 기술 및 특징은 아래와 같습니다.DozeAndroid 6.0 이후 버전에 적용아래의 상태에서 일정 시간 이후 Doze 모드 진입충전 중이 아님스크린 꺼져 있음일정 수치 이상 움직이지 않음제한되는 사항AlarmManager 의 AlarmJobServiceWakeLock 무시네트워크 접근 제한회피 방법AlarmManager#setExactAndAllowWhileIdle() - Doze 에서도 동작하지만 최대 15분에 한 번씩만 동작 가능GCM high priority messageApp StandbyAndroid 6.0 이후 버전에 적용일정 기간 동안 아래 상황 중 하나도 발생하지 않은 경우 시스템에서 해당 앱을 standby state 로 간주명시적 앱 실행액티비티나 서비스가 포그라운드(전경)에서 실행 중, 혹은 포그라운드에서 실행 중인 앱이 해당 앱의 컴포넌트 사용중알림을 생성하고 유저가 잠금 화면이나 알림 트레이에서 확인한 경우제한되는 사항네트워크 사용 및 동기화 기능 사용 불가회피방법유저와 상호 작용유저가 디바이스 충전스마트 매니저삼성에서 킷캣 (안드로이드 4.4) 이후의 모델 (일부 제외)에 적용일정 시간 이상 유저가 사용하지 않은 앱은 알림 생성 불가관련글: 구글 개발자 블로그의 Android M 관련 변경점ii) LMK (Low Memory Killer)안드로이드의 각각의 프로세스는 특성에 따라 상태가 부여됨각 상태는 제한되는 메모리 사이즈가 정해져 있고, 디바이스의 가용 메모리가 해당 사이즈 이하로 떨어질 시 시스템에서 프로세스를 종료START_STICKY 로 실행한 서비스의 경우 일정 시간 이후에 null Intent 를 가진채로 재시작킷캣 이상에서 PID가 0이 된 채로 남아있는 버그가 있음ActivityManager#getRunningServices 에서 서비스 리스트를 가져 왔을때 찌꺼기가 존재마치며보기엔 복잡해 보이지만 사실 서비스 기획에 맞게 기능들을 골라서 쓰기만 하면 되니까 생각보단 복잡하진 않습니다. '사용자 중심의 나이스한 서비스 기획' 만 있으면 위의 표에서 기능을 골라서 조립만 하면 됩니다.물론 실제 개발 시에는 훨씬 더 고민 해야 될 부분이 많을 겁니다. 네트워크 트래픽도 최소화 해야 하고, WakeLock 도 적절히 써야 하고, 글로벌 프로세스 사용시는 DB 동기화도 시켜야 하고 GCM 은 downstream 이냐  group 이냐 topic 이냐 등등...개인적인 전망으론 장기적으로 Google 에서도 iOS 처럼 백그라운드 서비스 사용에 점점 제한을 둘 것 같습니다. 하지만 완전히 없애진 않을 것 같네요. 나름 특색 이니까요. 그러니 없애지만 않으면 방법을 찾아 낼 수 있을 겁니다.너무 두서없이 주저리주저리 쓴 글 같지만 조금이라도 도움이 되었으면 좋겠습니다.#사운들리 #개발 #개발자 #안드로이드 #안드로이드개발 #앱개발 #앱개발자 #SDK #인사이트 #조언 #경험공유
조회수 3337

빅데이터 '분석가' '전문가'가 부족한 이유...

업계에서는 대기업이나 공공기관 등의 데이터 분석 수요가 커지면서 빅데이터를 다루거나 데이터 분석가들을 찾는 기업이 늘어난다고 하는 기사나 이야기들이 떠돌아다닌다.한국정보화진흥원에서 발간한 '2015년 빅데이터 시장 현황조사'보고서에 의하면 빅데이터 공급기업과 수요기업 모두 빅데이터 분석가가 필요하다고 내다보고, 많은 데이터 분석가가 필요하다고 이야기했다.분야도 금융을 비롯하여 통신, 커머스 등을 아우르고, IT 관련부서뿐만 아니라, 현업이라고 불리는 마케팅이나 영업도 포함된 관계에서의 데이터 활용을 위해서 빅데이터 '분석가'가 필요하다고 이야기를 한다.죄송하지만.. 한국형 환경에서는 '빅데이터 분석가'나 '전문가'는 그다지 필요 없을 것 같다.1. 변화하지 않는 기업어차피 정해져 있는 프로세서, 내부 R&R과 내부 혁신을 하기 위한 인사이트를 찾고, 데이터 변수를 찾는다고 하더라도 굳이 기업 내부의 변화를 일으키지 않을 것이기 때문에 '진정한 데이터 분석가'는 해당 기업에 무의미할 것이다.정말, 전문가라면 '내부 혁신'에 대한 키워드들을 뽑아줄 텐데... 이런 이야기는 '컨설팅'업체에서도 하지 않고, 내부에서도 '금기'시 해야 할 단어들이 대부분이다.만일, 대기업인 중요 키워드가 '오너'의 키가 문제라고 지적한다면... 아마도, 해당 부서나 관련자들은 움직이지도 못할 것이다.죄송하지만, '내부 혁신'이 불가능하고, '오너'중심의 대기업은 데이터 분석가가 필요하지 않다. 다만, '오너'의 생각을 읽고서 적당하게 마사지된 '데이터'를 보여줄 '외부 데이터 분석'서비스 업체만 필요할 뿐이다.그래서, 국내에서는 데이터 분석 서비스 업체 정도가 적당하다.2. 기업과 조직에 데이터가 없다.프로세스 하단에서 동작하는 수많은 로그들을 추적 감시, 감사하는 시스템이 가동되고 있어야 하며, 고객 서비스를 하는 서비스 집단에서도 하단에서 아이디어가 상단으로 올라가는 환경들이 이미 가동되고 있어야 한다. 데이터의 대부분은 그런 인사이트를 증명하는 근거가 되기 때문이다.이미, 중요한 움직임을 보이고 있을 때에만 '의미 있는 정보'를 추출할 데이터들이 축적되는데... 사실상, 의미 없이 마사지된 '보고서'들만 존재한다.원천적으로 의미 있는 데이터를 추출할 데이터가 있어야 하는데.. 대부분이 왜곡된 정보들이거나, 특정 힘에 의해서 데이터들이 왜곡돼 있다면, 해당 기업과 조직은 데이터가 없다고 봐야 한다.3. 오랜 경험을 축적한 실전 전문가들이 일찍 퇴직한다.빅데이터를 통해서 단지 현황만을 보여주는 것이 아니라, 기업의 미래나 새로운 먹거리를 유도할 수 있는 인사이트를 추출하기 위해서는 해당 도메인이나 해당 마켓에 익숙하고 경험이 풍부한 전문가들이 같이 있어야 한다. 실제, 데이터가 의미하는 방향성이나 수치, 지수가 어떤 것을 의미하는지 읽어 줄 수 있는 것은 데이터 전문가들이 하는 일이 아니다.해당 업무와 해당 도메인의 전문가가 그 '수치'를 읽어 줄 수 있는 것이다.대부분의 기업에서 '실전'이거나 '실제 업무'에 익숙한 전문가나 경험이 축적된 사람들은 하청업체이거나 이미 퇴직한 경험이 풍부한 사람들이다.해당 기업에서는 아무리 데이터가 분석되어도 어떤 의미인지 판독해줄 사람이 없다.4. IT기술 전문가가 필요한 것이 아니다.빅데이터나 머신러닝과 같은 지식화 인사이트는 절대 IT기술이나 주변의 소프트웨어 설루션으로 만들어지는 것이 아니다. 기업 내부에 축적된 '지식'을 기반으로 '사람'을 기준으로 데이터가 만들어진다. 데이터 분석 전문가는 단지, 그것의 가치를 '판정'해줄 수 있는 기준을 마련해줄 뿐이다.대부분의 '한국형'조직들은 데이터 거버넌스 조직도 없으며, 제대로 된 인사시스템이 가동되지 않고 있다. 슬프지만, 빅데이터 전문가들은 내부에서 영입하는 것이 아니라, 내부에서 자생적으로 생성되는 것이다.자생적으로 빅데이터 전문가가 생성되지 않는 조직은 이미, 지식화가 불가능한 형태이기 때문에, 너무 무리하지 말고, 현재 환경에서 연착륙하는 것을 고려하는 것이 최선일 것이다.역시, '한국형'에서는 굳이 '빅데이터 분석가'가 필요한 것이 아니라, '빅데이터 분석가 코스프레'를 하는 사람이 필요한 것 아닌가?오너가 이야기하는 'A'를 'A'처럼 써줄 수 있는 코스프레가 가능한 사람이면 충분한 것 아닌가 한다.

기업문화 엿볼 때, 더팀스

로그인

/