스토리 홈

인터뷰

피드

뉴스

조회수 1939

나는 이쁜 데일리룩을 보고 싶은걸? \w pose estimation

안녕하세요. 스타일쉐어 백엔드 개발자 김동현입니다.2018년의 스타일쉐어에서는 뷰티, 중고 그리고 데일리룩이라는 피드가 추가로 등장했는데요, 그중 제가 작업했던 데일리룩 피드를 만들게 된 배경과 개발 방향에 대해 공유드리고자 합니다.스타일쉐어 데일리룩#데일리룩 #ootd / 타자 치는 것은 귀찮아데일리룩에 관련된 스타일들만 뽑아내는 방법 중에 가장 간단한 방법은 텍스트로 분리해내는 방법이었을 것입니다.하지만 #데일리룩 #ootd는 사진이나 내용이 관계가 없더라도 들어가 있는 경우가 많았습니다.또한 위의 피드처럼 정성스러운 글을 써주는 유저도 많긴 했지만 자신의 데일리 로그를 남기면서 글을 작성하지 않는 경우도 더러 있었습니다.즉, 단순히 텍스트로만 구별해내기에는 이미지에 대한 질을 확신할 수 없었고, 텍스트가 주된 서비스가 아니다 보니 설명 없는 좋은 이미지들이 많았는데요.우리는 이 이미지들을 놓치고 싶지 않았습니다.그래서 결과적으로 텍스트 대신 이미지를 사용하는 방향을 선택하게 되었습니다.이미지로 어떻게 구별해낼까?다행히도 R-CNN의 높은 인식률과 Pre-Trained 된 모델의 label 중 person이 이미 학습되어있던 터라 별도의 Transfer Learning 없이 이미지 내에서 body parts가 있는지 없는지 찾아내는 것은 아주 어렵지 않았습니다.다만 문제가 있다면 body parts에 들어가는 모든 부분을 person이라고 예측하던 부분이었죠.예를 들자면 아래와 같습니다.다음과 같이 제가 사용한 모델에서는 body parts를 person이라는 라벨로 처리하고 있었습니다.단순히 R-CNN의 person 라벨만을 믿기에는 의도했던 데일리룩 외에도 너무나도 많은 것들이 데일리룩이라는 이름으로 필터링될 것 같았습니다.그래서 또 다른 필터가 하나 더 필요하다는 생각이 들었습니다.Pose EstimationBody Parts 중 우리가 원하는 부분이 사진에 있으면 좋겠다!라는 생각을 곰곰이 하다 보니 우연히 머릿속에 스쳐 지나가는 하나의 장면이 있었습니다.Source: http://graphics.berkeley.edu/papers/Kirk-SPE-2005-06/바로 3D 모델링 중에서 Motion Tracker 에 관련된 장면이었는데요. 이것을 Tracker가 아니라 이미지에서 stick figure를 뽑아낼 수 있으면 되지 않을까?라는 생각이 들었습니다.놀라운 딥러닝의 세계에는 이미 여러 명의 Stick Figure를 뽑아낼 수 있는 경지에 도달해 있었습니다.Source: https://github.com/ZheC/Realtime_Multi-Person_Pose_EstimationPose Estimation 딥러닝 모델을 사용하여 아래와 같은 결과물을 얻어낼 수 있었는데요.이미지 내의 Body Parts의 존재 여부를 알게 되었으니 우리가 원하는 Body Parts가 이미지 내에 있는지 검사할 수 있게 되었습니다.하지만 해당 모델이 마냥 가볍지는 않았기에 사용자의 업로드가 많은 순간에는 예측 Task가 밀리기 시작했습니다.그래서 아주 단순하지만, 효과적인 아이디어들을 적용하였는데요.pose estimation을 하기 전에 R-CNN을 돌린 후 person으로 예측된 bounding box가 있다면 pose estimation 모델을 돌리도록 했습니다.하지만 위의 필터를 통했음에도 원하는 결과물이 안 나오는 경우가 종종 있었는데요.바로 다음과 같은 경우입니다.생각보다 작은 사람의 stick figure도 잘 추출 내어서 해수욕장으로 떠나 찍은 사진 속의 저 멀리 있는 휴양객을 데일리룩으로 잡는 일이 종종 발생했거든요.그래서 위의 조건에 더불어서 person이라고 예측된 bounding box size가 전체 이미지 크기 대비 n % 이상의 크기 일 경우 Pose Estimation을 진행하자는 것이었죠.적당한 크기 이상의 데일리룩들을 뽑아내고 싶었고 사람이 너무 작아서 안 보이는 경우도 피할 수 있었습니다.빠른 분류 속도는 덤이었고요.덕분에 유저들이 올린 콘텐츠 중 데일리룩이라는 범주에 속하는 콘텐츠를 잘 뽑아낼 수 있었습니다.아래는 위의 과정을 거쳐서 Pose Estimation까지 처리되어 데일리룩 사진이라고 판별된 이미지입니다.이다음으론 무엇을 더 해볼 수 있을까요?사진 속의 자세를 알 수 있게 되었으니 좀 더 재밌는 것을 할 수 있을 것 같은데요.예를 들면 K-Means를 적용하면 비슷한 모습의 데일리룩들만 모아볼 수도 있고 스타일쉐어 유저들이 자주 찍는 자세 라던가 유저 별 자세 선호도 등등 재밌는 것들을 할 수 있을 것 같습니다.날 따라 해 봐요 같은 것도 해볼 수 있겠네요 :)같이 해보지 않을래요?아직도 재밌는 것들이 많이 남은 스타일쉐어 에서는 더 많은 것을 하기 위해 개발자분들을 모시고 있습니다 :)백엔드 개발자라고 해서 백엔드 개발에만 국한되지 않고 하고 싶은 것들을 해도 된다, 할 수 있다고 이야기해 주는 회사라고 생각합니다.스타일쉐어를 좀 더 알고 싶으시다면 여기를 눌러 주세요 :)#스타일쉐어 #개발팀 #개발자 #백엔드개발 #개발인사이트 #경험공유 #후기
조회수 517

오픈서베이 개발팀이 일하는 법, 개발자에게 직접 들어봤습니다

김경만님은 오픈서베이의 미들레벨 안드로이드 개발자이자 오베이 시스템 PM(이하 조셉)입니다. 지인 추천으로 2명의 개발자 채용을 도운 오픈서베이 전도사기도 하죠. 이런 조셉은 지원할 때만 해도 오픈서베이가 어떤 회사인지 잘 몰랐다고 합니다. 병특 중인데 TO가 있길래 지원한 게 크죠. 그렇게 덜컥 입사한 오픈서베이를 다니며 잘 갖춰진 업무 환경, 조직 문화, 좋은 구성원에 반해버렸다고 합니다. 병특 복무를 마친 뒤에도 오픈서베이의 훌륭한 구성원으로 5년 차 개발자의 커리어를 쌓아가고 있죠. 조셉에게 오픈서베이에 반한 이유와 개발팀의 업무 문화에 대한 이야기를 들어봤습니다.            오픈서베이 김경만(조셉) 안드로이드 개발자 겸 오베이 앱 PM   조셉, 안녕하세요! 안녕하세요(웃음). 오픈서베이의 미드레벨 안드로이드 개발자 조셉입니다. 올해부터는 오베이 앱 PM으로 역할이 확대됐어요. 오베이는 오픈서베이 패널로 활동할 수 있는 설문조사 앱입니다.   세부적으로는 안드로이드 오베이 앱 개발, 오베이 회원계 시스템, 타겟팅 설문을 위한 유저 세그멘테이션 시스템을 개발·운영하고 있어요. 5년 차 개발자로 오픈서베이에는 17년 12월에 입사해서 벌써 1년 반 정도 일하고 있네요.    입사 계기가 독특하더라고요. 고백하자면 그렇죠. 전 직장에서 병특 복무 중에 이직을 결심하고 원티드에서 오픈서베이를 처음 알게 됐어요. 사실 뭐하는 회사인지도 잘 몰랐고 병특 TO가 있으니까 그때부터 찾아본 거예요.  잡플래닛을 검색해보니 ‘리서치 업계의 게임 체인저’라는 리뷰가 뜨더라고요. 실은 그 말이 정확히 무슨 의미인지도 잘 몰랐어요. 그냥 리서치란 단어가 주는 스마트하고 긍정적인 느낌이 있었는데 “그런 리서치 시장의 게임 체인저라니!”라며 면접을 본 거에요.   그럼 오픈서베이를 다니면서 긍정적인 면을 발견하신 거군요. 일단, 개발 업무 환경이 수준급이라 놀랐어요. 규모가 좀 있는 기업에서나 볼 수 있는 인텔리제이(intellij)도 너무 당연하게 구비돼 있더라고요. 이게 꽤 비싼 툴이거든요. 그래서 스타트업은 개발자 채용 공고에 인텔리제이 구매해서 사용한다고 일부러 적어놓기도 할 정도예요.  그런데 오픈서베이는 입사 때 따로 이야기해 주지 않아서 몰랐는데 떡하니 있길래 놀랐죠. whatap, jenkins, graylog 등을 이용한 배포·운영·모니터링 환경도 체계적으로 갖춰져 있었고요.  사실 이런 개발 환경을 갖춘 스타트업은 정말 흔치 않아요. 그래서 많은 개발자 꿈나무들이 큰 기대를 갖고 스타트업에 입사했다가 좌절해요. 앞에선 기술 중심의 혁신을 외치는데 그만큼의 투자가 없거나 여건이 마련돼 있지 않아서요. 여전히 많은 스타트업 개발자가 수작업으로 일일이 버그 모니터링을 하거나 업데이트 배포를 하는 경우도 많아요.  그런데 구비된 툴을 보면서 오픈서베이 개발팀은 생산성을 위한 비용 투자를 아끼지 않고 구조적인 개발 시스템에 노력하는 회사라는 인상을 받았어요. 개발 입문서 같은 데서 정석이라는 시스템을 그대로 갖추고 있으니까 제가 배운 이론을 현장에 바로 적용할 수도 있는 것도 좋았고요.   무엇보다 일에 집중할 수 있는 환경이군요.  이건 좀 개인적이긴 한데, 입사 전에 업무용 랩탑 선택권을 주는 것도 좋았어요. 사실 랩탑은 일할 때 제일 자주 많이 쓰는 도구잖아요. 업무에 가장 중요한 요소라고도 말 할 수도 있는데, 각 랩탑 사양을 정말 세부적으로 알려주고 원하는 걸 직접 선택할 수 있게 해주는 부분도 인상적이었어요.   그런데 후보 중에 제가 꼭 사고 말겠다고 생각했던 꿈의 랩탑 ‘델 XPS 15’이 있더라고요. 벌써 1년 반이나 지났는데 아직도 이 랩탑으로 일할 때는 괜히 기분이 좋아요.    “업무용 랩탑 선택권을 주는 것도 좋았어요. 사실 랩탑은 일할 때 제일 자주 많이 쓰는 도구잖아요.”   세세한 부분에서도 감동을 받으셨군요(웃음). 이렇게 디테일한 요소까지 챙기는 회사의 모습에 감동하는 거죠. 저는 오픈서베이가 3번째 직장이라서, 회사가 업무 환경에 디테일하게 신경 쓰는 게 얼마나 힘든지를 몸소 경험해서 알고 있거든요. 그런 면에서 오픈서베이는 개발 환경도 잘 갖춰져 있고, 업무를 위한 투자도 많고, 배울 사람도 많아요.   원티드에는 오픈서베이가 어떻게 소개되고 있을까요?   여건만 좋다고 다 좋은 회사는 아닐 수 있잖아요. 물론이죠. 근데 오픈서베이는 여건뿐만 아니라 성장 기회가 많아요. 의욕만 있다면 아직 주인을 찾지 못한 일들을 자신의 것으로 만들 수 있죠. 저는 주도적으로 일할 의지가 있는 구성원이 마음껏 역할을 늘려 갈 수 있는 조직이 긍정적인 면이 많다고 생각해요. 하고 싶은 사람이 그 일을 맡는 거니까요.   이런 면은 주니어나 미들레벨 개발자에게는 좋은 성장 기회가 되는 것 같아요. 제가 오베이 안드로이드 개발자에서 PM으로 역할이 확대되는 과정도 그랬어요. 처음에는 진짜 딱 개발만 했거든요. 운영 장애가 생겨도 저는 제가 개발한 요소의 코드만 아니까 다른 분야는 해결법도 모르고 제 역할도 아니니까 어쩔 줄 몰라 하며 지켜만 봤어요.  그런데 매번 아무것도 할 수 없는 상황에 놓이니까 제가 직접 문제를 해결할 수 있는 사람이 되고 싶어졌어요. 그때부터 오베이 앱 관련 코드를 다 까보면서 시스템 흐름을 파악했고, 장애가 발생했을 때 제가 해결할 수 있는 범위를 차근차근 늘려갔어요. 나중에는 노후한 시스템을 제가 만든 시스템으로 교체까지 했고요. 그러다 오픈서베이 CTO인 폴의 제안으로 올해부터 PM을 맡게 됐습니다.    조셉이 오베이 PM이 된 배경에는 그런 성장 스토리가 있었군요! 주도적으로 일하는 경험은 다른 회사에선 쉽게 얻기 힘든 기회라는 점은 정말 동의해요. 맞아요. 빠른 성장을 원하는 분에게 지금 오픈서베이는 딱 좋은 규모의 회사인 것 같아요.  정말 개발 인력이 적고 여건이 좋지 않아서 어쩔 수 없이 역할을 확대한 게 아니라, 좋은 여건과 환경에서도 빠르게 역할을 확대할 수 있는 단계에 이른 것 같아서요. 더 규모가 크고 탄탄한 회사에서는 사실 주도적으로 일하고 싶어도 환경이 따라주지 않는 경우도 많으니까요.  물론, 역량과 성취에 따라 합당한 보상을 해줘야 구성원들이 적극적이고 주도적으로 일하고 싶은 의욕이 생긴다는 생각도 하는데요. 제 경험에 비춰보면 오픈서베이는 일이 늘어나는 만큼 보상도 확실한 것 같아요(웃음).    “주도적으로 일할 의지가 있는 구성원이 마음껏 역할을 늘려 갈 수 있는 조직이 좋아요. 하고 싶은 사람이 그 일을 맡는 거니까요”     그런 좋은 경험 덕에 병특 이후에도 오픈서베이를 지켜주시는 거군요. 잘 몰랐는데 병특 복무가 끝나면 곧장 이직하는 게 훨씬 흔하다면서요?  맞아요. 더이상 그 회사에 묶여 있을 필요가 없으니 더 처우 좋은 회사를 찾아 떠나는 거죠. 저는 일부러 남았다기보다는 딱히 이직할 이유가 없어서 이직을 고려하지 않았다는 게 맞는 말인 것 같아요. 개발 업무 환경도 잘 갖춰져 있고 회사도 성장하고 있고, 무엇보다 보상 기준도 체계적이라고 생각하니까요.   보상 기준이 체계적이라고 생각하는 이유가 있나요? 개발팀에서 상하반기를 나눠서 1년에 2번씩 이뤄지는 성장진단을 해요. 단순한 연봉 협상이 아니라 정말로 제가 한 일을 돌아보면서 얼마나 성장했고 성취를 이뤘는지 상급자와 점검해보는 시간이에요. 사실 전 제 개인 블로그에 매달 1번씩 업무 성과 회고를 하거든요. 아무래도 명확한 독자가 없으니까 좀 캐주얼하게 쓰는 편이에요. 근데 회사 성장진단 문서는 내용은 같아도 독자가 다르니까 자연스럽게 자기객관화를 하면서 성과와 시행착오를 정리할 수 있는 시간이라 좋더라고요. 특히, 폴(이건노 CTO)은 이스트소프트에서 개발 조직을 오래 리딩하셔서 확실히 조언의 깊이가 달라요. 저는 아무래도 시야가 아직 넓지 않아서 개발 업무를 성능과 기술 중심으로만 대해요. 그런데 폴은 방대한 시각으로 비즈니스나 운영 관점에서 서비스가 확장될 때를 미리 계산해서 조언을 해주셔서 좋았습니다.   오픈서베이와 스타트업 얼라이언스가 함께한 ‘2018 스타트업 트렌드 리포트’를 보면, 재직자들이 스타트업에 가장 만족하는 요인은 ‘빠르고 유연한 의사결정 구조’였어요. 조셉 생각에 오픈서베이는 어떤가요? 자의적으로 해석할 여지가 많은 요소네요. 빠르고 유연한 의사결정 구조를 개발자 맘대로 하는 거라고 생각할 수 있으니까요. 그렇게 생각한다면 오픈서베이는 전혀 그런 회사는 아닌 것 같아요. 모든 의사결정은 전후 사정이나 논리적인 타당성을 따져보고 함께 결정하니까요.  대신 결정할 사안에 대한 논의는 정말 빠르고 유연하게 이뤄져요. 최고 결정권자인 하이(황희영 대표이사)와 논의가 필요하다고 생각되면 물어봐서 일정만 잡으면 얼마든지 1:1 미팅을 할 수 있어요. 대표실이 따로 있는 게 아니라 한 공간에서 같이 일하니까 몇초 걸어가서 바로 물을 수도 있고요. 대표이사와 이렇게 쉽게 이야기 나눌 수 있다는 점도 오픈서베이의 장점이죠.    “빠르고 유연한 의사결정 구조를 개발자 맘대로 하는 거라고 생각한다면, 오픈서베이는 그런 회사는 아니예요. 모든 의사결정은 전후 사정이나 논리적인 타당성을 따져보고 함께 결정하니까요.”   업무 영역을 넓힐 기회뿐만 아니라 발언 기회도 열려있다는 의미일까요? 정확해요. 개발팀에 ‘세미나’라는 제도가 있어요. 주간 회의와 별도로 팀에 공유하고 싶은 내용이 있는 구성원이 자발적으로 발표를 하는 시간이에요. 특정 프로젝트를 하면서 깨달은 점이나 노하우를 공유하는 식이죠. 저는 이런 세미나가 특히 주니어에게는 아주 좋은 발언 기회라고 생각해요.  사실 작년에 제가 ReactiveX와 Reactive System을 좋아해서 공부하고 있었어요. 당연히 오픈서베이 개발팀에도 도입하고 싶었죠. 근데 팀에 리액티브X를 다루던 분이 없어서 도입 시 이득에 대한 공감대가 없었어요. 그래서 세미나를 활용해서 , <리액티브 시스템으로 설문 서비스 구축하기>라는 주제로 두 차례 발표했어요.  당시에는 발표한다고 진짜 리액티브 시스템을 도입할 수 있을까 생각했어요. ‘필요하니 돈 내고 사자!’라며 간단히 설득할 수 있는 사안이 아니었거든요. 리액티브 시스템은 말하자면 개발 패러다임, 업무 방법론이에요. 개발 업무를 아무도 하지 않았던 새로운 방법으로 바꾸자는 얘기니까 팀 차원에서는 훨씬 복잡하고 신중한 의사결정이 필요한 사안이었죠.    조셉에게 세미나는 그런 중요한 사안을 건의할 기회의 장이었군요. 결국 도입은 성공했나요? 네(웃음). 덕분에 오베이 앱은 RxJava를 활용해 개발했어요. 이후 설문 서비스 개발을 담당하는 테리(이한별 개발자)는 리액티브한 방식으로 내부 파일 관리 시스템을 만들었어요. 정말로 저 혼자만 아니라 팀에서도 활용 가능한 개발 방법론이 된 거죠. 생각해보면 입사한 지 1년도 안 된 개발자가 팀에 새로운 업무 방법론을 도입하자는 발언권을 가질 수 있다는 점 자체가 오픈서베이 개발팀의 업무 문화와 일하는 방법을 단적으로 보여주는 예시 아닐까 싶어요.    마지막으로 오픈서베이의 예비 구성원분들께 한마디 부탁드립니다.  저는 오픈서베이를 다니면서 좋은 구성원들에게 자극을 받고 더 성장하기 위해 노력하게 된 것 같아요. 사실 제가 학창시절 때 꿈이 프로게이머였을 정도로 게임을 좋아해요. 회사 다니면서도 다른 시간 다 줄여도 게임하는 시간은 못 줄였을 정도로요.  그런데 좋은 업무 환경과 동료들, 성장 기회, 그리고 확실한 보상까지 고루 갖춘 회사에 다녀보니 더 좋은 사람이 되고 싶다는 생각이 들더라고요. 다른 동료들처럼 훌륭한 사람이 되고 싶어서 말이죠. 그래서 요즘은 그 좋아하던 게임도 접어두고 자기 계발에 몰두하고 있어요.  단순히 높은 연봉이나 좋은 복지가 아니라 함께 성장하고 싶은 예비 구성원분들의 많은 지원을 기대합니다!      “조셉과 함께 일하고 싶으시다면 지금 바로 오픈서베이 입사 지원을 해보세요”  
조회수 1821

Swift 4.1에서 딥링크로 앱을 여는 경우 크래시되는 문제 해결하기

최근 Xcode 9.3 버전이 배포되었습니다. 이 버전에는 가장 최신의 Swift 4.1 버전이 포함되어 있습니다. Swift 4.1에는 여러 흥미로운 개선사항들이 많지만, 치명적인 버그도 존재합니다. 바로 딥링크를 통해 앱을 여는 경우 크래시가 발생하는 문제입니다. StyleShare에서는 QA 과정을 통해 문제를 발견할 수 있었습니다.만약 여러분의 애플리케이션이 아래 조건을 모두 충족할 경우 문제가 발생합니다:Swift 4.1 버전을 이용해서 빌드한 경우Deployment Target이 iOS 11.0 미만인 경우AppDelegate에서 application(_:open:sourceApplication:annotation:) 메서드를 구현한 경우문제를 재현하기에 가장 좋은 방법은 Safari 앱을 이용하는 것입니다.1. iOS 기기 또는 사뮬레이터에서 Safari 앱을 구동합니다.2. 주소 입력란에 앱이 지원하는 딥링크 URL을 입력한 뒤 이동합니다. (e.g. myapp://)3. 앱이 구동됨과 동시에 강제 종료됩니다.이 버그는 Swift 이슈 트래커에 SR-7240 티켓으로 이미 등록되어 있습니다. Resolved 상태로 표시되지만 이번 Xcode 9.3 버전에는 포함되지 않은 것으로 보입니다. 다행히 댓글에 한 개발자가 문제를 해결할 수 있는 workaround를 공유해두었는데요. 이 방법을 이용하면 당장의 문제는 해결할 수 있습니다. AppDelegate 메서드의 annotation 파라미터의 타입을 Any에서 Any?로 변경하는 것입니다.- func application(_ application: UIApplication, open url: URL, sourceApplication: String?, annotation: Any) -> Bool + func application(_ application: UIApplication, open url: URL, sourceApplication: String?, annotation: Any?) -> Bool<iframe width="700" height="250" data-src="/media/0ce1fe8c63fca7a6c953233b94406d02?postId=ed495077c36" data-media-id="0ce1fe8c63fca7a6c953233b94406d02" data-thumbnail="https://i.embed.ly/1/image?url=https://avatars2.githubusercontent.com/u/931655?s=400&v=4&key=a19fcc184b9711e1b4764040d3dc5c07" class="progressiveMedia-iframe js-progressiveMedia-iframe" allowfullscreen="" frameborder="0" src="https://medium.com/media/0ce1fe8c63fca7a6c953233b94406d02?postId=ed495077c36" style="display: block; position: absolute; margin: auto; max-width: 100%; box-sizing: border-box; transform: translateZ(0px); top: 0px; left: 0px; width: 700px; height: 100px;">UIApplicationDelegate에 정의된 메서드 시그니쳐와 다르기 때문에 컴파일러가 경고를 표시하지만 무시하셔도 됩니다.만약 새로운 버전의 앱을 릴리즈 할 계획을 가지고 계시다면 이 이슈를 꼭 확인하시길 바랍니다. 이 버그는 페이스북 로그인 등 다른 앱을 이용한 로그인이나, 카드 결제 후 주문서로 돌아오는 흐름에서 큰 문제를 일으킵니다. 이 글이 여러분들께 도움이 되길 바랍니다.Swift Korea 그룹에서 Xcode Release Notes에도 같은 내용이 있다는 것을 제보해주셨습니다. Swift Compiler 섹션의 Known Issues 4번째 항목입니다.#스타일쉐어 #개발팀 #개발자 #개발후기 #경험공유 #인사이트
조회수 1190

장애를 가장 빠르게 알아내는 액티브 트랜잭션

IT 서비스는 장애가 발생할 수 밖에 없습니다. 현대의 서비스는 지속적으로 커지고 복잡해지고 있습니다. 이를 해결하기 위한 MSA 구조는 장애의 규모를 줄여줄수 있지만 장애는 여전히 발생합니다. 그렇기 때문에 최근 애플리케이션 운영은 장애의 규모를 줄이고 장애를 빠르게 해결하는데 집중하고 있습니다.  그런데 이미 오래전부터 장애를 빠르게 해결하는 문화를 가진 지역이 있습니다. 바로 우리가 살고 있는 대한민국 서울입니다. 2000년에 엔터프라이즈의 IT 서비스가 태동될 때, 경험많은 해외 IT 기업들이 5년이 걸릴것이라 예상하는 ERP 시스템 통합을 한국의 기업들은 2년에서 3년만에 이뤄내는 기적(IT 지옥의 시작)을 이뤄냅니다. IT 기술이 전혀 없던 나라에서 빠르게 엔터프라이즈 IT 서비스들을 만들어 나가다보니 많은 문제들이 생겼습니다. IT 엔지니어의 혹사도 문제였지만 급하게 만들어진 IT 서비스들을 운영하는 것도 쉽지가 않았습니다. 2000년 중반의 어렵던 프로그래머의 삶을 대표하는 이미지이 때, 국내에 APM(Application Performance Mangement, 애플리케이션 성능 관리) 솔루션들이 혜성처럼 나옵니다. APM 솔루션을 통해 서비스 장애 원인을 알아낼 수 있었기 때문에 국내 엔터프라이즈 서비스를 운영하던 기업들에게 APM 솔루션은 단비와 같았습니다. 그리고 국내 APM 솔루션들은 해외 솔루션들과 비교되는 몇몇 특징을 가지고 있었는데, 그 중 하나가 실시간 어플리케이션 분석이였습니다. 그 중에서도 대표적인 실시간 분석 기능이 액티브 트랜잭션입니다. 액티브 트랜잭션애플리케이션 성능 분석 솔루션은 종료된 트랜잭션을 분석하는 기술입니다. 고객의 요청에서 응답까지의 과정을 트랜잭션이라고 합니다. 이렇게 완료된 고객의 요청을 하나 하나 분석하면 애플리케이션의 성능을 알아낼 수 있습니다. 그리고 액티브 트랜잭션은 종료되기 전의 트랜잭션을 분석하는 것입니다. 아직 완료되지 않은 트랜잭션을 분석하기 때문에 액티브 트랜잭션은 장애를 가장 빠르게 볼 수 있는 선행지표가 됩니다. 이해를 돕기 위해 아래에 벤더별 액티브 트랜잭션을 보여드립니다. 제니퍼소프트의 Active Service트랜잭션의 요청건수, 진행건수(Active Service), 완료건수가 상단에 나옵니다. 하단에는 다양한 방법으로 진행건수Active Service)를 보여주고 있습니다. 액셈의 Active Transaction트랜잭션의 요청건수, 대기건수(Active Service), 완료건수가 상단에 나옵니다. 하단에는 대기건수만(Active Transaction)를 보여주고 있습니다.와탭랩스의 Active Transaction트랜잭션의 진행건수를 원형으로 보여주고 있습니다. 와탭의 서비스는 대용량 분석을 위해 기존의 이퀄라이즈를 원형으로 보여주는 특징을 가지고 있습니다. 액티브 트랜잭션은 서비스를 오픈하는 과정에서 큰 효과를 보입니다. 아직 서비스가 완벽하지 않은 상태에서 부하 테스트를 하게 되면 서비스에 락이 걸리면서 트랜잭션이 연속으로 홀딩되면서 서비스 전체가 다운되기도 하는데, 이렇게 되면 종료된 트랜잭션으로는 분석이 불가능하기 때문입니다. 장애 상황에서의 액티브 트랜잭션장애 상황이 되면 일반적으로 액티브 트랜잭션의 양이 증가하게 됩니다. 아래는 와탭의 성능추이에서 볼수 있는 엑티브 트랜잭션의 건수를 표현하는 지표입니다. 평소 액티브 트랜잭션이 10건 이하였다면 아래와 같은 상황은 장애 상황일 확률이 높습니다. 마무리애플리케이션 성능을 분석하는 기준은 트랜잭션입니다. 데이터 분석 기준으로는 종료된 트랜잭션을 추적하는 것이 가장 중요합니다. 하지만 액티브 트랜잭션은 선행지표로서의 의미와 함께 종료된 트랜잭션으로 분석할 수 없는 상황을 알아낼 수 있는 중요한 지표이기도 합니다. 여러분이 사용하는 애플리케이션 성능 분석 도구가 있다면 액티브 트랜잭션 지표도 잘 활용하시기 바랍니다. #와탭랩스 #개발자 #개발팀 #인사이트 #경험공유 #일지
조회수 11050

Next.js 튜토리얼 6편: 서버 사이드

* 이 글은 Next.js의 공식 튜토리얼을 번역한 글입니다.** 오역 및 오탈자가 있을 수 있습니다. 발견하시면 제보해주세요!목차1편: 시작하기 2편: 페이지 이동 3편: 공유 컴포넌트4편: 동적 페이지 5편: 라우트 마스킹6편: 서버 사이드 - 현재 글7편: 데이터 가져오기8편: 컴포넌트 스타일링9편: 배포하기개요이전 편에서는 깔끔한 URL를 생성하는 방법에 대해 배웠습니다. 기본적으로 다음과 같이 생긴 URL를 가질 수 있습니다: http://localhost:3000/p/my-blog-post하지만 이 URL은 클라이언트 사이드 이동 시에만 동작합니다. 페이지를 새로고침하면 404 페이지가 표시됩니다.페이지 디렉토리에 p/my-blog-post를 부르는 실제 페이지가 없기 때문입니다.Next.js 커스텀 서버 API를 이용하여 쉽게 해결할 수 있습니다. 어떻게 구현할 수 있는지 살펴봅시다.설치이번 장에서는 간단한 Next.js 애플리케이션이 필요합니다. 다음의 샘플 애플리케이션을 다운받아주세요:아래의 명령어로 실행시킬 수 있습니다:이제 http://localhost:3000로 이동하여 애플리케이션에 접근할 수 있습니다.커스텀 서버 생성하기Express를 사용하여 애플리케이션의 커스텀 서버를 생성할 예정입니다. 간단합니다.먼저 애플리케이션에 Express를 추가해주세요:npm install —save express애플리케이션에 server.js 파일을 생성하고 다음과 같이 작성해주세요:npm dev 스크립트를 수정해주세요:이제 npm run dev 명령어로 애플리케이션을 다시 실행시켜주세요.어떤 일이 일어날까요?- 깔끔한 URL을 지원하는 서버 사이드를 추가할 것이다.- 애플리케이션이 동작하지만 서버 사이드의 깔끔한 URL은 동작하지 않는다.- "Express와 Next.js은 함께 동작할 수 없습니다"라는 에러가 발생할 것이다.- "Next.js 커스텀 서버는 프로덕션에서만 동작합니다"라는 에러가 발생할 것이다.커스텀 라우트 생성하기경험했다시피 구현한 커스텀 서버가 "next" 바이너리 명령어와 비슷하기 때문에 이전과 비슷하게 동작합니다.블로그 포스트 URL과 매치되는 커스텀 라우트를 추가해봅시다.새로운 라우트가 있는 server.js는 다음과 같습니다:다음의 코드를 살펴봅시다:단순히 기존 "/post" 페이지에 커스텀 라우트를 매핑했습니다. 또한 쿼리 매개 변수도 매핑했습니다.이게 끝입니다.애플리케이션을 다시 실행시키고 다음 페이지로 이동해주세요:http://localhost:3000/p/hello-nextjs더이상 404 페이지가 보이지 않습니다. 이제 실제 페이지를 볼 수 있습니다.하지만 작은 문제가 있습니다. 뭔지 아시나요?- 아무런 문제가 없다.- 클라이언트 사이드에서 랜더링된 제목과 서버 사이드에서 랜더링된 제목이 다르다.- 서버 사이드에서 랜더링된 페이지는 콘솔에 에러를 발생시킨다.- 클라이언트 사이드에서 랜더링된 페이지는 콘솔에 에러를 발생시킨다.URL에 있는 정보/post 페이지는 쿼리 문자열 파라미터 title을 통해 제목을 가져옵니다. 클라이언트 사이드 라우팅에서는 쉽게 URL 마스킹을 통해 적당한 값을 전달할 수 있습니다. (Link의 as prop을 통해)서버 라우트에서는 URL에 있는 블로그 포스트 ID만을 가지기 때문에 제목이 없습니다. 이 경우 ID를 서버 사이드 쿼리 문자열 파라미터로 설정합니다.다음과 같은 라우트 정의를 볼 수 있습니다:문제가 발생하지만 실제로는 ID를 사용하여 클라이언트와 서버 모두 서버에서 데이터를 가져오므로 이는 별로 문제가 되지 않습니다.그래서 ID만 필요합니다.마무리Next.js의 커스텀 서버 API를 사용한 라우트를 간단히 구현해보았습니다. 깔끔한 URL을 지원하는 서버 사이드를 추가했습니다. 원하는 대로 여러 라우트를 구현할 수 있습니다.Express를 사용하는 것에 국한되지 않습니다. 원하는 Node.js 서버 프레임워크를 사용할 수 있습니다. 커스텀 서버 API에 대한 Next.js 문서를 볼 수 있습니다.#트레바리 #개발자 #안드로이드 #앱개발 #Next.js #백엔드 #인사이트 #경험공유
조회수 1661

개발자 직군 파헤치기 3 | 블록체인 개발자

이번 포스팅은 블록체인 개발자!2017년 대한민국은 가상화폐의 광풍에 휩싸이게 된다. 남녀노소 가릴 것 없이 많은 사람들이 가상화폐에 투자를 했다. 전 세계에 유례가 없을 정도로 국내 가상화폐 투자 열기는 뜨거웠으며 해외의 가상화폐 투자자들은 국내 투자자들의 움직임에 예의주시하면서 투자할 정도였다.이와 동시에 가상화폐의 기술적 원천이 된 블록체인(Block Chain) 기술에 대한 관심도 증가했다. 제2의 인터넷이 될 거라는 찬사를 받으면서 가상화폐의 부상은 뜨거운 관심의 대상이었다. 정부의 가상화폐 규제가 있었지만 시장에서는 블록체인 기술의 잠재적 가능성에 주목을 하면서 이것을 가지고 어떻게 혁신적인 서비스를 제공할지 고심하고 있다. 이에 따라 일반 개발자는 물론이고 기업에서도 블록체인 개발자에 대한 수요와 관심이 늘고 있다.이러한 관심 때문에 개발자를 꿈꾸는 많은 분들이 블록체인 개발자는 무엇을 하고 어떻게 될 수 있는 것인지 궁금해하고 있다. 그래서 이번 포스팅에서는 블록체인 개발자가 되기 위해서는 어떻게 해야 하는지와 더불어, 블록체인 기술에 대한 전망 그리고 블록체인 개발자의 시장 수요에 대한 글을 써 볼 것이다.*이 글은 블록체인 기술에 대한 자세한 설명은 하지 않고 있습니다.*Photo by Andre Francois on Unsplash미래를 여는 신기술, 블록체인의 전망블록체인 기술이 뜨고 있다고 하지만 도대체 어떤 분야에서 적용될 수 있기에 이렇게 많은 관심을 받고 있는 것일까? '딱 이 분야가 유망합니다'라고 말하기가 어려울 정도로 블록체인은 폭넓은 분야에 걸쳐서 파괴적인 혁신성을 가지고 있다. 그중  몇 가지만 추려서 이야기하고자 한다.1. 금융, 은행블록체인의 기술의 특징은 탈 중앙화, 신뢰성, 보안성이다. 전문가들은 기존의 은행들이 하던 업무를 핀테크 기업들이 혁신적인 서비스와 가격으로 대체할 것으로 예상한다. 블록체인 기술이 가지고 있는 신뢰성과 보안성으로 인해 일반 기업들도 거대 은행이 보유하고 있는 보안성을 획득할 수 있는 것이다. 거래 과정에서 제3자를 거치지 않기 때문에 거래의 속도와 효율성 그리고 경제성이 크게 증가한다.핀테크 스타트업뿐만 아니라 거대 금융권의 은행들이나 기존의 대기업들도 블록체인 기술을 이용한 서비스를 발 빠르게 준비하고 있다. 마스터카드는 블록체인 기술을 통해 즉석 지불 시스템을 개발하고 있다. 또한 글로벌 기업 IBM은 서로 다른 국가에 위치한 금융 기관이 블록체인 기술을 이용해서 결제를 처리할 수 있도록 하는 뱅킹 솔루션을 개발했다.현재 이더리움이 선도하는 스마트 계약도 금융권에서 주목하는 분야다. 스마트 계약은 특정 조건이 충족되면 은행과 같은 제3자를 거치지 않고 계약을 이행하게끔 도와준다. 예를 들어, 납품 기업과 발주 기업이 스마트 계약을 맺었다. 납품 기업이 발주 기업의 창고에 물품을 보내고 물품이 도착을 하면(IOT 센서로 감지된다) 납품 기업은 자동으로 결제 대금을 자동으로 받게 된다.2. 물류위에서 블록체인 기술의 특징 중 신뢰성과 보안성을 언급했다. 정보의 신뢰성과 보안성은 물류 시스템에도 파급력을 미칠 것이다. 많은 전문가들이 블록체인으로 인해 물류 시스템에 혁신적인 변화가 가능하다고 말한다. 블록체인 기술이 어떻게 물류 시스템에 적용될 수 있는지 직접 예시로 살펴보자.영국의 소프트웨어 회사 프로비넌스는 블록체인 기술을 이용해서 소매업자와 식당들이 원래 계약했던 대로 재료가 들어오는지 확인할 수 있게 만들었다. 트래킹(tracking) 기술과 결합하여 만든 이 소프트웨어는 재료가 수확되는 과정부터 최종 소비자가 구매하는 단계까지 꼼꼼히 추적하고 관리한다. 공급망의 모든 단계에서 변경 불가능한 데이터가 블록에 추가된다. 이 소프트웨어를 통해 소비자들은 자신이 무엇을 먹는지, 기업이 불법 조업을 통해 재료를 조달한 것이 아닌지, 이 농작물에 대한 적절한 보상이 농부에게 돌아갔는지, 이 식재료가 유기농이 맞는지 명확하게 확인할 수 있다.한편, 중국의 월마트와 IBM이 협력해 중국에서 유통되는 돼지고기의 유통 전 과정을 블록체인 기술을 활용해 추적을 하기도 했다. 월마트는 더 나아가 농산물 공급망의 모든 단계를 추적하기 위한 프로젝트를 IBM과 진행하고 있다. 또한 영국의 신생기업 에버레저는 블록체인 기술을 이용해 다이아몬드와 같은 고부가 가치 상품들의 원산지 추적과 인증을 IBM 블록체인 기술을 활용하고 있다.3. 디지털 콘텐츠블록체인 기술로 디지털 콘텐츠에 대한 지적 재산권 보호를 더 확실하게 할 수 있다. 기존에는 불법적인 경로로 승인되지 않은 디지털 콘텐츠들이 유포가 됐다. 하지만 블록체인 기술로 온라인 콘텐츠에 대한 저작권, 권한, 결제를 관리할 수 있도록 작업할 수 있다. 블록체인 기술을 통해 콘텐츠 원저자의 증명을 더 쉽게 하고 해당 콘텐츠에 누가 접근을 했는지 추적할 수 있다.또한 항상 이슈가 되어 왔던 뮤지션들의 음반 판매 금액에 대해서도 블록체인 기술이 혁신을 가져다줄 것이다. 기존의 중간 단계의 서비스를 없애고 비용을 절감해서 음반 제작자들에게 더 많은 몫이 돌아갈 수 있다. 위에서 언급한 스마트 계약을 통해 라이선스 이슈의 문제들도 해결할 수 있다.블록체인 개발자, 얼마나 핫해?블록체인 기술에 대한 뜨거운 관심에 힘입어 블록체인 개발자에 대한 수요도 크게 증가하고 있다. 아직은 국내에서 가상화폐에 대한 비즈니스가 주를 이루고 있지만 정부의 정책과 시장의 기대와 맞물려 그 수요는 더욱더 커질 예정이다. 여기 블록체인 개발자의 수요에 대한 기사 있다.기사에 따르면 지난 1분기 취업사이트 잡코리아에 블록체인 키워드로 등록된 채용공고는 총 1500여 건이다. 이는 전년 동기 대비 9배 이상 늘어난 수치라고 한다. 또 잡코리아가 분석한 결과 지난해 하반기부터 암호화폐 개발자 수요가 급증했다고 한다. 지난해 1분기와 비교하면 올해 1분기 등록건수는 9배 이상이며 직전 분기와 비교해도 3배에 달한다.다른 아웃소싱 플랫폼 사이트도 비슷하다. 4만 7천 명의 유저를 보유한 위시캣에 따르면 2014년 8월부터 지난달까지 등록된 암호화폐 관련 프로젝트는 108건이다. 그리고 이 중에 절반인 55번이 올해 1분기에 등록이 되었다고 한다. 개발자 커뮤니티 OKKY에 올라온 구인 글에는 월 급여 900만 원을 제시하고 암호화폐 개발하는 개발자를 찾고 있었다. 또 구인 사이트에 올라온 암호화폐 거래소 프로젝트 중 개발비용이 45일 동안 2억 5천만 원에 이른 사례도 있었다.기사에 나온 것처럼 블록체인 개발자의 수요는 암호화폐에 집중되어 있기는 하지만 빠르게 증가하고 있다. 또 많은 기업들이 암호화폐가 아닌 다른 비즈니스의 모델을 찾으면서 블록체인 서비스를 준비하고 있다. 블록체인 개발자는 말 그대로 요즘 가장 핫하다고 할 수 있다.그래서 블록체인 개발자 되기 위해서는?이렇게 핫한 블록체인 개발자가 되기 위해서는 어떤 기술들을 공부해야 할까? 물론 어떤 분야의 개발자가 된다는 것이 특정 기술을 익힌다고 되는 것은 아니다. 웹 개발자가 된다고 해서 자바스크립트와 HTML, CSS를 익힌다고 되는 것이 아닌 것처럼 말이다. 회사마다 진행하는 프로젝트가 있고 그것에 맞춘 기술 스택들을 익혀야 한다. 하지만, 그럼에도 블록체인 개발에 있어서 주류가 되는 기술들은 있다. 이것들을 공부해 가면서 블록체인 개발자를 준비한다면 한층 더 수월해질 것이다.1.솔리디티(Solidity)솔리디티는 블록체인 플랫폼에서 스마트 계약을 만들기 위한 프로그래밍 언어다. 이더리움의 핵심인 스마트 계약을 만들기 위해서는 솔리디티를 배워야 한다. 솔리디티는 EVM(Ethereum Virtual Machine)에서 돌아가도록 설계되었고, 자바스크립트와 비슷한 문법 구조를 갖고 있다. 자바스크립트를 알고 있다면 배우기가 훨씬 수월할 것이다.블록체인은 다양한 분야가 존재하지만 그중 스마트 계약은 가장 대표적인 혁신 기술이다. 그 스마트 계약 기술을 선도하는 이더리움 프로젝트를 다루기 위해서는 솔리디티를 배우는 것이 필수적이다. 블록체인 개발에도 다양한 기술 스택들이 있겠지만 주류 기술을 배운다고 하면 솔리디티를 배워야 한다.솔리디티를 배우기 위해서는 다양한 방법이 있겠지만, 유데미의 강좌를 들으면서 공부하는 것을 추천한다. 저렴한 가격에 퀄리티 높은 강좌를 들을 수 있다. 자세한 사항은 이곳을 참고하면 된다.2.하이퍼레저(Hyperledger)블록체인이 개념이 퍼블릭 네트워크 기반의 시스템이기는 하지만 누구나 데이터를 볼 수 있기 때문에 기밀문서 관리에는 사용되기 힘들다. 특히 금융권이나 기업 문서 같은 경우는 더더욱 그러하다. 그래서 폐쇄적인 프라이빗 네트워크 내에서 블록체인을 활용할 수 있는 기술이 필요하다.하이퍼레저는 이러한 프라이빗 블록체인을 필요로 하는 기업들의 연합체라고 볼 수 있다. 이 기업들은 컨소시엄을 맺고 프라이빗 블록체인을 더 발전시키려고 다양한 분야에서 협업하고 있다. 하이퍼레저 프로젝트는 리눅스 재단에서 주도하며 금융, 은행, 제조, 기술 등 다양한 분야에 관여한다. 그리고 이 프로젝트는 스마트 계약, 분산 합의 네트워크에 목표를 두고 있다.지금까지 에어버스, 엑센츄어, 바이두, IBM, J.P 모건, 히타치, 삼성 SDS 등 다양한 기업이 하이퍼레저에 포함되어 있다. 그만큼 많은 기업들이 하이퍼레저 프로젝트에 관심을 가지고 있다. 하이퍼레저 역시 유데미의 강좌를 통해서 배울 수 있다. 자세한 사항은 이곳을 참고하면 된다.블록체인 개발자의 첫걸음블록체인 개발자가 되기 위해서는 위의 기술 스택뿐만 아니라 기본적으로 백엔드에 대한 지식과 최소한 암호 기법에 대한 기본 지식이 있어야 한다. 또한, 블록체인의 많은 API 및 SDK가 자바스크립트와 nod.js로 이루어져 있다. 무엇부터 시작해야 할지 모르는 분이라면 자바스크립트부터 시작하면서 첫걸음을 떼는 것을 추천한다.블록체인은 IT 기술의 최전선에 있는 기술이다. 그렇기 때문에 산업 동향을 항상 예의주시하면서 빠르게 움직여야 한다. 기업이 원하는 블록체인 기술 스택을 빠르게 습득하고 그에 맞는 실력을 갖추는 것이 중요하다.지금까지 블록체인 개발자에 대해 알아보았다. 많은 내용들을 다루다 보니 각각에 내용들에 깊이 있게 다루지는 못했다. 그래도 이 글을 통해 블록체인 개발자가 되기 위한 가닥은 잡을 수 있었으면 좋겠다.
조회수 1045

"안정적인 서비스 운영으로 더 나은 코인원의 가치를 고객들에게 전달합니다:D" - 플랫폼셀 김영민

하나의 서비스를 출시하고 운영하기까지의 여정을 '출산과 육아'에 비유하곤 합니다. 아이를 건강하게 낳고, 올바르게 성장할 수 있도록 하기 위한 육아법은 모든 부모들의 고민일거에요. 이는 서비스를 출시한 엔지니어들에게도 마찬가지입니다. 심혈을 기울여 서비스를 개발하고, 이후 서비스가 고객들에게 안정적으로 제공될 수 있도록 유지하고 끊임없이 개선하죠.오늘은 코인원의 서비스를 건강하게 키워나가고 있는 코인원 플랫폼셀 영민님과 이야기를 나눠봤습니다. 365일 밤낮없이 운영되는 암호화폐 거래소 서비스 운영은 어떤 모습일까요? 영민님이 이야기하는 코인원 서비스 개발부터 구축, 운영까지의 여정에 함께하시죠!Q. 영민님 반갑습니다 :-) 먼저 자기소개를 부탁드립니다!안녕하세요, 플랫폼셀의 클라우드 플랫폼 엔지니어 김영민입니다. 어느덧, 코인원에 합류한지 1년 반의 시간이 흘렀네요. 저는 코인원 한국거래소를 시작으로 해외송금 서비스 ‘크로스', 글로벌거래소 ‘CGEX’와 같은 다양한 금융 서비스 인프라 업무를 경험했습니다. 현재는 코인원 한국거래소 서비스 인프라 구축과 운영 업무를 중점적으로 담당하고 있어요. 저를 포함한 플랫폼셀의 크루들은 코인원을 지탱하고 있는 인프라를 효율적으로 운영하고 있습니다. 특히, 개발과 운영셀에 속해 있는 크루들과의 밀접한 소통으로 고객에게 더 나은 서비스의 가치를 전달할 수 있도록 하는 것이 목표입니다.  Q. 플랫폼셀은 어떻게 구성되었나요? 구체적으로 어떤 일을 하시는지도 궁금합니다. 플랫폼셀은 크게 클라우드 플랫폼 엔지니어들로 구성되어 있습니다. 세부적으로 시스템 엔지니어, 네트워크 엔지니어, 데이터 사이언티스트, 플랫폼 개발 업무로 나뉘어집니다. 플랫폼셀은 코인원 초창기 시절부터 팀명과 업무범위에 많은 변화가 있었습니다. 인프라팀, SRE(Site Reliability Engineering)팀을 거쳐 지금의 플랫폼셀이 탄생하게 되었죠. 플랫폼셀의 가장 큰 목표는 안정적인 운영을 통해 서비스의 신뢰성을 확보하는 것입니다. 이를 위해 신속하게 개발을 지원할 수 있는 플랫폼을 설계하고 구축하려고해요.플랫폼셀 크루들의 열띤 업무의 현장!Q. 플랫폼셀이 많은 변천사를 겪어온 만큼, 코인원의 서비스 구성에도 큰 변화가 있었을 것으로 예상됩니다. 그 중 가장 큰 변화는 무엇인가요?초창기 코인원 서비스의 경우, 전통적인 서비스 아키텍처인 모놀리틱(Monolitic) 아키텍처 기반의 서비스가 많았습니다. 모놀리틱 아키텍처는 로컬 환경에서 개발하기에도 편리하고 통합 시나리오 테스트를 수행하기에도 쉬운 구성입니다. 다만, 코인원의 서비스가 지속적으로 성장하고 규모가 커지면서 몇가지 한계에 부딪혔습니다.서비스 복잡도가 증가하고 트래픽이 상승하면서, 서비스 확장이나 배포 관련 업무에 인프라 작업들이 수시로 발생하게 되었어요. 무중단 배포, 효율적인 리소스 사용, 인프라 표준화를 위해 ‘마이크로서비스 아키텍처'로의 전환이 필요한 시기였습니다. 이를 위해 마이그레이션(Migration, 데이터를 추출하여 새로운 시스템 내의 지정된 형식으로 옮기는 과정) 계획을 세우고 조직의 의사결정 프로세스와 개발 문화, 배포 프로세스들을 개선해 나가기 위해 노력했죠.Q. 암호화폐 거래소 ‘코인원' 서비스를 운영하시면서 다이나믹한 에피소드들이 많을 것 같습니다.2017년 12월 말, 비트코인 전고점 시기에 도달할즈음 코인원 거래소의 서비스 트래픽이 가파르게 상승했습니다. 매일마다 두배, 세배 이상의 인프라 확장작업이 필요했어요. AWS(Amazon Web Services)에 지불했던 비용이 17년 7월 대비 12월에 20배가 늘었습니다. 6개월이라는 짧은 시간동안 이렇게 급성장한 트래픽을 경험할 수 있는 업계는 몇없을거에요!Q. 코인원을 이용하는 고객들의 거래가 더 편리해질 수 있도록 플랫폼셀에서는 어떠한 노력을 기울이고 계신가요?트래픽 급증으로 서비스 업데이트를 할 경우, 서비스 지연 그리고 점검으로 인한 중단으로 불편을 겪은 고객분들이 계실 겁니다. 코인원은 이러한 문제를 해결 하기 위해 대용량 서비스를 운영 할 수 있도록 아키텍처를 변경하는 작업을 진행했습니다. CI/CD(Continuous Integration and Continuous Delivery, 지속적 통합과 지속적 전달) 자동화, 무중단 배포 환경을 갖추면서 서비스 지연과 중단의 빈도수가 점점 줄고 있습니다. 이제는 서비스를 더 빠르게 업데이트 하고 버그나 장애를 최소화 하며 트래픽이 갑작스럽게 증가하더라도 서비스 안정성을 확보 할 수 있는 플랫폼으로 진화하고 있어요.노을지는 창가 속의 슈퍼크루 영민님!Q. 코인원의 플랫폼셀만이 갖고 있는 장점을 이야기해본다면!코인원에는 어느 스타트업보다도 연륜이 가득한 시니어 엔지니어들이 플랫폼셀을 이끌고 있습니다. 블록체인, 암호화폐 업계 뿐만 아니라 직무 경험도 많으신 분들이 곳곳에 포진되어 있어요. 코인원 기술본부만이 갖고 있는 중요한 장점이기도 하죠. 또한 플랫폼셀은 내부적인 아키텍쳐, 코드 리뷰를 거치면서 일하는 방식을 지속적으로 개선해 나가고 있습니다.추후 플랫폼셀에 합류하실 분들도 새로운 것들을 찾고 계속해서 발전시키려고 하는 분들이 함께해주셨으면 좋겠습니다! 스탠드업 미팅, 회고를 통해 소통하고, 재미있는 개발문화를 만들어가고 있으니 플랫폼셀에 많은 지원 부탁드립니다 :) (저희 해치지 않아요! ㅎㅎㅎ)Q. 영민님은 코인원에 어떻게 합류하게 되셨나요?저는 실생활에 다양한 금융서비스를 제공하는 핀테크에 관심이 많았습니다. 핀테크에 대한 관심은 이전에 몸담았던 게임산업에서부터 시작되었어요. 게임에서도 암호화폐 거래소와 유사하게 서비스 내에서 통용되는 가상의 화폐가 있습니다. 그러다보니 ‘가상의 재화가 아닌 실물화폐를 다루는 곳의 서비스는 어떻게 제공될까?’ 라는 호기심이 강해졌어요. 신기술이었던 블록체인과 암호화폐를 눈여겨보게 되었고, 지금 이렇게 코인원 크루로 함께하고 있네요! 코인원에서는 실제 현금을 다루는 곳이기 때문에 막중한 책임감으로 서비스 안정성과 보안을 함께 신경쓰고 있습니다.Q. 지난 겨울에 코인원 크루들과 함께 재미난 추억을 만드셨다고 들었어요!2018년은 코인원에서 피보탈랩스를 시작으로 새로운 것들에 많이 도전해볼 수 있는 시간이었습니다. 그 중, 다양한 직무에 계신 크루들과 함께 참가했던 ‘AWS re:Invent 2018’ 행사가 기억에 남네요. 리인벤트 기술세션에서 소개되었던 Tool들이 코인원에서 많이 사용되고 있는데, 컨퍼런스에서 새롭게 배운 것들을 적용해볼 수 있을 것 같습니다! 힙한 개발문화들도 접해보고, 다양한 국가, 회사, 직군에 계신 분들을 만나뵙게 되어 개발을 바라보는 시야 또한 넓어졌네요. 코인원 크루와 함께했던 AWS re:Invent 현장!Q. 영민님이 어떠한 미래를 꿈꾸고 계신가요?거창한 미래를 이야기하기 보단 소소한 바램을 말씀드리고 싶어요. 2019년에도 그리고 이후에도 지금 함께 일하고 있는 코인원 크루들과 더 재미나게 일하고 싶습니다. 훌륭한 동료들이 제 옆에 있다는 것만으로도 난관을 헤쳐나갈 때 큰 도움이 됩니다. 똘똘 뭉친 지금의 조직력을 바탕으로 99.999%(?)의 서비스 안정화 꿈을 이룰 거랍니다. 마지막으로, 새해에는 야근을 조금 덜하고 사랑하는 두딸들과 행복한 저녁 시간을 자주 가지려구요! (아빠 얼굴 잊은거아니지?)더 안정적인 코인원 거래소를 위해 오늘도 24시간 고군분투하고 있는 영민님. 앞으로도 코인원 플랫폼셀은 암호화폐 거래에 최적화된 플랫폼 구축을 위해 최선의 노력을 다할 예정이랍니다. 코인원 플랫폼셀 크루들이 선보일 멋진 서비스에 많은 응원과 관심 부탁드립니다.이렇게 멋진 엔지니어들과 동료가 되고 싶지 않으신가요? 현재 코인원 플랫폼셀은 함께 일할 동료 크루를 애타게 기다리고 있습니다! 많은 지원 부탁드려요 :-)
조회수 1596

Humans of TODAIT : 전설의 전성윤을 만나다

‘Humans of TODAIT’의 두번째 주인공, 투데잇 안드로이드 개발자 전성윤을 만나봤습니다. 투데잇의 전설(★)이 된 그의 이야기를 함께 들어볼까요?(2016.08)✓ 전설윤, 그는 누구인가Q. 자기소개 부탁드려요.안녕하세요! 투데잇에서 안드로이드 개발자를 맡았던 전성윤입니다. 퇴사자 인터뷰를 하려니까 투데잇을 떠나는 게 정말 실감나네요. 작년 2015년 10월 경, ‘SW 마에스트로’ 과정에서 만난 분께서 대표님을 소개해주셨고, 좋은 인연으로 연결되어 투데잇과 함께 일하게 되었어요. 처음엔 안드로이드 개발자로 들어왔다가 지금은 안드로이드 개발 팀장직까지 맡고 있습니다. (당시 2016.08)Q. 투데잇을 떠나는 이유는 무엇인가요?사실 처음 입사할 때도 1년 정도 생각하고 있었어요. 일하다보니 투데잇이 너무 좋아져서 나가고 싶지 않았지만, 아무래도 군문제와 학교 복학 문제가 마음에 걸리더라고요. 그래서 여러 고민 끝에 할 수 없이 나가게 된 케이스예요. 결국 아쉽지만 이번 8월을 마지막으로 투데잇과 헤어지게 되었죠.Q. 별명이 전설윤이라고 하던데, 왜 전설이라고 불리는 건가요?저도 이번 인터뷰를 통해서 생각해보게 된 건데요. ‘전설’이라는 칭호가 지금은 한물 간 사람에게 붙는 것이 아닌가 싶어요. 다른 팀원분들이 들어오시게 되면서 자연스럽게 리즈시절이 지나게 되었죠. (웃음)다른 이유가 아니라, 혼자만 잘하는 것이 아닌 다 함께 잘하기 위해 애썼기 때문인 것 같아요. 업무에 있어 버려야 할 습관 같은 작업 처리 팁에 대해 새 팀원분들께 적극적으로 공유했고 적당한 선에서 체크해드렸어요. 7–8개월의 짬 덕분인지 기획 단계에서부터 개발 단계 때 준비할 것들이나 구현 방법들이 곧장 떠오르는 경지에 이르더라고요. 이런 점들이 다른 팀원분들이 좋은 퍼포먼스를 낼 수 있게 이끌어주는 역할을 했던 것 같아요. 또 그 분들도 잘 하는 방법에 대해 치열하게 고민했고 실제로도 다들 너무 잘해주셔서 결론적으로 이제는 혼자가 아닌 다 함께 잘하게 된 거죠.✓ 보안 전문가에서 투데잇 안드로이드 팀장으로 레벨 업!Q. 투데잇 안드로이드 팀장까지, 성윤님의 입사 초반부터 지금까지 업무 성장과정이 듣고 싶어요!입사 초기에는 솔직히 맘고생 많이 했어요. 내가 지금 당장 회사에 기여할 수 있는 점이 무엇일까 의욕적으로 많이 고민했지만, 그에 비해 개발 능력은 많이 떨어졌죠. 초기에는 무엇보다 제 개발 능력 수준에 대해 정확히 몰랐고 커뮤니케이션하는 방법이 미숙했던 것 같아요. 그 때마다 대표님, 개발팀장님께서 진심어린 피드백과 따끔한 조언을 계속 해주셔서 해결할 수 있었죠. 두 분의 노력덕분에 중반부터는 업무 처리 능력도 커뮤니케이션 능력도 많이 향상됐어요,이후에 본격적으로 개발자분들이 더 들어오고 협업이 시작되면서 1인 개발자에서 2인 개발자 체제로 바뀌게 되었고, 자연스럽게 그에 따른 새로운 이슈들이 생길 수 밖에 없었어요. 다른 개발자분들에게 업무 분담하고 리드하는 부분에서 어려움을 느꼈지만, 함께 잘 해결해나갈 수 있었죠 지금은 기획적인 틀을 잡고 누군가에게 일을 맡기고 내 일을 해내고 하는 여러 부분에서 팀장의 위치에서 역할을 잘 해내는 것 같아요. (웃음)Q. 그렇다면 특별히 힘들거나 어려웠던 일정은 무엇이 있었나요?되게 좋은 질문이에요! 전 개발자다보니까 이런 질문이 너무 좋네요. (웃음)구매페이지와 그룹 기능 작업이 좀 힘들었어요. 그 중에서도 프로버전 구매페이지 작업이 가장 힘들었는데요. 작업 자체가 힘들다기보다는 구매페이지에서 에러가 나면 유저의 신뢰도에 큰 영향을 주기 때문에 한치의 실수도 용납되지 않는 부분이라는 점이 부담이 됐죠. 처음엔 실수도 많았는데, 그 이후에 치밀하게 설계한 덕분에 두 번째부턴 버그가 터져도 바로 대처할 수 있었어요. 개인적으로 개발적으로 많이 성장한 느낌을 받았죠.그룹 기능 개발은 클라이언트 쪽에서 해결해야 하는 부분이 많아서 힘들었어요. 하지만 릴리즈 이후 유저분들이 격렬하게 환호해주신 덕분에 뿌듯하게 잘 마무리할 수 있었죠. 두 작업 다 힘들었지만, 굉장히 보람됐던 작업으로 기억에 남아요.Q. 유저들의 피드백을 보면서 얻은 게 많다고 하던데, 좀 더 말해주세요!“실제 유저와 소통하고 친근한 서비스를 제공하려고 노력하다보니 유저들의 피드백이 얼마나 소중한 건지 알게되더라구요.”투데잇을 다니기 전까지만 해도 저는 별 5개 짜리 리뷰가 당연하게 받아야할 칭찬이라고 생각했어요. 그래서 사실 크게 반응하지 않았었는데, 실제 유저와 소통하고 친근한 서비스를 제공하려고 노력하다보니 유저들의 피드백이 얼마나 소중한 건지 알게되더라구요. 당연히 좋은 피드백은 정말 힘이 많이 되었고, 좋지 않은 피드백도 굉장히 감사했어요. 사실 유저 입장에서 그냥 지워버리면 그만인건데, 우리 앱의 장점을 알아봐주시고, 개선할 점을 말해주시고 또 기다려주시는 거잖아요. 그런 유저분들 보면서 빨리 개선해드리고 싶단 생각이 들죠. 그 어떤 피드백보다 더 큰 동기부여가 되더라고요.✓ 투데잇 TALK“투데잇팀은 서로 부담없이 정말 효율적으로 커뮤니케이션을 해서 어떻게 하면 서로의 업무 컨텍스트를 빠르게 마무리할지 고민해요.”Q. 투데잇의 힘은 이거다!음 투데잇의 힘은 서로를 존중하고 커뮤니케이션을 중시하는 데에서 나오는 것 같아요. 결국 모든 문제의 결착점은 커뮤니케이션이거든요. 사소한 거라도 시기에 맞춰서 커뮤니케이션이 되어야 하는데, 개발팀과 비개발팀간의 커뮤니케이션이 사실 어렵잖아요. 하지만 투데잇팀은 서로 부담없이 정말 효율적으로 커뮤니케이션을 해서 어떻게 하면 서로의 업무 컨텍스트를 빠르게 마무리할지 고민해요. 누군가 못한 부분이 있더라도 절대 무시하지 않고, 서로의 업무를 존중하고 정식적으로 피드백을 공유하면서 문제를 잘 해결하기 위한 고민을 하죠.Q. 투데잇에서 제일 기억에 남는 순간이 있다면?투데잇에서는 많이 힘들었을 때부터 행복했을 때 그리고 소소한 일상들까지 전부 다 기억에 남아요. 워크샵이라고 가평에 가서 일한 적이 있었는데, 정말 놀지도 못하고 거의 일만했거든요. 근데 밖에 나와서 그런지 그 자체가 너무 재밌었어요. 일하면서도 되게 색다르고 즐거웠죠. (웃음) 제주도로 워크샵 갔을 때도 너무 재미있었고, 정말 매일 매순간이 기억에 남아요. 팀 분위기가 너무 좋아서 그런지 특별한 일들 뿐만 아니라 개발팀 회의할 때나 회사 메신저에서 웃고 떠들고 했던 것들처럼 아주 소소한 일상들까지 모두 에피소드였던 것 같아요. 깜짝 생일파티도 그렇고 되게 예정없이 나온 에피소드가 많았거 든요. 그런게 진짜 참된 에피소드 아닐까요?✓ 마지막으로…Q. 애정이 컸던 만큼 투데잇을 떠나기 많이 아쉬울 것 같아요.네 많이 아쉽죠. 전 투데잇에서 10개월 동안 정말 하루종일 개발만 했어요. 일 하는 게 너무 좋아서 거의 자취하다시피 야근도 매일 했었거든요. 좋아하는 사람과 좋은 분위기에서 재밌게 일하기도 했고, 또 어떤 목표를 이루기 위해 정말 치열하게 고민하고 일할 수 있었는데 이 부분들을 더이상 느끼지 못한다는 점이 많이 아쉬워요.음 아쉬운 사건을 말하라면, 맨 처음으로 앱 안에 코틀린을 적용해볼 때 너무 시간을 오래 끌었던 일이 있었어요. 잘 적용시킬 방법에 대해 혼자 고민하고 정리해보다가 늦어졌었는데, 다른 분들 일정에 피해를 준데다가 실수도 한두개가 아니었거든요. 그 때 제가 계획대로 잘 처리했으면 마케팅적으로나 여러 시도들을 해볼 수 있지 않았을까?하는 아쉬움이 들죠. 결국 개발자가 세운 일정에서 해내는 여부에 따라 회사에 큰 영향이 가고, 다른 팀에도 막대한 영향이 갈 수 있다는 걸 뼈저리게 깨달았어요. 그래도 이 사건 덕분에 업무적으로도 많이 성장할 수 있었던 것 같아요. 몸소 당해봤으니 그럴 수 밖에 없죠. (웃음)Q. 투데잇을 떠나며 마지막으로 하고 싶은 말이 있다면?“충분히 치열하게 일했고 다함께 즐겁게 소통하면서 일했기 때문에 언젠가 또 다시 만나지 않을까 싶어요.”개인적으로 아쉬운 점은 있지만, 충분히 치열하게 일했고 다함께 즐겁게 소통하면서 일했기 때문에 언젠가 또 다시 만나지 않을까 싶어요. 모든 투데잇 사람들과 연을 이어가고 싶기도 하고 특히 대표님께 보답하고 싶다는 마음이 크거든요. 처음 들어갔을 때, 아무 준비 안 돼있는 상태였던 절 믿어주시고 함께 일할 수 있는 기회를 주셨어요. 앞서 말한 것처럼 일하면서 초반에 실수도 많이 했는데 꾸준히 믿고 지금의 포지션까지 저를 밀어주셨다는 점이 너무 감사하거든요. 대표님께 보답하자! 투데잇에 보답하자!가 마지막으로 하고 싶은 말이에요. 저 나가더라도 아는 척해주셔야 해요..!Q. 투데잇을 꿈꾸는 개발자에게 한마디!음 투데잇에 들어오는 건 어쩌면 쉬울 수도 있어요. 저 같은 경우 30분 정도 면접을 보고 당일에 바로 함께하기로 했거든요. 하지만 중요한 건 본인이 ‘함께 성장하고 싶은 사람’인가?에 대해 생각해보셔야 해요. 또 투데잇과 방향성이 맞는지 스스로 생각해보고, 성장하기 위해선 어떤 태세를 취해야 하는지 고민해보아야 하죠. 만약 이런 성향이 맞지 않는 사람이라면 아마 들어오시더라도 투데잇과 잘 맞지 않아서 힘들 수도 있거든요. 투데잇에 들어오고 싶은 분들은 이런 부분들에 대해 한 번 깊게 고민해보셨으면 좋겠어요.#투데잇 #팀원소개 #팀원인터뷰 #팀원자랑 #기업문화 #조직문화 #개발자 #개발팀
조회수 2822

Radix? Redis!

얼마전부터 antirez twitter에서 radix tree 관련 트윗이 올라왔습니다. 얼마 지나지 않아 antirez가 radix tree를 구현한 rax 프로젝트를 공개하고 redis의 cluster hash_slot의 저장구조를 radix tree로 수정 되는것을 보았습니다.그동안 antirez의 코드 읽으면서 배우는 게 많았고, 자료구조에 관심이 많아서 살펴보기 시작했습니다. radix tree를 왜 구현 했는지, 어떻게 구현쟀는지 알아보고 radix tree를 redis에 어떻게 적용하였는지도 알아보겠습니다.antirez는 redis의 hash-slot -> key 구조에서 중복으로 인한 메모리 사용을 줄이기 위해 radix tree 를 만들었다고 합니다. 이 포스트에선 rax를 적용시킨 redis cluster로 이야기를 진행 하겠습니다.“현재는 hash-slot -> key에만 사용되지만 추후에는 다양한 곳에 사용 예정”이라는 트윗redis cluster?redis에는 cluster 기능이 있습니다.6대 이상의 redis 노드를 cluster 구성하면(최소 leader 3대, follower 3대 구성해야 cluster 가능) 16384개의 hash_slot이 노드 갯수에 맞게 분배가 됩니다. 즉 3대의 leader로 cluster 구성하면 각각의 leader는 0 ~ 5460, 5461 ~ 10922, 10923 ~ 16383 hash_slot을 나눠 가집니다.cluster 구성 후 client가 데이터 저장/삭제/조회 명령어를 redis server에 전송할 때 마다 key의 hash값을 구하고 어떤 leader hash_slot에 포함되는지 찾습니다.# example 127.0.0.1:7000> set hello world # hash_slot = crc16("hello") & 0x3FFF 계산된 값이 현재 접속한 leader의 hash_slot 범위에 있다면 그대로 실행 되지만 다른 leader의 hash_slot 이라면 에러를 발생하고 다른 leader로 이동하라고 힌트를 줍니다.cluster 구성 후에 노드를 추가 하거나 제거 할 경우 각 leader의 hash_slot을 재분배 하고, hash_slot에 맞게 key도 재분배 되어야 합니다. 단순하게 생각하면 leader의 hash_slot 재분배한 후 모든 key를 재계산하고 hash_slot에 맞는 leader에 할당 하는 겁니다.[현재까지 저장된 keys].forEach(v => { hash_slot = crc16(v) & 0x3FFF // leader에 할당된 hash_slot에 맞게 분배 }) 하지만 antirez는 redis Sorted set 데이터 타입의 구현체인 skiplist 을 이용하여 문제를 풀었습니다. skiplist는 member와 score를 저장하고, score를 기준으로 정렬합니다. skiplist의 member에는 key를 저장하고 score에는 key의 hash_slot을 저장합니다.(변수명 slots_to_keys)slots_to_keys 정보는 cluster 구성된 모든 노드가 저장합니다. 이후 재분배가 필요해지면 16384개 hash_slot을 leader 갯수에 맞게 재분배 하고 slots_to_keys에 저장된 “key:hash_slot” 정보를 가지고 해당 hash_slot의 key를 조회 및 재분배 합니다. 즉 slots_to_keys에 이용하여 재분배시 발생하는 계산을 없앤것입니다.잘 했구만 뭐가 문제냐?redis에 key가 추가/삭제 될때마다 slots_to_keys에 데이터가 저장되고 지워집니다. redis에 저장되는 key 갯수가 증가 할수록 slots_to_keys의 크기도 커짐을 의미 합니다.(※ 메모리 사용량)또한 leader 갯수에 맞게 16384개 hash_slot을 leader에 재분배하고, 각 hash_slot에 맞는 key를 찾고 할당 합니다. 예를들어 slots_to_keys에서 score 0인(hash_slot 0을 의미) member를 조회해서 0번 hash_slot에 할당, score 1인 member를 조회해서 1번 hash_slot에 할당 하는 방식으로 0 ~ 16383 hash_slot을 진행합니다.앞에서 말한 hash_slot에 속한 key를 조회 하는 GETKEYSINSLOT 명령어가 있는데 여기에 이슈가 있습니다.cluster GETKEYSINSLOT slot count # slot: hash_slot 번호 # count: 특정 hash_slot에서 조회할 key 갯수 # example 127.0.0.1:7000> cluster GETKEYSINSLOT 0 3 # 0번 hash_slot의 key를 3개 조회한다. "47344|273766|70329104160040|key_39015" "47344|273766|70329104160040|key_89793" "47344|273766|70329104160040|key_92937" 사용자가 특정 hash_slot에 몇개의 key가 저장 되었는지 모르기때문에 count에 Integer.MAX 를 대입하는데, redis는 hash_slot에 실제로 저장된 key 갯수와는 상관없이 client가 전달한 count만큼의 메모리를 할당합니다.} else if (!strcasecmp(c->argv[1]->ptr,"getkeysinslot") && c->argc == 4) { /* cluster GETKEYSINSLOT */ long long maxkeys, slot; unsigned int numkeys, j; robj **keys; // ... 명령어의 4번째 인자를 maxkeys에 할당, 즉 사용자가 입력한 count if (getLongLongFromObjectOrReply(c,c->argv[3],&maxkeys,NULL) != C_OK) return; // ... keys = zmalloc(sizeof(robj*)*maxkeys); numkeys = getKeysInSlot(slot, keys, maxkeys); addReplyMultiBulkLen(c,numkeys); for (j = 0; j < numkeys>zmalloc maxkeyscluster GETKEYSINSLOT unnecessarily allocates memory그래서 메모리도 적게 차지하면서(압축 가능) key와 key의 hashslot을 효율적으로 저장 및 조회가 가능한 자료구조가 필요했고 antirez는 radix tree를 선택합니다.※ 뜬금 없는데 2012년, redis 자료형에 Trie를 추가한 P/R이 생각났습니다.radix tree 구현한 rax 알아보기시작하기전 radix tree (Wikipedia) 위키 페이지의 그림을 보고 감을 잡은 후에 아래를 보시면 잘 읽힙니다.자! 이제부터 rax의 주석과 코드를 보면서 어떻게 구현됐는지 알아보겠습니다.Noderax의 노드 구성은 다음과 같습니다.typedef struct raxNode { uint32_t iskey:1; /* Does this node contain a key? */ uint32_t isnull:1; /* Associated value is NULL (don't store it). */ uint32_t iscompr:1; /* Node is compressed. */ uint32_t size:29; /* Number of children, or compressed string len. */ unsigned char data[]; } raxNode; 노드의 정보를 담고있는 32 bit(iskey, isnull, iscompr, size)와 key/value 그리고 자식 노드의 포인터를 저장하는 unsigned char data[]가 있습니다. 특이한 점은 key/value를 동일한 노드에 저장 하지 않고 key가 저장된 노드의 자식 노드에 value를 저장합니다.※ 사진 출처위 그림을 예로 32 bit 정보가 어떤걸 의미하는지 알아보겠습니다.iskey는 노드가 key의 종착역(iskey:1)인지 중간역(iskey:0)인지 나타내는 flag입니다. 1, 3 노드는 iskey:0 이고 2, 4, 5, 6, 7 노드는 iskey:1이 됩니다.isnull은 value의 null 여부를 표시합니다. unsigned char data[]에 key/value 그리고 자식 노드의 포인터를 저장하므로 value를 찾으려면 계산이 들어갑니다. 불필요한 연산을 줄이기 위해 만든 필드 같습니다.Trie는 각 노드에 한글자씩 표현 하지만 Radix는 압축을 통해 한 노드에 여러 글자 표현이 가능합니다. 이를 나태내는 플래그 iscompr 입니다. 노드가 압축된 노드(iscompr:1)인지 아닌지(iscompr:0)를 나타냅니다.size는 iscompr 값에 따라 의미가 다릅니다. iscompr이 1이면 저장된 key의 길이를 의미하고 iscompr이 0이면 자식노드의 갯수(저장된 key의 갯수)를 의미합니다.위 4개 정보를 이용해서 한 노드의 크기를 구하는 코드는 아래와 같습니다.#define raxNodeCurrentLength(n) ( \ sizeof(raxNode)+(n)->size+ \ ((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \ (((n)->iskey && !(n)->isnull)*sizeof(void*)) \ ) ※ 노드에 value 주소를 저장하거나, 마지막 자식 노드 포인터를 알고 싶을때 사용합니다.FindraxLowWalk 함수를 이용해 key가 존재 하는지 판단합니다.size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) rax에 “ANNIBALE” -> “SCO” -> [] 로 저장 되어있을때 어떤 값을 리턴하는지 알아보겠습니다.*s 가 “ANNIBALESCO”이고 len이 11 인 경우# splitpos: 0, return value: 11 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode *s가 “ANNIBALETCO”이고 len이 11인 경우# splitpos: 0, return value: 9 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode *s의 길이 len과 return value가 같다면 rax에 key가 존재하는 것입니다. *s의 길이 len과 return value가 다른 경우 어디까지 매칭됐는지 보여주는 return value와 어떤 노드에 어디까지 일치했는지 표현하는 *stopnode, splitpos를 통해 추가 정보를 얻을수 있습니다.InsertraxLowWalk 함수를 이용해서 저장할 위치를 찾습니다. (*stopnode, splitpos, return value)1번에서 구해진 데이터를 이용해서 새로운 노드 생성 및 링크를 연결합니다.rax에 “ANNIBALE” -> “SCO” -> [] 상태에서 “ANNIENTARE”를 저장하는 과정입니다.1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 4, return value: 4 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode 2. *stopnode, splitpos 데이터를 이용하여 노드 분리 "ANNI" -> "B" -> "ALE" -> [] 3. iscompr: 0인 노드 "B"를 기준으로 새로운 key 저장 ("B"와 "E"는 같은 노드) |B| -> "ALE" -> [] "ANNI" -> |-| |E| -> "NTARE" -> [] RemoveraxLowWalk 함수를 이용해서 저장할 위치를 찾습니다. (*stopnode, splitpos, return value)1번에서 구해진 데이터를 이용해서 노드 제거 및 compress가 가능다면2가지 경우가 있습니다.마지막 노드만 iskey: 1이고, 연속으로 iscompr:1인 노드가 된 경우마지막 노드만 iskey: 1이고, iscompr:1 -> iscomplr:0 -> iscomplr:1 노드 구조가 된 경우입니다.첫번째 경우를 알아 보겠습니다. rax에 “FOO” -> “BAR” -> [] 상태에서 “FOO”를 지우는 과정입니다.1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 3, return value: 3 "FOO" -> "BAR" -> [] ^ | *stopnode 2. 해당 key 삭제, 여기서는 자식노드가 있으므로 노드 삭제는 하지 않고 노드의 iskey: 0으로 세팅 "FOO" -> "BAR" -> [] 3. compress가 가능한 경우 진행 "FOOBAR" -> [] 두번째 경우를 알아 보겠습니다.0. "FOOBAR"와 "FOOTER"가 저장된 상황입니다. FOOTER를 지우는 경우입니다. |B| -> "AR" -> [] "FOO" -> |-| |T| -> "ER" -> [] 1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 0, return value: 6 |B| -> "AR" -> [] "FOO" -> |-| |T| -> "ER" -> [] ^ | *stopnode 2. 해당 key 삭제 "FOO" -> "B" -> "AR" -> [] 3. compress가 가능한 경우 진행 "FOOBAR" -> [] cluster 정보는 어떻게 저장되나?기존 skiplist 자료구조를 이용했던게 어떻게 변경 되었는지 알아보겠습니다.server.cluster->slots_keys_count[hashslot] += add ? 1 : -1; if (keylen+2 > 64) indexed = zmalloc(keylen+2); indexed[0] = (hashslot >> 8) & 0xff; indexed[1] = hashslot & 0xff; memcpy(indexed+2,key->ptr,keylen); if (add) { raxInsert(server.cluster->slots_to_keys,indexed,keylen+2,NULL,NULL); } else { raxRemove(server.cluster->slots_to_keys,indexed,keylen+2,NULL); } 먼저 slots_keys_count 변수를 이용하여 각 hash_slot의 key 갯수를 저장합니다.그리고 key는 hash_slot(2 byte) + key, value는 NULL로 rax에 저장하여 특정 hash_slot에 속한 key 조회를 쉽게 만들었습니다.마치며rax 구현과 rax가 어떻게 redis에 적용됐는지 보면서 오랜만에 재밌게 코드를 읽은것 같습니다. 개인적으로 데이터 관련 유용한 무언가를 만드는게 목표인데, 이런 좋은 코드들을 하나 둘씩 제것으로 만드는것도 과정이라 생각하며 진행했습니다.앞으로 rax가 redis에서 어떻게 쓰일지 흥미롭고, Redis를 Saas 형태로 제공하는 업체들이 언제 적용할지도 궁금합니다.긴 글 읽어주셔서 감사합니다.cluster, rax 관련 antirez twitterRedis cluster Insertion cluster Issuesame amount data hash table vs radix treehashset + ziplist -> radix tree + listpack 1/5replace Hashset with Radix treeraxNode에서 사용한 flexible memberflexible memberrax 를 이용한 Redis Streams(2017.12.17일 업데이트)Redis Stream#잔디 #토스랩 #JANDI #기술스택 #도입후기 #Redis #인사이트
조회수 1312

단일 TABLE을 SELECT하자!

OverviewDB를 다뤄봤다면 SELECT문도 아실 겁니다. 가장 먼저 접하는 명령어 중에 하나이기도 하죠. 보통은 아래처럼 사용합니다. SELECT문SELECT     * FROM 테이블명  ; 명령을 주면 지정한 테이블에 저장된 모든 내용을 검색합니다. 이번 글에서는 테이블을 만들고 SELECT하는 과정을 다뤄보겠습니다. DB는 MySQL 5.6을 기준으로 하고, Tool은 MySQLWorkbench를 사용하겠습니다.Query, 너란 녀석테이블은 위와 같이 생성할 수 있습니다. 위의 내용은 MySQLWorkbench를 이용해 Model을 표시하면 아래와 같습니다. 구성원의 정보를 저장하도록 했고, 컬럼마다 의미를 갖게 됩니다. MBR_ID (구성원 아이디) : DB에서 구성원을 식별하는 아이디MBR_INDFY_NO (구성원 식별 번호) : 구성원을 실제 구별하는 번호로 과거에는 주민등록번호가 많이 사용되었고, 요즘은 e-mail 이 많이 사용됩니다.MBR_NM (구성원 명) : 구성원의 이름 테스트 데이터를 입력해 실행하면 어떤 결과가 나오는지 보겠습니다.가장 기본적인 SELECT문 실행계획을 보면 아래와 같이 나옵니다.실행 계획은 DB가 어떻게 Query를 수행할 건지 보여줍니다. Query가 복잡해지면 실행 계획을 보면서 Query가 올바르게 작성됐는지 확인하고 필요하다면 Query를 수정해야 합니다. DB를 시작할 때부터 실행 계획을 보는 습관을 기르는 게 중요한 이유입니다. 각 항목에 대한 설명id : SELECT 문에 있는 순차 식별자로 Query 를 구분하는 아이디select_type : SELECT의 유형SIMPLE : Subquery나 union 이 없는 단순한 SELECTtable : 참조되는 테이블의 명칭TB_MBR_BAS : 참조되는 테이블명type : 검색하는 방식ALL : TABLE의 모든 ROW를 스캔 위의 이미지는 임의로 만든 자료를 이용해 Query를 실행한 결과입니다. 실행 계획은 TABLE : TB_MBR_BAS 를 TYPE : ALL 전체 검색한다고 나옵니다. 실행한 내용도 같습니다. 여기서 MBR_NM 이 “나서영”인 자료를 검색해볼까요. WHERE 조건이 들어가자 실행 계획도 내용이 변경되었습니다. rows와 Extra에도 값이 있는데요. 두 항목을 잠시 짚고 넘어가겠습니다. rows : Query를 수행하기 위해 접근해야 하는 열의 수Extra : MySQL 이 Query 를 수행할때의 추가 정보Using where : Query 수행시 TABLE에서 값을 가져와 조건을 필터링 함 위의 결과처럼 전체를 검색해 필요한 자료만 추출하는 것을 FULL TABLE SCAN or FULL SCAN 이라고 합니다. 그러나 FULL SCAN은 성능이 좋지 않기 때문에 우선 꼭 필요한 Query인지 검토해야 합니다. 보통 MBR_NM에 INDEX를 추가해서 해결하는데요. INDEX를 추가해서 같은 Query를 수행하면 실행 계획은 어떻게 달라질까요. 분명 같은 Query였는데 INDEX에 따라 실행 계획이 변경된 걸 알 수 있습니다. INDEX를 추가해도 수행한 결과는 같지만 검색 속도에 많은 차이가 있습니다. 각 항목에 대한 설명type - ref : 인덱스로 자료를 검색하는 것으로 현재는 매칭(=) 자료 검색을 나타냄possible_keys : 현재 조건에 사용가능한 INDEX를 나타냄(인덱스가 N개일 수 있음) IX_MBR_BAS_02 : 현재 조건에 사용 가능한 INDEXkey : Query 수행시 사용될 INDEX (possible_keys 가 N 개일 경우 USE INDEX, FORCE INDEX, IGNORE INDEX 로 원하는 INDEX 로 바꾸어 수행할수 있음)key_len : 수행되는 INDEX 컬럼의 최대 BYTE 수를 나타냄152 : 수행되는 INDEX 컬럼의 BYTE 수가 152ref : INDEX 컬럼과 비교되는 상수 여부 or JOIN 시 선행 컬럼 constant : 상수 조건으로 INDEX 수행rows : 678 : 678 rows 접근하여 값을 찾음Extra : using index condition : INDEX 조건에 대하여 스토리지 엔진이 처리(MySQL의 구성에서 스토리지 엔진과 MySQL 엔진이 통신을 주고 받는데 스토리지 엔진에서 처리 하여 속도가 향상됨) ConclusionINDEX가 없으면 결과가 나오기까지 5초 정도 걸리지만, 반대로 INDEX가 있으면 1초 안에 결과가 나옵니다. 별거 아닌 것 같아 보이지만 실무에서는 엄청난 차이입니다. Query를 작성할 때 실행 계획을 확인하고 조금이라도 빨리 결과가 나올 수 있도록 하는 것이 중요하기 때문이죠. 다음 글에서는 단일 TABLE 을 SELECT하는 것을 주제로 이야기를 나눠보겠습니다. 무사히 SELECT하길 바라며.글한석종 부장 | R&D 데이터팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 758

HBase상 트랜잭션 라이브러리 Haeinsa를 소개합니다 - VCNC Engineering Blog

비트윈에서는 서비스 초기부터 HBase를 주요 데이터베이스로 사용하였습니다. HBase에서도 일반적인 다른 NoSQL처럼 트랜잭션을 제공하지 않습니다. HBase, Cassandra와 MongoDB는 하나의 행 혹은 하나의 Document에 대한 원자적 연산만 제공합니다. 하지만 여러 행에 대한 연산들을 원자적으로 실행할 수 있게 해주는 추상화된 트랜잭션 기능이 없다면 보통의 서비스 개발에 어려움을 겪게 됩니다. 비트윈 개발팀은 이런 문제를 해결하기 위해 노력했으며, 결국 HBase에서 트랜잭션을 제공해주는 라이브러리인 Haeinsa를 구현하여 실제 서비스에 적용하여 성공적으로 운영하고 있습니다. VCNC에서는 Haeinsa를 오픈소스로 공개하고 이번 글에서 이를 소개하고자 합니다.Haeinsa란 무엇인가?Haeinsa는 Percolator에서 영감을 받아 만들어진 트랜잭션 라이브러리입니다. HAcid, HBaseSI 등 HBase상에서 구현된 트랜잭션 프로젝트는 몇 개 있었지만, 성능상 큰 문제가 있었습니다. 실제로 서비스에 적용할 수 없었기 때문에 Haeinsa를 구현하게 되었습니다. Haeinsa를 이용하면 다음과 같은 코드를 통해 여러 행에 대한 트랜잭션을 쉽게 사용할 수 있습니다. 아래 예시에는 Put연산만 나와 있지만, 해인사는 Put외에도 Get, Delete, Scan 등 HBase에서 제공하는 일반적인 연산들을 모두 제공합니다.HaeinsaTransaction tx = tm.begin(); HaeinsaPut put1 = new HaeinsaPut(rowKey1); put1.add(family, qualifier, value1); table.put(tx, put1); HaeinsaPut put2 = new HaeinsaPut(rowKey2); put2.add(family, qualifier, value2); table.put(tx, put2); tx.commit(); Haeinsa의 특징Haeinsa의 특징을 간략하게 정리하면 다음과 같습니다. 좀 더 자세한 사항들은 Haeinsa 위키를 참고해 주시기 바랍니다.ACID: Multi-Row, Multi-Table에 대해 ACID 속성을 모두 만족하는 트랜잭션을 제공합니다.Linear Scalability: 트래픽이 늘어나더라도 HBase 노드들만 늘려주면 처리량을 늘릴 수 있습니다.Serializability: Snapshot Isolation보다 강력한 Isolation Level인 Serializability를 제공합니다.Low Overhead: NoSQL상에서의 트랜잭션을 위한 다른 프로젝트에 비해 오버헤드가 적습니다.Fault Tolerant: 서버나 클라이언트가 갑자기 죽더라도 트렌젝션의 무결성에는 아무 영향을 미치지 않습니다.Easy Migration: Haeinsa는 HBase를 전혀 건드리지 않고 클라이언트 라이브러리만 이용하여 트랜잭션을 구현합니다. 각 테이블에 Haeinsa 내부적으로 사용하는 Lock Column Family만 추가해주면 기존에 사용하던 HBase 클러스터에도 Haeinsa를 쉽게 적용할 수 있습니다.Used in practice: 비트윈에서는 Haeinsa를 이용하여 하루에 3억 건 이상의 트랜잭션을 처리하고 있습니다.Haeinsa는 오픈소스입니다. 고칠 점이 있다면 언제든지 GitHub에 리포지터리에서 개선에 참여하실 수 있습니다.Haeinsa의 성능Haeinsa는 같은 수의 연산을 처리하는 트랜잭션이라도 소수의 Row에 연산이 여러 번 일어나는 경우가 성능상 유리합니다. 다음 몇 가지 성능 테스트 그래프를 통해 Haeinsa의 성능에 대해 알아보겠습니다.아래 그래프는 3개의 Row에 총 6개의 Write, 3개의 Read연산을 수행한 트랜잭션의 테스트 결과입니다. 두 개의 Row에 3Write, 1Read 연산을 하고, 한 개의 Row에 1Read 연산을 한 것으로, 비트윈에서 가장 많이 일어나는 요청인 메시지 전송에 대해 시뮬레이션한 것입니다. 실제 서비스에서 가장 많이 일어나는 종류의 트랜잭션이라고 생각할 수 있습니다. 그런데 그냥 HBase를 사용하는 것보다 Haeinsa를 이용하는 것이 더 오히려 좋은 성능을 내는 것을 알 수 있습니다. 이는 Haeinsa에서는 커밋 시에만 모든 변경사항을 묶어서 한 번에 반영하기 때문에, 매번 RPC가 일어나는 일반 HBase보다 더 좋은 성능을 내는 것입니다.HBase 클러스터가 커질수록 트랜잭션 처리량이 늘어납니다. HBase와 마찬가지입니다.HBase 클러스터의 크기에 따른 응답시간 입니다. HBase와 다르지 않습니다..아래 그래프는 2개의 Row에 각각 한 개의 Write, 나머지 한 개의 Row에는 한 개의 Read 연산을 하는 트랜잭션에 대해 테스트한 것입니다. 각 Row에 하나의 연산만이 일어나기 때문에 최악의 경우라고 할 수 있습니다. 처리량과 응답시간 모두 그냥 HBase를 사용하는 것보다 2배에서 3배 정도 좋지 않은 것을 알 수 있습니다. 하지만 이 수치는 DynamoDB 상의 트랜잭션과 같은 다른 트랜잭션 라이브러리와 비교한다면 상당히 좋은 수준입니다.HBase보다 처리량이 떨어지긴 하지만, 클러스터가 커질수록 처리량이 늘어납니다.HBase보다 응답시간이 크긴 하지만 클러스터 크기에 따른 변화가 HBase와 크게 다르지 않습니다.프리젠테이션Haeinsa에 대한 전반적인 동작 원리와 성능을 소개하는 프리젠테이션입니다. 좀 더 자세히 알고 싶으시다면 아래 프리젠테이션이나 Haeinsa 위키를 참고해주세요.<iframe class="speakerdeck-iframe" frameborder="0" src="//speakerdeck.com/player/2d4b2bd00fc201314ae312fe4cd13937?" allowfullscreen="true" mozallowfullscreen="true" webkitallowfullscreen="true" style="border: 0px; background: padding-box rgba(0, 0, 0, 0.1); margin: 0px; padding: 0px; border-radius: 6px; box-shadow: rgba(0, 0, 0, 0.2) 0px 5px 40px; width: 750px; height: 563px;">
조회수 1146

애플리케이션 개발부터 배포까지, AWS CodeStar

OverviewAWS CodeStar를 이용하면 애플리케이션의 개발-빌드-배포까지 빠르게 진행할 수 있습니다. CodeStar는 몇 가지 장점을 가지고 있는데요. 오늘은 간단한 Python App Service Tutorial을 통해 CodeStar를 사용하는 방법을 알아보겠습니다. CodeStar의 장점통합된 UI로 한 번에 여러 활동 관리 가능Continuous Delivery 도구 체인을 구성해 신속한 코드 배포 가능소유자, 기여자 및 최종 사용자 추가로 안전한 협업 가능Dashboard를 사용해 전체 개발 프로세스의 진행 상황 추적 가능CodeStar 사용하기1-1. 처음 CodeStar를 실행하면 나오는 화면입니다. ‘Start a Project’를 누르면 프로젝트 템플릿을 선택할 수 있습니다. 1-2. 이것은 아직 지원되지 않는 지역(Region)에서 노출되는 화면입니다. 2-1. ‘Start a Project’를 클릭하면 프로젝트 템플릿을 선택할 수 있습니다. 2-2. Python과 AWS Lambda를 이용해 Web service를 구현해보겠습니다. 3. Project Name을 지정하고 repository를 선택합니다. 여기서는 AWS CodeCommit으로 선택하여 진행해보겠습니다. CodeCommit의 경우 Repository name을 따로 지정할 수도 있습니다. Repository name까지 지정했다면 Next를 클릭합니다. 4. 아래의 화면은 프로젝트의 흐름입니다. CodeCommit에 소스가 저장되고 AWS CodeBuild를 통해서 Build와 Test가 진행됩니다. 그리고 AWS CloudFormation을 통해서 Deploy가 진행되며 Monitoring은 Amazon Cloud Watch를 통해 진행합니다. CodeStar의 경우 IAM 사용자에 AWSCodeStarFullAccess 관리형 정책을 적용합니다.1) 5. Create Project를 클릭하면 프로젝트가 생성되고, CodeStar 유저 설정을 할 수 있습니다. 6-1. 이제 editor를 선택해봅시다. Command line tools, Eclipse, Visual Studio 등을 고를 수 있습니다. 툴은 언제든지 바꿀 수 있으니 여기서는 Eclipse를 이용하여 프로젝트를 진행하겠습니다. 6-2. See Instructions를 클릭하면 Eclipse를 다운로드 받아 설정하는 방법을 볼 수 있습니다. 6-3. 이제 Eclipse를 설치하고 AWS Toolkit for Eclipse를 설치해보겠습니다. Eclipse의 종류는 Eclipse IDE for java EE Developers 에디션을 설치하겠습니다. 다른 버전은 AWS Toolkit 설치할 때 의존성 문제가 발생할 수 있습니다. 7. Eclipse를 설치하고 Eclipse Marketplace에서 AWS Toolkit for Eclipse 2.0를 설치합니다. 8-1. import를 클릭하고 8-2. AWS -> AWS CodeStar Project를 선택합니다. 8-3. 지역(Region)을 선택하면 해당 지역의 CodeStar 프로젝트를 import 할 수 있습니다. 이 때 CodeCommit의 HTTPS Git credentials를 입력해야 합니다. 9. IAM -> Users -> 사용 계정을 선택해 HTTPS Git credentials for AWS CodeCommit에 가면 User Name과 Password를 Generate 할 수 있습니다. (아래 이미지에 민감한 정보는 삭제했습니다.) 10. CodeStar에서 Project를 Eclipse에 import한 모습입니다. buildspec.yml, index.py, README.md, template.yml이 clone 된 것을 확인할 수 있습니다. 11. 브라우저의 Eclipse 설치 설명 화면에서 back을 클릭해 에디터 선택 화면으로 돌아갑니다. 12. 도쿄 지역에 아직 출시되지 않은 Cloud9은 선택을 마치면 자동으로 셋업이 완료됩니다. 그러나 Eclipse는 Skip을 클릭해야 CodeStar Dashboard로 이동할 수 있습니다. 13. CodeStar Dashboard에 진입하였습니다. IDE는 이미 설정이 끝났으므로 I have already done this를 선택합니다. 화면 하단에 파란색 직육면체가 계속 그려지면 deploy가 완료된 상태가 아니므로 조금 기다렸다가 refresh를 해줍니다. 14-1. deploy가 완료되면 위와 같이 Team wiki tile, Application endpoints, Commit history, Continuous deployment, Application activity등이 나타납니다. 14-2. JIRA를 연동해서 사용할 수도 있는데, 그 내용은 다음에 다루겠습니다. ???? 15. 우선 첫 deploy가 완료된 것을 자축하며 Application endpoints를 클릭합니다. 개발자들에게 굉장히 익숙한 “Hello World”가 나옵니다! 간편하게 소스를 deploy 하여 AWS Api-Gateway와 연결했습니다. 이제 각 파일의 용도에 대한 설명과 새로운 method를 추가하는 작업을 진행해보겠습니다. 16. 이미지처럼 sample.py 파일을 추가하고 아래 코드를 추가합니다. import json import datetime def handler(event, context):     data = {         'output': 'Sample! pathParameters test = ' + event["pathParameters"]["test"]     }     return {'statusCode': 200,             'body': json.dumps(data),             'headers': {'Content-Type': 'application/json'}} 17. 그리고 template.yml에는 아래 내용을 추가합니다. — template.yml —  Sample:     Type: AWS::Serverless::Function     Properties:       Handler: sample.handler       Runtime: python3.6       Role:         Fn::ImportValue:           !Join ['-', [!Ref 'ProjectId', !Ref 'AWS::Region', 'LambdaTrustRole']]       Events:         GetEvent:           Type: Api           Properties:             Path: /sample/{test}             Method: get — 18-1. 이제 수정한 내용을 CodeStar에 반영해보겠습니다. 프로젝트에서 오른쪽 클릭을 해 Team -> Commit을 선택하고 Commit합니다. 18-2. 수정한 파일을 Commit하고 Push합니다. 18-3. Dashboard를 보면 Commit history에 Commit 내용이 반영되었습니다. 19-1. Dashboard에 Continuous deployment를 보면 Source -> Build -> Deploy를 통해서 수정한 내용이 반영되는 것을 실시간으로 확인할 수 있습니다. 이 작업은 생각보다 시간이 많이 소요됩니다. Deploy까지 Succeeded로 완료가 되면 새로 만들어진 URL을 클릭합니다. 19-2. 아래와 같이 pathParameters가 정상적으로 출력되는 것을 확인할 수 있습니다. 20. 이어서 새로 만든 API에 단위테스트를 추가해보겠습니다. sample_test.py라는 파일을 만들고 아래 코드를 추가합니다. — sample_test.py — from sample import handler   def test_sample_handler():         event = {         'pathParameters': {             'test': 'testMessage'         }     }         context = {}         expected = {         'body' : '{"output": "Sample! pathParameters test = testMessage"}'         ,'headers': {             'Content-Type': 'application/json'         },         'statusCode': 200     }         assert handler(event, context) == expected  — 21. 그리고 buildspec.yml 파일을 아래와 같이 수정합니다. — buildspec.yml —  version: 0.2 phases:    install:     commands:       - pip install pytest    pre_build:     commands:       - pytest    build:     commands:       - pip install --upgrade awscli       - aws cloudformation package --template template.yml --s3-bucket $S3_BUCKET --output-template template-export.yml artifacts:   type: zip   files:     - template-export.yml  — 22-1. Commit을 진행합니다. 그리고 다시 Source -> Build -> Deploy 를 거쳐서 Succeeded가 되면 Build 부분의 CodeBuild로 들어가서 Build 결과를 확인합니다. 22-2. 맨 마지막에 Build 결과를 클릭하면 Build 상세 내역을 확인하실 수 있습니다. 22-3. Build logs부분을 보면 sample_test.py를 이용한 단위테스트가 정상적으로 진행된 것을 확인할 수 있습니다. Conclusion지금까지 CodeStar를 이용한 간단한 튜토리얼을 진행했습니다. 다음 화에서는 다양한 방법으로 CodeStar를 활용할 수 있는 방법을 소개하겠습니다. CodeStar에 대한 자세한 내용은 여기를 참조하세요. 참고 1) AWS CodeStar 설정글윤석호 이사 | 브랜디 [email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유 #CTO

기업문화 엿볼 때, 더팀스

로그인

/