스토리 홈

인터뷰

피드

뉴스

조회수 1067

Jeykll에서 플러그인 없이 sitemape 생성하기

오늘은 구글에서 블로그를 검색할 수 있도록 설정하는데에서 크게 삽질했다.. 구글 웹마스터에 사이트맵을 등록해야 했는데 그 사이트맵이 자꾸 테스트를 통과못해서 3시간이나 삽질했다.. ㅠㅠ계속 삽질하다가 찾은 이유는.. _config.yml 파일에 url 속성이 없어서 url을 가져오지 못해 생긴 문제였다. ㅠㅠ 정말 허무하고 신나고.. 아무튼 모든 문제를 해결하여 성공적으로 완료했으니 그 방법에 대해 정리하도록 하겠음.참고한 블로그: 스우의 게임서버와 클라이언트! 미친듯이 영어 검색어들로 오류를 찾으며 삽질했었는데 의외로 한글 블로그에서 이 부분에 대해 언급되어 있어 해결할 수 있었다. 감사합니다 ㅠㅠsitemap 생성하기1. sitemap.xml 파일 생성블로그의 root 디렉토리에 sitemap.xml 파일 생성.2. sitemap.xml 파일 작성하단의 코드를 복사하여 만들어준 sitemap.xml 파일에 붙여넣기.            3. url 설정추가_config.yml 파일에 url 설정이 없는 경우 url 설정을 추가하여 sitemap.xml에서 site.url 변수값을 사용할 수 있도록 해줌. (이 부분 때문에 무한 삽질 ㅠㅠ)4. 구글 웹마스터 툴에서 테스트 혹은 제출구글 웹마스터 툴에서 테스트 혹은 제출을 통해 만들어준 sitemap이 제대로 동작하는지 확인.여태 GA나 기타 여러가지를 설정하느라 공개하지 않았는데 이제서야 공개합니다.제 블로그는 https://heelog.github.io/about/ 입니다!#트레바리 #개발자 #안드로이드 #앱개발 #Jeykll #백엔드 #인사이트 #경험공유
조회수 9087

왜 SQLite 에서 Realm 으로 옮겼는가?

SQLite 와 Realm잔디 앱은 2015년 중반부터 앱 내에 Offline Caching 기능이 포함되면서 본격적으로 Local-Databae 를 사용하기 시작했습니다.당시에 Realm 과 SQLite 를 검토하는 과정에서 다음과 같은 사유로 Realm 을 포기하였습니다.1.0 이 아직 되지 않은 미성숙된 상태의 라이브러리사용 사례에서 리포팅되는 버그들 (CPU 지원 등)Data 의 상속을 지원하지 않는 문제Robolectric 미지원 (안드로이드 팀 당시 테스트 프레임웍은 Robolectric 이었으며 현재 Android Test Support Library 입니다.)위의 문제로 인해 SQLite 를 선택하였고 여러 SQLite-ORM Library 를 검토한 후 ORMLite 를 선택하였습니다.누구보다 가볍고 빠르게2016년 6월경 앱의 핵심 데이터에 대해 개선작업이 되면서 그에 따라 기존의 Cache Data 로직도 많은 부분이 변경되었습니다. 그에 따라 실시간성으로 DB 를 대상으로 Read-Write 동작이 발생하게 되었습니다. Locking 등에 대한 처리가 되면서 성능에 대한 이슈가 계속적으로 발생할 수 밖에 없었습니다.간헐적인 성능 이슈는 사용자에게 나쁜 UX 로 다가갈 수 있기 때문에 다음과 같은 병목지점들에 대해 성능 향상을 꾀하였습니다.서버와의 통신 향상비지니스 로직 개선내부 DB 로직 향상서버와의 통신 향상병목 지점이 되는 것으로 판단되는 API 를 찾아 원인을 분석하여 개선요청을 서버팀에서 개선할 수 있도록 하였습니다.비지니스 로직 개선불필요한 객체 생성, 비동기로 처리해도 되는 동작들에 대해서는 로직 수정, 최소한의 검증 후에만 앱 실행, 네트워크 동작 최소화, 캐싱 활용 등 다양한 전략을 시도하였습니다.내부 DB 로직 향상SQLite 를 대상으로 빈번한 쿼리 작업을 최소한으로 하기 위해 2~3개의 쿼리로 이루어진 부분에 대해서 최소한의 쿼리만으로 동작하도록 여러 시도를 하였습니다.ORMLite 의 한계점ORMLite 를 대상으로 여러가지 시도를 하였습니다. 쿼리를 최소한으로 하고 1:N, N:M 동작에 대해서 로직 중간에 Query 가 발생하지 않도록 애초에 Join Query 를 하도록 하는 등 여러가지 전략을 시도하였으나 궁극적으로 ORMLite 자체에 대한 성능을 개선하는 것은 불가능하다는 결론이 도출하였습니다.여러 시도를 하였으나 고작 10~20% 정도의 성능향상밖에 없었으며 이는 사용자 관점에서 여전히 느릴 수 있다고 느끼기 충분한 수준이었습니다. 기존에 목표했던 100ms 이하의 쿼리를 기대하기엔 어려운 상황이었습니다.그래서 GreenDAO, Requery 라이브러리를 검토하였습니다.GreenDAO 의 문제점GreenDAO 를 검토하는 과정에서 겪은 가장 큰 문제점은 실제 Object 코드에 GreendDAO 코드가 생성이 붙으면서 유지보수에 큰 걸림돌이 될 수 있다는 것이 예상되었습니다.Requery 의 문제점성능면에서 ORMLite 에 비해서 큰 개선을 가져오지 못했습니다. Requery 는 JPA 를 가장 잘 채용한 것으로 알려져 있지만 그렇다고 SQLite 자체의 성능을 극적으로 개선했다고 보기엔 어려운 부분들이 있었습니다.SQLite vs RealmSQLite 가 가진 자체적인 성능 이슈를 SQLite 기반 라이브러리 범위안에서는 개선할 수 없다는 결론에 도달하였습니다.검토 방법 : 기존의 Object 를 대상으로 ORMLite 와 Realm 을 대상으로 성능을 검토합니다.데이터는 1:N / 1:1 관계가 되어 있는 여러 Object 의 집합으로 구성되어 있다.Database 에서 데이터를 가져올 때는 Eager Loading 방식으로 택한다.Write : 20회, Read : 20회 를 수행했고 그에 대한 평균 성능을 비교한다. SQLiteRealm성능 향상Write4039ms1142ms3.5xRead6010ms2450ms2.5x(Realm 의 벤치마크 정보와 너무 상이하여 재테스트한 결과 수정하였습니다.)위의 비교차트에서 봤듯이 Realm 은 무시무시한 성능이 입증되었습니다.도입 검토시에 Realm 버전은 2.0 이었기 때문에 충분히 신뢰할 수 있을 만큼 성숙되었다고 판단하고 최종적으로 도입을 결정하였습니다.Realm 도입 과정에서 문제점Realm 을 도입한다고 해서 여전히 잠재적인 문제가 해결된 것은 아니었습니다.파악된 다음 문제를 해결 해야 했습니다.Primitive 타입에 대해 Collection 저장을 지원하지 않는다.RealmObject 에 대한 호출 Thread 를 유지해야 한다.상속을 지원하지 않는다.Primitive 타입에 대한 Collection 관리를 해결하기이 문제는 ORMLite 에서 이미 겪었기 때문에 의외로 쉽게 구할 수 있었습니다. long, int 등에 대한 Wrapper 를 만들고 Json Convert 등의 과정에서 Post Processing 과정에서 Wrapper 로 데이터를 이관하도록 처리하였습니다.// example class Data extends RealmObject { private transient List refs; private List refIds; } class RealmLong extends RealmObject { private long value; } RealmObject 에 대한 호출 Thread 분리Realm 은 Object 에 대해 query 후 객체를 받는다 하더라도 실제로 객체 내 데이터르 접근할 때는 다시 Query 로 접근하기 때문에 실제로 Object 전체에 대해서 Eager Loading 방식으로 접근해야 합니다.Jandi 는 싱글톤 객체를 통해 데이터베이스에 접근하며, Background Thread 에서 진행하고 UI Thread 에서 객체 내 변수에 접근해서 UI 에 그리는 작업이 빈번하기 때문에 Thread 독립을 반드시 해야했습니다.Realm 에서는 Eager-Loading 을 지원하고 있습니다. Realm.copyFromObject() 를 사용하면 Return 값이 Eager-Loading 된 Object 가 반환됩니다.단, Realm 의 가장 큰 특징이로 보는 ZeroCopy 를 포기하는 것이기 때문에 신중하게 생각해야 합니다.// example public Chat getChat(long chatId) { return execute((realm) -> { Chat it = realm.where(Chat.class) .equalTo("id", chatId) .findFirst(); if (it != null) { return realm.copyFromRealm(it); } else { return null; } }); } 상속을 지원하지 않는다.가장 큰 문제였는데 해결방법을 찾을 수 없어 결국 상속을 포기하고 모든 Data 를 1개의 Object 에 표현하기로 하였습니다.위의 3가지 문제를 이렇게 해결해서 안드로이드팀에서는 1차적으로 도입을 완료하였습니다.결론현재까지 Realm 전환에 있어서 성공적인 도입으로 판단되어 차후에 다른 데이터에 대해서도 하나씩 DB 이전을 할 예정입니다.Realm 은 이제 충분히 신뢰할 수 있을만큼 성숙되었다고 생각이며 Realm 에서 처음부터 강조하던 성능또한 믿기 어려울 정도로 빨라졌습니다. 더 빠른 Mobile Database 를 원하신다면 Realm 을 적극 추천합니다.#토스랩 #잔디 #JANDI #개발 #개발환경 #업무환경
조회수 3809

코딩, 얼마나 배워야 하지?

경영학과 학생 윤수는 코딩을 배우기로 결심했다. 열심히 알바해서 모은 돈으로 학원이나 인강을 알아보는 중.어떤 코딩 부트캠프 홍보물이 눈에 확 들어온다.아무것도 모르는 사람도 3개월이면 안드로이드 개발자가 될 수 있어요. 풀스택 개발자로 취업할 수 있어요. 400만원만 내면~오호... 그럴듯해 보인다. 400만원이 적은 돈은 아니지만 3개월 만에 안드로이드 개발자가 될 수 있다면 괜찮은 투자 아닐까? 그런데 안드로이드 개발자인 친구 신의에게 이 광고를 보여주니 신경질적으로 반응한다. 야, 누구나 3개월 만에 안드로이드 개발자가 될 수 있으면 컴퓨터공학과 나와서 안드로이드만 1년 공부해서 취업한 나는 뭐냐?3개월 만에 안드로이드 개발자로 취업할 수 있다는 말을 믿고 싶긴 한데, 친구 말이 더 현실적인 것 같기도 하다. 그리고 사실 윤수는 신의보다 똑똑하지도 않다. 혼란스럽다.윤수뿐만 아니라 처음 코딩을 배우려는 사람들 모두 비슷한 의문을 갖는다: 완전 레알 평민인 내가 코딩을 배우면 뭘 할 수 있고, 얼마나 금방 할 수 있을까?쓸데없는 희망고문은 제껴 두고, 진짜 현실적으로 코딩을 배우면 할 수 있는 걸 세 가지 단계로 정리해보았다:레벨 1: 누구나 어느 정도의 의지만 있으면 할 수 있음레벨 2: 소질이 있거나 많은 의지가 있으면 할 수 있음레벨 3: 소질이 있고 많은 의지가 있으면 할 수 있음* 생각나는 몇 가지만 적어보았다. 코딩으로 훨씬 많은 것들을 할 수 있다.레벨 1: 누구나 어느 정도의 의지만 있으면 할 수 있음간단한 업무 자동화일상을 편하게 해주는 간단한 프로그램 정도는 누구나 노력하면 만들 수 있다. 몇 가지 예시를 들어보자:내가 자주 틀리는 문제 위주로 나를 시험하는 단어장 프로그램매주 일요일 7시에 엑셀 파일을 읽어서 직업과 연령대에 따라 맞춤형 이메일을 보내주는 프로그램인스타그램에 올리기 좋게 모든 사진을 한 번에 정사각형으로 만들어주고 사진 구석에 회사 로고를 박아주는 프로그램어떤 블로그에 새 글이 올라올 때마다 내용을 긁어와서 이메일로 보내주는 프로그램회사원? 연구원? 학생? 취준생? 각자에게 필요한 프로그램이 무엇인지는 자기 자신이 가장 잘 알 것이다.간단한 데이터 분석 & 데이터 시각화데이터만 있으면 간단한 분석과 시각화 정도는 누구나 해낼 수 있다. 예를 들어서 파이썬의 numpy와 pandas 라이브러리를 사용하면 데이터 분석을, matplotlib을 사용하면 데이터 시각화를 간편하게 할 수 있다. 데이터 분석데이터가 없으면 모으면 된다. 파이썬의 selenium과 beautiful soup을 사용하면 대량의 데이터를 웹사이트에서 긁어올 수 있다.웹사이트 레이아웃 & 워드프레스 사이트 만들기HTML과 CSS를 배우면 웹사이트 레이아웃을 만들 수 있다. 자바스크립트까지 조금 배우면 사이트에 근사한 인터랙션을 넣을 수 있다. 이 정도만 배워놓아도 워드프레스는 수월하게 다룰 수 있을 것이다. HTML, CSS, 자바스크립트를 전문적으로 하는 직업이 바로 "웹 퍼블리셔"다. 웹사이트 전체를 만드는 것이 아니라 웹사이트의 "비주얼"을 담당하는 역할이다.레벨 2: 소질이 있거나 많은 의지가 있으면 할 수 있음모바일 어플, 웹 프런트엔드, 웹 서버아무것도 모르는 사람이 정말 3개월 만에 어플 개발자 혹은 웹 개발자로 취업할 수 있을까?아주 소질 있는 사람이 엄청난 노력을 하면 될 수도 있지만 대부분의 경우에는 불가능하다.시키는 대로 따라하면 세 달 동안 트위터나 인스타그램 비슷한 어플을 만들어낼 수 있을 거다. 그런데 아무런 도움 없이 전혀 다른 어플을 만들어보라고 하면? 아마 95% 이상은 시작조차도 못할 거다. 물론 어플을 빨리 만듦으로써 흥미와 열정이 생긴다면 나름 의미 있는 투자라고 생각한다(그래도 수백 만원은 좀...). 하지만 결국에는 기초가 탄탄해야 하는 법. 모바일 어플이나 웹 개발을 제대로 하고 싶다면 조금 시간을 갖고 준비해보는 걸 권장한다. 심화 데이터 분석 (머신러닝, 딥러닝)파이썬의 scikit-learn, keras, tensorflow 등을 사용하면 머신러닝과 딥러닝 알고리즘을 간편하게 구현하고 사용할 수 있다. 간편하다고 하면서도 레벨 2인 이유는 알고리즘에 대한 최소한의 이해가 필요하기 때문이다. 데이터 분석을 제대로 하기 위해서는 기본적으로 수학적 배경 지식을 갖춰야 한다. IoT, 스마트홈아두이노와 라즈베리파이를 사용하면 재미있는 IoT 혹은 스마트홈 프로젝트를 많이 할 수 있다. 어렵지 않게 되어 있지만, 그래도 코딩 지식과 더불어 하드웨어에 대한 지식도 요구하기 때문에 레벨 1은 아닌 것 같다.2012년에는 UC 버클리의 1학년 학생이 기숙사 방을 스마트홈으로 만들어버린 게 유튜브에서 화제가 되었었다.아두이노레벨 3: 소질이 있고 많은 의지가 있으면 할 수 있음높은 연봉수요에 비해 개발자는 턱없이 부족하다. 덕분에 좋은 개발자는 여기저기서 모셔가겠다고 난리다. 구글 소프트웨어 엔지니어 사원 평균 연봉은 약 1억 4천만원이다 (출저: Glassdoor)하지만 누구나 구글에 취직하거나 스타트업에서 억대 연봉을 받을 수 있다는 헛된 희망은 주고 싶지 않다. 어느 정도의 소질과 많은 노력이 있어야 가능한 일이다. 자신 있다면 도전해보길!* 물론 개발자가 되고 싶지 않거나 될 자신이 없더라도 코딩을 배우는 걸 적극 추천한다. 코딩을 자신의 분야에 결합하면 자신의 가치를 엄청나게 높일 수 있기 때문이다. 예를 들어서 마케터가 코딩을 배우고 그로스 해킹을 할 수 있다면, 일반 마케터보다 훨씬 희소성 있고 가치 있는 일원이 될 수밖에 없다. 어떤 일을 하고 있든 코딩을 배우면 세련되고 효율적인 방식을 찾아낼 수 있을 것이다.세상을 바꾸는 일코딩은 세상을 바꿔왔고 앞으로도 그럴 것이다. 코딩을 잘하면 세상을 바꾸는 기술의 발전에 참여할 수도 있고, 세상을 바꾸는 기술을 만들어낼 수도 있다. 생각해보면:- 페이스북, 인스타그램, 스냅챗, 에어비엔비 (SNS)- 마이크로소프트, 애플 (운영 체제)- 이더리움 (블록체인 기반 스마트 계약)- 코드잇 (코딩 교육 ^^;)모두 20대들이 만들었다. 심지어 인스타그램 창업자 케빈 시스트롬은 간단한 웹사이트를 만들 수 있는 정도의 코딩만 배워서 프로토타입을 만들었다. 우리의 상상과 달리 고수들만 코딩으로 세상을 바꾸는 게 아니다.코딩은 이 시대에 우리가 가질 수 있는 가장 강력한 무기다. 물론 많은 노력이 필요하겠지만, "나도 열심히 하면 세상을 바꿀 수 있다"는 생각을 가지고 코딩을 배워보자!#코드잇#코딩교육 #개발자양성 #교육기업 #인사이트 #경험공유
조회수 1605

RxJava2 함수 파헤치기!

Overview지난 글 Rxjava를 이용한 안드로이드 개발에서는 RxJava의 Android 연결 방법과 기본적인 사용법을 다뤘습니다. 이번 글에서는 RxJava의 강력하고 다양한 함수들을 살펴보고자 합니다. Android에서 복잡하게 구현되는 내용들을 단 몇 개의 함수로 처리할 수 있는 RxJava를 꼭 사용해보길 권합니다.1. just2. fromArray/fromlterable3. range/rangLong4. interval5. timer6. map7. flatMap8. concatMap9. toList10. toMap11. toMultiMap12. filter13. distinct14. take15. skip16. throttleFirst17. throttleLast18. throttleWithTimeout참고: 공통적으로 사용하는 구독(수신) 클래스는 아래와 같습니다.static class CustomSubscriber<T> extends DisposableSubscriber<T> { @Override public void onNext(T t) { System.out.println(Thread.currentThread().getName() + " onNext( " + t + " )"); } @Override public void onError(Throwable t) { System.out.println(Thread.currentThread().getName() + " onError( " + t + ")"); } @Override public void onComplete() { System.out.println(Thread.currentThread().getName() + " onComplete()"); } } 1. just파라미터를 통해 받은 데이터로 Flowable을 생성하는 연산자입니다. 최대 10까지 전달할 수 있고, 모든 데이터가 수신되면 onComplete() 수신됩니다. 기본적인 Flowable 생성자 함수로 볼 수 있으며 단순 작업에서 많이 사용합니다.public static void just() { //파라미터 값을 순차적으로 송신하는 Flowable 생성 Flowable<String> flowable = Flowable.just("A", "B", "C", "D", "E", "F"); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 main onNext( A ) main onNext( B ) main onNext( C ) main onNext( D ) main onNext( E ) main onNext( F ) main onComplete() 2. fromArray/fromIterablefromArray, fromIterable 함수는 파리미터로 배열 또는 Iterable(리스트 등)에 담긴 데이터를 순서대로 Flowable을 생성하는 연산자입니다. 모든 데이터를 순차적으로 송신 후 완료됩니다. 반복적인 데이터 변환 작업 같은 경우 for 문 대신 대체할 수 있습니다. 결과를 보면 main Thread 에서 작업 결과가 나오지만, flatMap 을 사용한다면 별도의 Thread로 main Thread의 부하를 막을 수 있습니다.1. fromArray public static void fromArray() { //fromArray 배열로 파라미터를 전달 받는다. Flowable<String> flowable = Flowable.fromArray("A", "B", "C", "D", "E"); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 main onNext( A ) main onNext( B ) main onNext( C ) main onNext( D ) main onNext( E ) main onComplete() 2. fromIterable public static void fromIterable() { List<String> list = Arrays.asList("A", "B", "C", "D", "E"); //fromIterable 리스트로 파라미터를 전달받는다. Flowable<String> flowable = Flowable.fromIterable(list); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 main onNext( A ) main onNext( B ) main onNext( C ) main onNext( D ) main onNext( E ) main onComplete() 파라미터와 함수는 다르지만 동일하게 처리된다. 3. range/rangLongrange 함수는 지정한 숫자부터 지정한 개수만큼 증가하는 Integer 값 데이터를 송신하는 Flowable를 생성합니다. rangLong 함수는 range와 동일하며 데이터 타입은 Long을 사용합니다. 두 함수 데이터 송신을 마치면 onComplete를 송신합니다.1. range public static void range() { //range(int start, int count) //start : 시작 값 //end : 발생하는 횟수 Flowable<Integer> flowable = Flowable.range(10, 5); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 main onNext( 10 ) main onNext( 11 ) main onNext( 12 ) main onNext( 13 ) main onNext( 14 ) main onComplete() 2. rangLong public static void rangeLong() { //range(int start, int count) //start : 시작 값 //end : 발생하는 횟수 Flowable<Long> flowable = Flowable.rangeLong(10, 5); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 main onNext( 10 ) main onNext( 11 ) main onNext( 12 ) main onNext( 13 ) main onNext( 14 ) main onComplete() 4. interval지정한 간격마다 0부터 시작해 Long 타입 숫자의 데이터를 송신하는 Flowable을 생성합니다. 데이터는 0, 1, 2, 4 순차적으로 증가된 데이터를 송신합니다. Android 에서는 반복적인 작업인 TimerTask를 대신해서 interval로 간단하게 처리할 수 있습니다. UI 변경이 필요한 부분에서는 interval scheduler를 AndroidSchedulers.mainThread() 를 변경해 적용할 수 있습니다.public static void interval() { //(long time, TimeUnit unit, Scheduler scheduler) //time : 발생 간격 시간 //unit : 간격 시간 단위 //scheduler : 발생 scheduler를 변경하여 사용할 수 있습니다. // ex)AndroidSchedulers.mainThread() // - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 // 1초 간격으로 데이터 요청을 송신하다. Flowable<Long> flowable = Flowable .interval(1000L, TimeUnit.MILLISECONDS).take(10); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( 0 ) RxComputationThreadPool-1 onNext( 1 ) RxComputationThreadPool-1 onNext( 2 ) RxComputationThreadPool-1 onNext( 3 ) RxComputationThreadPool-1 onNext( 4 ) RxComputationThreadPool-1 onNext( 5 ) RxComputationThreadPool-1 onNext( 6 ) RxComputationThreadPool-1 onNext( 7 ) RxComputationThreadPool-1 onNext( 8 ) RxComputationThreadPool-1 onNext( 9 ) 5. timertimer 함수는 호출된 시간부터 일정한 시간 동안 대기하고 Long 타입 0을 송신 및 종료하는 flowable을 생성합니다. interval이 조건까지 반복적으로 송신한다면, timer는 한번만 송신하고 종료됩니다.public static void timer() { SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy.MM.dd hh:mm ss"); System.out.println("현재시간 : " + simpleDateFormat.format(System.currentTimeMillis())); //(long time, TimeUnit unit, Scheduler scheduler) //time : 발생 간격 시간 //unit : 간격 시간 단위 //scheduler : 발생 scheduler를 변경하여 사용할 수 있습니다. // ex)AndroidSchedulers.mainThread() Flowable<Long> flowable = Flowable.timer(1000L, TimeUnit.MILLISECONDS); //구독을 시작한다. flowable.subscribe(value -> { System.out.println(" timer : " + simpleDateFormat.format(System.currentTimeMillis())); }, throwable -> { System.out.println(throwable); }, () -> { System.out.println(" complete"); }); } 결과 현재시간 : 2019.04.29 09:09 56 timer : 2019.04.29 09:09 57 complete 6. mapFlowable 에서 송신하는 데이터를 변환하고, 변환된 데이터를 송신하는 연산자입니다. 하나의 데이터만 송신할 수 있으며, 반드시 데이터를 송신해야 합니다. 혹여 송신되는 데이터가 null 을 포함하면 map 대신 아래의 flatMap 을사용하는 것이 좋습니다.public static void map() { Flowable<String> flowable = Flowable.just("A", "B", "C", "D", "E") //map(Function mapper) //mapper : 받은 데이터를 가공하는 함수형 인터페이스 //알파벳 값을 소문자로 변경하여 return 한다 .map(value -> value.toLowerCase()); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 main onNext( a ) main onNext( b ) main onNext( c ) main onNext( d ) main onNext( e ) main onComplete() 7. flatMapflatMap은 map과 동일한 함수이지만, map과는 달리 여러 데이터가 담긴 Flowable을 반환할 수 있습니다. 또한 빈 Flowable를 리턴해 특정 데이터를 건너뛰거나 에러 Flowable를 송신할 수 있습니다.파라미터 mapper에서 새로운 Flowable의 데이터 전달이 아닌 다른 타임라인 Flowable로 작업하면 들어온 데이터 순서대로 출력을 지원하지 않습니다. 타임라인 Flowable(timer, delay, interval 등)에서는 가급적 사용을 피하거나, 순서에 지장이 없을 때 사용하는 것이 좋습니다.public static void flatMap() { Flowable<String> flowable = Flowable.range(10, 2) //flatMap(Function mapper, BiFunction combiner) //mapper : 받은 데이터로 새로운 Flowable를 생성하는 함수형 인터페이스 //combiner : mapper가 새로 생성한 Flowable 과 원본 데이터를 조합해 새로운 송신 데이트를 생성하는 함수형 인터페이스 //첫 번째 데이터를 받으면 새로운 Flowable를 생성한다. //take(3) : 3개까지만 발생한다. .flatMap(value -> Flowable.interval(100L, TimeUnit.MILLISECONDS).take(3), (value, newData) -> "value " + value + " newData " + newData); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( value 10 newData 0 ) RxComputationThreadPool-2 onNext( value 11 newData 0 ) RxComputationThreadPool-1 onNext( value 10 newData 1 ) RxComputationThreadPool-2 onNext( value 11 newData 1 ) RxComputationThreadPool-1 onNext( value 10 newData 2 ) RxComputationThreadPool-2 onNext( value 11 newData 2 ) RxComputationThreadPool-2 onComplete() 결과를 보면 각기 생성된 Flowable이 비동기식으로 송신 되기때문에 서로 다른 스레드에서 실행돼 데이터를 받는 순서대로 송신하지 않는다는 점을 주목하자 8. concatMap받은 데이터를 Flowable로 변환하고 변환된 Flowable을 하나씩 순서대로 실행해서 수신자에서 송신합니다. 다시 말해 여러 데이터를 계속 받더라도 첫 번째 데이터로 생성한 Flowable 의 처리가 끝나야 다음 데이터로 생성한 Flowable을 실행하는 것입니다.생성된 Flowable의 스레드에서 실행되더라도 데이터를 받은 순서대로 처리하는 것을 보장하지만, 처리 성능에 영향을 줄 수 있습니다.public static void concatMap() { Flowable<String> flowable = Flowable.range(10, 5) //map(Function mapper) //mapper : 받은 데이터를 가공하는 함수형 인터페이스 .concatMap(value -> Flowable.interval(100L, TimeUnit.MILLISECONDS).take(2) .map(data -> ("value : " + value + " data : " + data))); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( value : 10 data : 0 ) RxComputationThreadPool-1 onNext( value : 10 data : 1 ) RxComputationThreadPool-2 onNext( value : 11 data : 0 ) RxComputationThreadPool-2 onNext( value : 11 data : 1 ) RxComputationThreadPool-3 onNext( value : 12 data : 0 ) RxComputationThreadPool-3 onNext( value : 12 data : 1 ) RxComputationThreadPool-4 onNext( value : 13 data : 0 ) RxComputationThreadPool-4 onNext( value : 13 data : 1 ) RxComputationThreadPool-5 onNext( value : 14 data : 0 ) RxComputationThreadPool-5 onNext( value : 14 data : 1 ) RxComputationThreadPool-5 onComplete() 결과를 보면 생성된 Flowable 스레드와 데이터 순서대로 출력이 보장된다 것을 알 수 있다. 9. toListtoList는 송신할 데이터를 모두 리스트에 담아 전달합니다. 한꺼번에 데이터를 List로 가공해서 받기에 좋습니다. 하지만 많은 양의 데이터를 처리할 경우 버퍼가 생길 수 있고, 쌓은 데이터 때문에 메모리가 부족해질 수도 있습니다. 또한 수신되는 데이터는 하나이므로 Flowable이 아닌 Single 반환값을 사용합니다.public static void toList() { Single<List<String>> single = Flowable.just("A", "B", "C", "D", "E", "F") .toList(); // 구독을 시작한다. single.subscribe(new SingleObserver<List<String>>() { @Override public void onSubscribe(Disposable d) { System.out.println(Thread.currentThread().getName() + " onNext()"); } @Override public void onSuccess(List<String> strings) { //최종 완료된 리스트를 순서대로 출력한다. for (String text : strings) { System.out.println(Thread.currentThread().getName() + " onSuccess( " + text + " )"); } } @Override public void onError(Throwable e) { System.out.println(Thread.currentThread().getName() + " onError() " + e); } }); } 결과 main onNext() main onSuccess( A ) main onSuccess( B ) main onSuccess( C ) main onSuccess( D ) main onSuccess( E ) main onSuccess( F ) 10. toMaptoMap은 송신할 데이터를 모두 키와 값의 쌍으로 Map에 담아 전달합니다. 나머지는 toList의 특징과 같습니다. 송신되는 데이터 타입은 Map에 담아서 송신하는데 동일한 key에서 value는 마지막 데이터가 덮어 씁니다. 요청되는 값보다 결과 값이 적을 수도 있습니다. List 값을 손쉽게 key, value로 분리할 수 있는 함수이기도 합니다.public static void toMap() { Single<Map<Long, String>> single = Flowable.just("1A", "2B", "3C", "1D", "2E") //toMap(Fuction keySelector, Function valueSelector, Callable mapSupplier) //keySelector : 받은 데이터로 Map에서 사용할 키를 생성하는 함수형 인터페이스 //valueSelector : 받은 데이터로 Map 넣을 값을 생성하는 함수형 인터페이스 .toMap(value -> Long.valueOf(value.substring(0, 1)), data -> data.substring(1)); //구독을 시작한다. single.subscribe(new SingleObserver<Map<Long, String>>() { @Override public void onSubscribe(Disposable d) { System.out.println(Thread.currentThread().getName() + " onNext()"); } @Override public void onSuccess(Map<Long, String> longStringMap) { //최종 완료된 map을 순서대로 출력한다. for (long id : longStringMap.keySet()) { System.out.println(Thread.currentThread().getName() + " onSuccess( id : " + id + ", value " + longStringMap.get(id) + " )"); } } @Override public void onError(Throwable e) { System.out.println(Thread.currentThread().getName() + " onError() " + e); } }); } 결과 main onNext() main onSuccess( id : 1, value D ) main onSuccess( id : 2, value E ) main onSuccess( id : 3, value C ) 11. toMultiMap키와 컬렉션 값으로 이루어진 Map을 데이터로 변환하여 송신하는 함수입니다. 나머지 특징은 toList, toMap과 같습니다. toMap에서 중복되는 value를 관리하는 건 없었지만, value를 collection으로 관리하여 전달되는 데이터를 모두 수신할 수 있습니다.public static void toMultiMap() { Single<Map<String, Collection<Long>>> single = Flowable.interval(100L, TimeUnit.MILLISECONDS) .take(5) //toMultimap(Function keySelector, Function valueSelector) .toMultimap(value -> { //value가 홀수인지 짝수 인지 판단해서 key값을 리턴한다. if (value % 2 == 0) { return "짝수"; } else { return "홀수"; } }); //구독을 시작한다. single.subscribe(new SingleObserver<Map<String, Collection<Long>>>() { @Override public void onSubscribe(Disposable d) { System.out.println(Thread.currentThread().getName() + " onNext( " + d + " )"); } @Override public void onSuccess(Map<String, Collection<Long>> stringCollectionMap) { for (String key : stringCollectionMap.keySet()) { StringBuffer stringBuffer = new StringBuffer(); for (long value : stringCollectionMap.get(key)) { stringBuffer.append(" " + value); } System.out.println(Thread.currentThread().getName() + " onSuccess( id : " + key + ", value " + stringBuffer.toString() + ")"); } } @Override public void onError(Throwable e) { System.out.println(Thread.currentThread().getName() + " onError() " + e); } }); } 결과 main onNext() RxComputationThreadPool-1 onSuccess( id : 짝수, value 0 2 4 ) RxComputationThreadPool-1 onSuccess( id : 홀수, value 1 3 ) 12. filterfilter는 받은 데이터가 조건에 맞는지 판단해 결과가 true인 값만 송신합니다. 위의 just, fromArray, interval이 반복적인 케이스였다면, filter는 if문처럼 조건문의 역할을 할 수 있습니다. 반복문 함수와 조건문 함수를 같이 사용해 몇 줄 안에 for, if와 똑같이 구현할 수 있죠.public static void filter() { Flowable<Long> flowable = Flowable.interval(300L, TimeUnit.MILLISECONDS) //짝수만 통과한다. 3개만큼 .filter(value -> value % 2 == 0).take(3); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( 0 ) RxComputationThreadPool-1 onNext( 2 ) RxComputationThreadPool-1 onNext( 4 ) RxComputationThreadPool-1 onComplete() 13. distinct이미 처리된 데이터를 다시 볼 필요가 없을 때 사용하는 함수입니다. 송신하려는 데이터가 이미 송신된 데이터와 같다면 해당 데이터는 무시합니다. 이 함수는 내부에서 HashSet으로 데이터가 같은지 확인합니다.public static void distinct() { Flowable<String> flowable = Flowable.just("A", "a", "B", "b", "A", "a", "B", "b") //distinct(Function keySelector) //keySelector : 받은 데이터와 비교할 데이터를 확인하는 함수 //모두 소문자로 변환하여 알파벳 기준으로 데이터를 판단한다. .distinct(value -> value.toLowerCase()); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 main onNext( A ) main onNext( B ) main onComplete() 14. take1.taketake 함수로 지정된 횟수만큼 받은 데이터를 송신합니다. 지정된 횟수에 도달하면 완료를 송신해 처리 종료합니다.2.takeUntil지정된 조건까지 데이터를 송신하는 연산자입니다. 조건이 되면 완료를 송신해 종료합니다.3.takeWhile지정된 조건이 해당할 때만 데이터를 송신하는 연산자입니다.4.takeLast데이터의 끝에서부터 지정한 조건까지 데이터를 송신하는 연산자입니다.take 함수는 한 화면에 출력되거나 칠요한 데이터만큼 리스트에서 값을 하나씩 수신할 때 사용합니다. 예를 들어 화면에 데이터가 6개가 필요하면 take를 이용해 원하는 만큼의 데이터를 가져올 수 있습니다.Flowable.take(6) 또한 이후에 나올 skip 함수를 같이 사용하면 두 번째 화면에서 필요한 데이터를 6개 가져올 수 있습니다.Flowable.skip(6).take(12) 1. take public static void take() { // 100 밀리세컨드만큼 반복하며 총 5개를 출력후 종료한다. Flowable<Long> flowable = Flowable.interval(100L, TimeUnit.MILLISECONDS) .take(5); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( 0 ) RxComputationThreadPool-1 onNext( 1 ) RxComputationThreadPool-1 onNext( 2 ) RxComputationThreadPool-1 onNext( 3 ) RxComputationThreadPool-1 onNext( 4 ) RxComputationThreadPool-1 onComplete() 2. takeUntil public static void takeUntil() { // 100 밀리세컨드만큼 반복하며 값이 5가 될때까지 송신한다. Flowable<Long> flowable = Flowable.interval(100L, TimeUnit.MILLISECONDS) .takeUntil(value -> value == 5); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( 0 ) RxComputationThreadPool-1 onNext( 1 ) RxComputationThreadPool-1 onNext( 2 ) RxComputationThreadPool-1 onNext( 3 ) RxComputationThreadPool-1 onNext( 4 ) RxComputationThreadPool-1 onNext( 5 ) RxComputationThreadPool-1 onComplete() 3. takeWhile public static void takeWhile() { // 100 밀리세컨드만큼 반복하며 값이 5가 아닐경우까지 송신한다. Flowable<Long> flowable = Flowable.interval(100L, TimeUnit.MILLISECONDS) .takeWhile(value -> value != 5); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( 0 ) RxComputationThreadPool-1 onNext( 1 ) RxComputationThreadPool-1 onNext( 2 ) RxComputationThreadPool-1 onNext( 3 ) RxComputationThreadPool-1 onNext( 4 ) RxComputationThreadPool-1 onComplete() 4. takeLast public static void takeLast() { //100밀리 세컨트만큼 반복하며 5개의 출력중 뒤에 2개만 송신한다. Flowable<Long> flowable = Flowable.interval(100L, TimeUnit.MILLISECONDS) .take(5) .takeLast(2); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( 3 ) RxComputationThreadPool-1 onNext( 4 ) RxComputationThreadPool-1 onComplete() 15. skip1.skip함수로 지정된 횟수만큼 받은 데이터 송신을 제외합니다. 지정된 횟수가 초과되면 나머지 데이터를 송신합니다.2.skipUntil지정된 조건까지 데이터 송신을 제외하는 연산자입니다. 조건이 되면 나머지 데이터를 송신합니다.3.skipWhile지정된 조건이 해당될 때만 데이터 송신을 제외하는 함수입니다.4.skipLast데이터의 끝에서부터 지정한 조건까지 데이터 송신을 제외하는 함수입니다.take와 반대의 기능을 갖고 있습니다. 보통 페이저나 리스트에서 paging을 처리할 때는 take와 skip을 혼용합니다.1. skip public static void skip() { //100 밀리세컨드만큼 반복하며 5번 발행하고, 처음 2개를 제외합니다. Flowable<Long> flowable = Flowable.interval(100L, TimeUnit.MILLISECONDS) .take(5) .skip(2); //구독을 시잔한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( 2 ) RxComputationThreadPool-1 onNext( 3 ) RxComputationThreadPool-1 onNext( 4 ) RxComputationThreadPool-1 onComplete() 2. skipUntil public static void skipUntil() { //300밀리 세컨드만큼 반복하며 5개를 발행하고, 1000 밀리세컨드 제외 후 송신합니다. Flowable<Long> flowable = Flowable.interval(300L, TimeUnit.MILLISECONDS) .skipUntil(Flowable.timer(1000L, TimeUnit.MILLISECONDS)) .take(5); //구독을 시잔한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-2 onNext( 3 ) RxComputationThreadPool-2 onNext( 4 ) RxComputationThreadPool-2 onNext( 5 ) RxComputationThreadPool-2 onNext( 6 ) RxComputationThreadPool-2 onNext( 7 ) RxComputationThreadPool-2 onComplete() 3. skipWhile public static void skipWhile() { //300밀리세컨드만큼 반복하며 5개를 발행하고, 데이터 3이 올때까지 데이터를 제외힙니다. Flowable<Long> flowable = Flowable.interval(300L, TimeUnit.MILLISECONDS) .skipWhile(value -> value != 3) .take(5); //구독을 시잔한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( 3 ) RxComputationThreadPool-1 onNext( 4 ) RxComputationThreadPool-1 onNext( 5 ) RxComputationThreadPool-1 onNext( 6 ) RxComputationThreadPool-1 onNext( 7 ) RxComputationThreadPool-1 onComplete() 4. skipLast public static void skipLast() { //1000 밀리세컨드만큼 반복하며 5개를 발행하고 마지막 2개는 제외합니다 Flowable<Long> flowable = Flowable.interval(1000L, TimeUnit.MILLISECONDS) .take(5) .skipLast(2); //구독을 시작한다. flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( 0 ) RxComputationThreadPool-1 onNext( 1 ) RxComputationThreadPool-1 onNext( 2 ) RxComputationThreadPool-1 onComplete() 16. throttleFirst데이터를 송신하고 지정된 시간 동안 들어오는 요청을 무시합니다. 이 함수는 View의 Event 처리에서 많이 사용됩니다. 중복되는 처리를 막기 위해 최초 실행 후 일정 시간 동안 View의 클릭 이벤트나 API 이벤트를 막을 수 있기 때문에 비동기 처리와 화면에 직접적인 피드백이 발생했을 때 throttleFirst를 자주 사용하고 있습니다. //데이터 요청이 30 밀리초마다 5번 발생합니다. //데이터 요청 발생시 100 밀리세컨트 동안 들어오는 데이터 요청을 무시합니다. // — 0 — 1 — 2 — 3 — 4 interval 30 밀리초 마다 // — — -*- — throttleFirst 100 밀리초 무시 Flowable<Long> flowable = Flowable.interval(30L, TimeUnit.MILLISECONDS) .take(5).throttleFirst(100L, TimeUnit.MILLISECONDS); flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( 0 ) RxComputationThreadPool-1 onNext( 4 ) RxComputationThreadPool-1 onComplete() 17. throttleLastthrottleLast 함수는 데이터를 송신하고 지정된 시간 동안 들어오는 마지막 요청을 송신합니다. 이 함수도 throttleFirst처럼 반복적인 선택 이벤트 처리에 유용하게 사용할 수 있습니다. 간단하게 장바구니 카운트 변경을 요청할 때 마지막 변경 이벤트 데이터만 처리하면 되므로 값이 선택되고 일정 시간이 지났을 때 API를 요청해 리소스 낭비를 줄일 수 있습니다.public static void throttleLast() { //데이터 요청이 1 초 마다 6번 발생합니다. //데이터 요청 발생시 2 초 동안 들어오는 마지막 요청을 송신하다. // - 0 - 1 - 2 - 3 - 4 interval 1 초 마다 // - - -* - throttleLast 2 초의 마지막 값 송신 Flowable<Long> flowable = Flowable.interval(1, TimeUnit.SECONDS) .take(5) .throttleLast(2, TimeUnit.SECONDS); flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( 2 ) RxComputationThreadPool-1 onNext( 4 ) RxComputationThreadPool-1 onComplete() 18. throttleWithTimeoutthrottleWithTimeout 함수는 데이터를 송신하고 지정된 시간 동안 다음 데이터를 받지 못하면 현재 데이터를 송신합니다. 완료 시엔 마지막 데이터를 송신하고 종료됩니다.public static void throttleWithTimeout() { Flowable<String> flowable = Flowable.<String>create(emitter -> { emitter.onNext("A"); Thread.sleep(1000L); // 1000 밀리세컨드 슬립 // 500 밀리세컨드 동안 데이터 다음 데이터 요청이 없으므로 A 송신 emitter.onNext("B"); Thread.sleep(300L); // 300 밀리세컨드 슬립 emitter.onNext("C"); Thread.sleep(300L); // 300 밀리세컨드 슬립 emitter.onNext("D"); Thread.sleep(1000L); // 1000 밀리세컨드 슬립 // 500 밀리세컨드 동안 데이터 다음 데이터 요청이 없으므로 D 송신 emitter.onNext("E"); Thread.sleep(100L); // 100 밀리세컨드 슬립 emitter.onComplete(); //완료 요청 시 마지막 데이터 송신 후 종료 }, BackpressureStrategy.BUFFER) .throttleWithTimeout(500L, TimeUnit.MILLISECONDS); flowable.subscribe(new CustomSubscriber<>()); } 결과 RxComputationThreadPool-1 onNext( A ) RxComputationThreadPool-1 onNext( D ) main onNext( E ) main onComplete() ConclusionRxJava에서 많이 사용되고, 또 알고 있으면 좋은 함수들을 살펴봤습니다. 브랜디에서도 이 함수들을 응용해 그동안 다양한 기능을 구현했고, 복잡한 함수도 사용하고 있습니다. 지금까지는 Flowable로 송신과 수신이 1 : 1 로 진행되었지만, 다양한 수신자를 사용해 하나의 Flowable로도 다른 화면에서 여러 수신자를 등록하여 반복적인 작업을 할 수 있습니다. 덕분에 같은 작업을 코드 중복 없이 간단하게 구현할 수 있죠.다음 글에서는 2개 이상의 Flowable을 결합해 사용하는 방법과 Android View에서 RxJava를 응용하는 방법, 구독을 관리하는 방법 등 Android에서 유용하게 쓰는 방법들을 알아보겠습니다.글고재성 팀장 | R&D 개발MA팀[email protected]브랜디, 오직 예쁜 옷만
조회수 1804

핀다(Finda)의 '따끈따끈한' 신입개발자 남은우:

핀다(Finda) 개발자 남은우님의 스타트업 생생LIFE 입니다원문은 링크를 통해 확인하실 수 있습니다!안녕하세요! 금융상품 추천서비스 '핀다'에서 프론트 엔드 웹 개발자로 근무하고 있는 남은우라고 합니다~ ^^저는 입사한지 6개월차가 되는 따끈따끈한 신입 개발자입니다. 올해 처음 웹 개발을 배우기 시작해서 인턴으로 들어오기까지 많은 것을 경험했는데요~ 제 이야기를 통해서 스타트업에서 일하기를 희망하시는 분들에게 조금이나마 도움이 되었으면 좋겠습니다. :)<핀다 개발자 남은우, 출처 : 핀다>스타트업에 지원하게 된 이유대학교 4학년 마지막 학기, 저는 아직 졸업하고 싶지 않은 철 없던 마음에... 휴학 할 명분(?)을 만들기 위해서 여기 저기 대외 활동을 찾고 있었어요. 그러던 중 우연히 지원한 소프트웨어 개발자 양성 과정에 운 좋게도 덜컥!! 합격해 버렸습니다. 6개월간 진행된 팀 프로젝트를 위해 배운 웹 개발에 흥미가 생겨서 본격적으로 개발 공부를 시작했는데요. 시간이 지날수록 개발 능력은 조금씩 늘어갔지만, 불안감도 나날이 커져갔습니다. 그 이유는 바로 '실무 경험'이 없었기 때문이었죠.제가 배운 개발 능력을 발휘할 수 있는 곳을 찾던 중에 스타트업 인턴즈를 만나게 되었습니다. 스턴에서 진행한 4주간의 코칭은 사회 초년생인 저에게 어찌보면 '치트키' 같은 시간이었어요. 자신에게 맞는 스타트업을 찾기 위해 3가지 핵심가치를 설정하거나, 면접 필수 요소, 기업분석 방법까지!!! 코치님의 여러가지 조언과 꿀팁들 덕분에 저에게 꼭 맞는 회사를 선택할 수 있었던 것 같아요.스타트업에서의 경험입사 첫째 날, 인턴임에도 불구하고 서비스 개발에 바로 투입(?) 되었습니다. 처음 제가 맡은 업무는 코드 리팩토링이었는데요. 이미 작성되었던 코드를 새로운 아키텍쳐로 변경하면서 구조에 대한 이해도를 높일 수 있었어요. 이 경험을 바탕으로 이후에 새롭게 추가되는 카테고리 개발이나 다른 채널들의 신규 소개 페이지 등을 빠르게 만들 수 있게 되었습니다.가장 좋았던 것은 커뮤니케이션이었는데요. 기획, 디자인, 개발의 유기적인 소통이 중요했기 때문에 개발자임에도 기획 미팅에 들어가거나, 디자인에 대한 의견을 낼 때가 많았습니다!! 팀원들 또한 열린 마음으로 저의 의견을 적극적으로 받아들여 주셨기 때문에, 새로운 아이디어를 낼 때가 많았던 것 같아요. 그리고 개발뿐만 아니라 여러 경험을 통해 서비스가 완성되는 과정을 지켜보는 것 또한 큰 자산이라고 생각했어요.<핀다 개발자 남은우, 출처 : 핀다>스타트업에 입사를 희망하는 분들에게스타트업은 대부분 바로 업무에 투입가능한 사람을 원하는 경우가 많아요. 따라서 지원하기 위해 어느 정도 준비가 필요하겠죠? 입사 후에 모든 일을 척척 수행할 수 있는 사람이면 좋겠지만, 전문적이지는 않더라도 자신이 지원하게 된 회사가 어떤 서비스를 제공하는지 파악하거나, 해당 서비스를 사용해보는 것이 좋아요.요새 드라마나 영화에 종종 스타트업 이야기들이 많이 나오는 것 같아요. 하지만 매스컴에 비춰지는 것이 자유분방하고 즐거운 모습뿐인 것 같아 조금 아쉬운 마음이 들기도 합니다. 회사에 따라 다르겠지만, 스타트업 특성상 조금 더 빠르게 달려야 할 때가 많거든요. 대신 남들보다 조금 더 빠르게 성장할 수 있다는 것!!! 입사를 희망하시는 여러분도 자신과 맞는 회사를 찾고, 꼭 특급 성장의 기회를 잡으셨으면 좋겠습니다.#핀다 #입사후기 #팀원소개 #팀원인터뷰 #팀원자랑 #기업문화 #조직문화
조회수 998

크로키닷컴을 소개합니다 #5

지그재그 채용 페이지>> https://career.zigzag.kr오늘은 지그재그 서비스를 위해 각자의 파트에서 이끌어주시는 개발자 두 분! Dev. 팀의 정수님, 형래님과 함께 활발히 채용 중인 [백엔드 개발자]에 대해 파헤쳐 보도록 하겠습니다 :-)Chapter 1. 저를 소개합니다!Q. 정수님, 형래님 반갑습니다! 지난 인터뷰를 통해 궁금한 포지션으로 백엔드 개발자가 선정되었는데요! 인터뷰이로 선정된 간단한 소감과 자기소개를 부탁드립니다.정수, 형래 네.. 좋네요.(기뻐하지 않으시는군요! 저희의 예상과 다르게..)형래 일단은 왜 제가 첫 번째로 인터뷰이가 되지 않았는지 굉장히 서운하게 생각하고요.(웃음) 그래도 지그재그에서 이런 인터뷰를 해보는구나 싶네요.정수 저는 전형적인 부끄러움이 많은 개발자라서요. 부담도 많이 가고, 긴장되네요. '잘해야 되겠다.'라는 생각이 마구 듭니다.(웃음)형래 저는 자기소개를 준비해 왔어요! 사실 제가 6-7년 전부터 사용하고 있는 건데요, 저를 '줄기세포 개발자'라고 표현합니다. 줄기세포가 아무 데나 이식이 된다고 하더라고요. 그래서 저를 개발이 필요한 곳에 가져다 두면 개발을 하고, 매니징이 필요한 곳에 가져다 두면 매니징도 하다가.. 인프라가 필요한 곳에 가면 인프라도 해요. 가리지 않고 다 해서 다른 사람들이 물어보면 '줄기세포 개발자'라고 말하고 다닙니다.우리의 소중한 디에네이 형래님정수 저는 지그재그의 Z결제라는 기능에서 주문과 결제, 물건을 받아보기까지의 과정을 책임지고 있어요. 좋은 개발자가 되기 위해서는 공부가 필수라고 생각하는데요, 개발 기술뿐만 아니라 본인이 만들어가는 제품과 서비스에 대해서도 항상 열심히 공부해야 된다고 생각합니다. 지금 담당하고 있는 업무도 결제 서비스에 대한 지식이 사실상 전무한 상태에서 시작했는데, 많이 찾아보고 공부도 하면서 열심히 만들어가고 있어요.형래 제가 담당하고 있는 역할에 대해서도 말씀드릴게요. Z결제 쪽은 정수님께서 맡아주고 계시고, 저는 그 외에 지그재그 서비스 전반에 있어서 사용자의 UX를 개선하거나 쇼핑몰을 연동하는 등의 서버 개발을 담당하고 있어요.Q. 정수님은 크로키닷컴 초창기 멤버이셨다가 재입사를 하신 거고, 형래님은 K모 대기업을 다니시다가 지그재그에 합류하셨다고 들었어요. 두 분 다 지그재그를 선택하신 특별한 이유가 있었나요?정수 처음 입사했던 건 2012년이었어요. 그땐 지그재그 서비스가 아닌 다른 서비스들을 개발할 때였고요. 그때 한창 스타트업 열기가 모락모락 피어오를 때였는데, 스타트업에서 새로운 걸 해보겠다는 도전정신을 가지고 합류하게 됐고 거의 2년 가까이 함께 했었던 것 같아요. 그러다가 창업을 하려고 떠났었는데, 그 후 몇 년 만에 크로키닷컴이 지그재그 서비스를 오픈하고 급격하게 성장하고 있더라고요. 함께 일했었던 기억도 너무 좋았고, 지그재그라는 서비스도 앞으로 할 수 있는 것들이 많을 것 같아 너무 매력적으로 다가왔던 것 같아요. 그래서 2018년에 다시 합류해서 열심히 다니고 있습니다.형래 저는 우연히 쟈니님(CEO), 정훈님(COO)과 저녁을 먹었었는데, 그때 얘기해주셨던 지그재그 서비스가 너무 궁금하고 직접 경험해보고 싶었어요. 사실 대기업을 퇴사하게 된 이유가 스타트업을 창업해보고자 했거든요, 물론 잘 안됐지만.. 그때 저는 '잘 되는 스타트업은 어떻게 해서 잘 될 수 있었을까?'라는 궁금증이 항상 있었어요. 저녁을 같이 먹으면서 두 분이 지그재그 서비스에 대해 말씀해 주셨을 때 두 분의 엄청난 열정과 확신이 느껴졌고, 저도 그 두 분 못지않은 열정을 지닌 사람이라는 것을 보여주고 싶다는 생각이 들었어요. 그래서 저녁 먹은 다음날인가? 바로 연락드렸어요, 합류하겠다고.(웃음) 저는 자신 있었거든요.지그재그 개발팀의 컨피던스(오 그런 비하인드가 있었군요! 그럼 실제로 입사 후에 경험한 지그재그 팀은 어떠셨나요?)형래 지그재그 팀은 다른 회사들과는 약간 다르게, 극단적으로 사용자의 편의성에 치중해요. 음.. 고객의 입장에서 봤을 땐, 업자의 욕심이 느껴지지 않는다고 해야 하나? 직접 와서 겪어보니 역시나 그랬고요. 이러한 마인드가 우리 서비스에 긍정적인 효과를 많이 가지고 온다고 생각합니다.(그럼 정수님은 이전의 회사의 모습과 지금의 회사의 모습이 어떻게 달라졌다고 느끼시나요?)정수 처음은.. 5명이었을 때였어요. (지금은 무려 97명!) 지금이나 그때나 모두 열정이 넘치는 건 같아요. 다만 방향성이 다른 에너지죠. 예전에는 서비스가 빨리 좋은 반응을 얻지 못하면 회사가 망할 수도 있다는 위기의식을 가지고 소수의 멤버들과 더 끈끈하게 열정을 가지고 하루하루에 임하는 느낌이었어요. 반면에, 지금은 지그재그 팀이 그동안 쌓아온 탄탄한 기반을 바탕으로 새로 도전해볼 수 있는 다양한 과제들이 훨씬 더 많이 기다리고 있고, 그 과제들을 하나씩 함께 해결해나갈 팀원들도 많아져서 그 에너지가 나날이 더 커지는 것 같아요. Q. 두 분의 경력을 합쳐보니 240개월 이더라고요! 그만큼 다양한 회사를 경험해보셨을 것 같은데요. 유독 지그재그 팀만이 지닌 특이한 점이 있다면 소개해주세요!항상 열정 넘치는 Dev. 팀!형래 이전 회사들은 사실 경험이 많은 사람들만 뽑았어요. 아무래도 경험이 많이 쌓이다 보면 점점 더 나에게 편하고 익숙한 방식을 찾아 문제를 해결하려는 유혹에 빠지기가 쉬운 것 같아요. 물론 경험이 쌓여도 새로운 것에 대해 계속 공부하고 고민하시는 분들도 많이 계시지만, 절대 쉬운 일은 아니죠. 근데 지그재그 팀에는 비록 경험은 조금 적은 편인 분들이 많이 있어도, 옆에서 보고 있으면 항상 열정이 넘치는 사람들이에요. 매 순간 공부를 하려고 하거든요. '어떻게 하면 내가 성장할 수 있을까?'라고 생각하는 사람들이 대부분이라 개인적으로 신기하기도 합니다. 정수 저는 급성장하고 있는 회사에서 일해본 건 지그재그 팀이 처음이에요. 생소하기도 하고, 지루할 틈이 없어요.(웃음) 지금도 매우 빠르게 성장하고 있습니다.Chapter 2. 우리는 이렇게 일해요!Q. 두 분은 파트 내에서 추구하는 특별한 업무 방식이 있으신가요?형래 결함을 최대한 앞 단계에서 찾자! 이게 저희 팀 콘셉트이에요. 설계 단계에서 찾은 오류를 의논해서 해결하고 나면 훨씬 손이 덜 들거든요. 아무리 바쁘더라도 Scrum 을 꼭 진행하고 있습니다. 또, 개발하고 있는 서비스에 대한 품질도 더욱 높이기 위해서 Iteration 작업도 새로 제안해서 정착 단계에 있어요.(파트 매니저로서는 중요하게 강조하는 업무 방식이 따로 있나요?)형래 각 팀원이 하나의 일을 맡으면, 그분을 최대한 안 괴롭히는 게(?) 제 원칙이에요. 팀원들이 일에 집중할 수 있게끔 도와주는 게 매니저의 가장 큰 일이라고 생각하거든요. 그러다 보니 다른 팀 팀원 분들이 커뮤니케이션적인 부분에서 약간 불편해하셔서, 그 부분을 해결하기 위해 요즘 가장 노력하고 있어요.정수 저희는 기록을 강조하고 있어요. 지금 저희 파트에서는 결제라는 새로운 기능을 개발하고 있다 보니까 기록을 남기지 않고 그냥 일을 진행하다 보면 혼선이 생기기 마련이거든요. 다 같이 붙어서 만들고 있으니, 기록을 하면서 개발하는 걸 강조하고 있습니다.(그렇다면 두 분은 파트의 팀워크를 향상하기 위해 노력하고 계시는 부분이 있을까요?)정수, 형래 음 팀워크는.. 법카에서 나온다? 농담이고요. (웃음)형래 조금 식상한 얘기일 수도 있는데, 저는 각자 role이 다르다고 생각해요. 제가 윗사람이고 팀원들이 아랫사람인 것이 아니라, 전 매니징 하는 역할을 가지고 있고 팀원들은 또 다른 각자의 역할을 가지고 있는 거라고요. 그렇게 각자 역할이 다른 거라고 항상 말씀드리면, 팀원들도 평소에 본인의 의견을 좀 더 자유롭게 이야기할 수 있는 것 같고 결과적으로 좀 더 책임감을 가지고 일할 수도 있고 재미도 느끼는 것 같아요. 다만 제가 팀원들이랑 나이차가 좀 나는 바람에.. 아무래도 어려워하시는 분도 계셔서 앞으로 더 많이 노력해야 할 것 같네요. 제가 제대할 때 태어나신 분도 계시거든요.(웃음) 정수 저희 파트에서는 태스크마다 다른 팀원과 짝을 지어서 같이 진행하는 방식을 적용해보고 있어요.그중에서 특히나 강조하는 건 '각자의 장단점이 다르니 서로의 장점을 잘 활용하고 단점을 보완해주자'는 건데요, 그러기 위해 여러 시도들을 해보면서 경험을 쌓아가는 중입니다. Q. 지그재그에서 겪는 백엔드 개발자로서 좋은 점과 어려운 점이 있으신가요?정수 보통 큰 회사에서는 개발자가 서비스의 시작부터 끝까지 모두 경험해볼 수 있는 기회가 흔하지는 않은 것 같아요. 그런데 지그재그 팀에서는 처음 기획 단계부터 함께 참여하고 만들어나가는 경험을 해볼 수 있어요. Z결제도 마찬가지였고요. 앞으로도 새로 도전해나가야 하는 과제들이 많아서, 본인이 주도적으로 이끌어서 개발할 수 있는 기회가 많은 게 가장 좋은 점인 것 같아요.형래 어려운 점은 우리가 아직은 메타 서비스에서 커머스로 변화해가는 과정이다 보니, 서비스에 우리만의 색깔을 담아내거나 편의성을 맞춰나가는 부분이 어려운 것 같아요. 하지만 날이 지날수록 점점 맞춰지고 있는 것 같아요, 그만큼 회사가 성장하고 있다는 거겠죠? 아! 그리고 우리는 typescript와 node.js라는 기술을 사용하고 있는데, 아직 많이 사용되는 기술은 아니라 경험해보지 않은 분들은 어려워하실 수 있지 않을까 싶어요. 그래도 새로운 기술에 대해 거부감 없이 호기심을 가지고 적극적으로 배우려고 하시는 분이라면, 지그재그 팀이 사용하는 기술도 금방 익혀서 사용하실 수 있을 거예요. 저도 입사하고 나서 많이 배웠거든요.(웃음)열심히 작업 중이신 형래님! (Feat. 형래님 얼굴이 그려진 텀블러)Chapter 3. Dev. 팀은 이런 분을 찾아요!Q. Dev. 팀에서 찾는 백엔드 개발자는 어떤 분인지 설명 부탁드려요!정수, 형래 우선, 우리 회사는 실험적인 회사이기 때문에 개발에 재미를 붙이고 일하실 수 있는 분이면 좋겠어요. 그리고 기술에 대한 근본적인 이해가 필요한 것 같아요. 그 언어의 특징이 무엇이고, 본인이 왜 이 언어를 사용했는지에 대해 설명해줄 수 있어야 한다고 생각하거든요. 혹은 자기가 만든 프로젝트를 얼마나 깊이 있게 고민해보고 만들었는가에 포커스를 많이 둡니다. 솔직히 말씀드리면, 차이가 나요! 깊이 있게 고민하면서 만들어보신 분들은 이미 몇 년이 지난 프로젝트라고 하더라도 바로 어제 일처럼 설명을 잘하시거든요.Q. 백엔드 개발자 예비 지원자분들께 하고 싶은 말씀이 있으신가요?형래 사실 인터뷰에서 떨어지는 건 본인의 실력이 부족해서라기 보다는, 회사의 성향과 맞지 않아서인 확률이 매우 커요. 그러니 인터뷰 때 너무 긴장하지 마시고, 편하게 본인의 모습을 어필해주셨으면 좋겠어요. 서류 지원도 편하게 해 주셨으면 좋겠고요, 각자의 fit이 지그재그와 잘 맞는지 확인하는 하나의 절차니까요.정수 형래 님이 아까 말씀하신 것 중에, 우리 팀은 '실험적인 시도를 하는 회사'라고 하셨잖아요. 현재보다 더 나은 시스템을 만들기 위한 노력 중에 하나라고 봅니다. 항상 지금에 만족하지 않고 더 나은 시스템을 구현하기 위해 노력하고 있거든요. 본인이 더 나아가고 싶은 길이 있다면 저희 회사와 정말 잘 맞을 거예요!Chapter 4. 마무리Q. 2020년 두 분의 목표가 있으신가요?정수, 형래 좋은 분들을 많이 영입하자!형래 저는 벌써 세 분이나 소개해서 모셔왔는데요, 더 열심히 노력할 예정입니다. 그리고 개인적인 목표는 건강을 유지하자는 겁니다. 더 건강해지는 것은 바라지도 않아요..정수 저도! 작년에는 많이 아팠어요.형래 그리고 회사에 초코류 간식이 많아서, 제 건강을 위해 건자두 같은 자연식품(?) 위주로 많이 사다주시면 제 건강에 많은 도움이 되지 않을까 싶은 소소한 바람입니다.(웃음)Relations팀: 건...ㅈㅏ..두... for.... 형ㄹㅐ.. 정..수...님....Q. 다음으로 인터뷰를 진행했으면 하는 팀이 계신가요? 궁금한 팀이 있으면 말씀해주세요!정수, 형래 마케팅 팀이요. 우리 회사 마케팅 팀이 워낙 잘하고 계시는 것 같다고 입사 전부터 느꼈거든요. 팀에서 어떻게 일하시는지 궁금해요!지그재그에서는 백엔드 개발자를 포함하여 활발하게 채용을 진행하고 있습니다. 지그재그 팀과 함께, 수면 아래 숨겨진 가치를 찾아내는 경험에 동참할 팀원을 꼭 모시고 싶습니다 :-) 궁금하신 점은 언제나 [email protected] 또는 http://facebook.com/zigzagcareer로 연락 주세요!지그재그 [백엔드 개발자] 포지션을 소개합니다!이런 일을 합니다.이런 분을 모십니다.이 중 하나라도 가능하시다면 더더욱 좋아요 :)지원 방법채용 절차혜택과 복지   더 많은 공고는 채용 사이트에서 확인 가능합니다! >>> 채용 사이트 바로가기
조회수 1171

AndroidAnnotations 과 테스트

이 포스팅은 총 4부로 이어지며 현재는 4부입니다.1부 : Android, MVC, MVVM, MVP2부 : Android 와 Annotation3부 : AndroidAnnotations 과 MVC4부 : AndroidAnnotations 과 테스트앞선 3개의 포스팅을 통해 AndroidAnnotations 과 MVC 가 view 에 관여하는 동작들이 모두 View 로 분리된 것을 확인할 수 있습니다.이러한 구조덕분에 Model 에 대한 테스트와 View 에 대한 테스트가 명확히 구분지어지게 되었습니다.Test 코드를 작성함에 있어서 View 에 대한 테스트가 다소 어려움이 있다는 것을 감안한다면 Model 에 대한 테스트만 집중할 수 있는 구조가 테스트에 대한 접근을 더욱 쉽게 해줍니다.다음은 앞선 포스팅에서 정의된 코드 중에서 Model 에 대한 테스트입니다.※ 테스트코드는 Robolectric 을 이용하여 작성하도록 하겠습니다.Model Test@RunWith(RobolectricGradleTestRunner.class) public class MainModelTest { private MainModel mainModel; @Setup public void init() { mainModel = new MainModel(Robolectric.application); } @Test public void testGetReleaseState() { // given String version = "3.19" // not yet released // when boolean isReleased = mainModel.getReleaseState(version); // then assertThat(isReleased, is(equalTo(false)); // given version = "3.18" // released // when isReleased = mainModel.getReleaseState(version); // then assertThat(isReleased, is(equalTo(true)); } }위와 같이 Model 만 별도로 테스트가 용이해졌습니다.Presenter TestPresenter 에 대한 테스트는 Model 에 대한 테스트와 다릅니다.Activity 에 커플링이 높기 때문에 해당 Activity 를 직접 바인딩해야 합니다.@RunWith(RobolectricGradleTestRunner.class) public class MainViewTest { private MainActivity mainActivity; private MainView MainView; @Setup public void init() { mainActivity = Robolectric.buildActivity(MainActivity.class).create().start().resume().get(); MainView = mainActivity.mainView; } @Test public void testGetVersionText() { // given String version = "3.19" // when MainView.versionEditText.setText(version); // then assertThat(MainView.getVersionText(), is(equalTo(version)); } }Jandi Team은 View 를 테스트하기 위해서 Presenter 와 Activity 의 패키지 Level 을 같은 Level 로 유지하고 있습니다.AndroidAnnotations 에서 DI 를 설정하기 위해서는 해당 변수나 메소드는 최소 Package Scope 로 정의해야하기에 위와 같은 형태의 Field 접근을 볼 수 있습니다.정리AndroidAnnotations 를 활용한 MVC 패턴의 전환의 또다른 이점은 이와 같이 테스트를 명확히 분리할 수 있다는 장점을 주었습니다. 물론 이 방법은 MVVM, MVP 로 구현하였을때보다 나은 형태라 할 수는 없으나 View 에 대한 테스트가 좀 더 용이해진 것이라 생각합니다.※ Activity 는 왜 테스트하지 않나요?MVP 패턴에서 Activity는 Controller 의 모습을 지니고 있습니다. 이는 Unit Test 가 아닌 Behavior 테스트에 가까운 모습이며 다른 방식으로의 테스트코드 구현이 필요하다고 생각합니다.#토스랩 #잔디 #JANDI #개발 #개발자 #개발팀 #기술스택 #일지 #후기 #꿀팁 #인사이트
조회수 1029

[Buzzvil People] Ben Yoo, Software Developer

 Buzzvil People에서는 다양한 배경과 성격 그리고 생각을 지닌 버즈빌리언들을 한 분 한 분 소개하는 시간을 갖습니다. 어떻게 버즈빌에 최고의 동료들이 모여 최고의 팀을 만들어가고 있는 지 궁금하시다면, 색색깔 다양한 버즈빌리언들 한분 한분의 이야기가 궁금하시다면, Buzzvil People을 주목해주세요.1. 간단한 자기 소개 부탁드립니다.  안녕하세요 저는 버즈빌에서 Server engineering 을 맡고 있는 유병우입니다. 회사에서는 Ben 이라는 닉네임을 쓰고 있고 저와 아내 사이에 아기가 하나 있는데 회사에서는 벤, 벤처, 미니벤이렇게 부르고 있습니다. 성격은 매우 Active 해서 웬만한 스포츠는 다 좋아하고 회사에서는 Rock band도 하고 있습니다. 프로그래머! 어린 시절 Basic 이라는 언어로 시작한 프로그래밍이 너무 재밌기도 했고 가능한 많은 사람들에게 유익을 끼치고 싶다는 생각에 Software Engineer 가 되었습니다. 10년 전 병역특례 시절 카카오톡 이전에 존재했던 m&Talk 이라는 무료 메신저 개발을 시작으로 삼성의 Chat@n, 그리고 Line, Naver 외 여러 앱에 들어가는 push notification platform 을 개발한 경험이 있습니다. 전 세계에서 억 단위가 넘는 유저들에게 서비스하고 그 유저들에게 좋은 경험을 선사하는 것이 저에게 더욱 Software 의 매력에 빠지게 만들었던 것 같습니다. 새로운 기능이나 개선사항을 배포하고 나면 유저들의 Feedback 을 보는 것이 아침에 눈을 뜨면 가장 먼저 하는 일이었습니다. (늘 즐겁기만 한 건 아니었습니다. 특히 버그를 배포한 다음 날엔.. -_-a)  2. 어떻게 버즈빌에 오시게 되셨나요?  Infobank 에서의 인연 Infobank 에서의 병역특례를 하면서 m&Talk이라는 메신저를 개발할 때 Product Team의 Jay 는 iPhone 쪽 개발을 주도하고 있었고 저는 Android 쪽 개발을 주도하고 있었습니다. 함께 하나의 Product 을 만들면서 여러 가지 의견을 주고받기도 했고 서로 부족한 부분을 잘 보완해주는 친구이자 동료라는 생각을 많이 했습니다.  창업을 결심 나중에 Jay가 미국에서 함께 잠금화면 서비스를 만들어보자고 절 찾아왔고 그렇게 해서 Slidejoy 라는 회사를 함께 공동창업하게 되었습니다. 당시 좋은 회사에서 만족하며 생활하고 있었고 한 가정의 가장으로서 불안정한 길을 선택하는 것에 대한 두려움이 있었지만 좋은 사람들과 함께 창업이라는 기회는 자주 오지 않는다는 것과 다음의 단순한 생각이 창업의 길로 저를 이끌었습니다.  “뭐, 굶어 죽지는 않겠지.” 버즈빌로 합병 많은 위기들을 헤쳐나가며 Slidejoy 는 계속 성장했고 좋은 기회에 한국에서 비슷한 서비스를 하고 있던 저희보다 규모가 큰 회사인 버즈빌로 합병을 하게 되었습니다.  3. 버즈빌에서 어떤 업무를 담당하고 계신가요?  신기술 & Refactoring  제가 Software 를 개발하면서 가장 중요하게 생각하는 것은 효율 / 훌륭한 Design 을 가지고 있는 프로젝트 설계인데요, 효율을 올리기 위해 Go 와 Kubernetes 등의 기술을 회사에 도입했고 MVP, MVC 와 같은 Design pattern 들을 도입해서 코드를 읽기 쉽고 서로 분리하고 재사용 가능한 구조로 만드는 것에 노력 중입니다.    Go server engineering 실제 업무는 BuzzScreen / HoneyScreen 에서 광고 및 콘텐츠 할당과 Slidejoy 라는 서비스의 API 서버 개발을 맡고 있으며 Slidejoy 클라이언트를 개발했어서 클라이언트 쪽도 조금씩 참여하고 있습니다. 새로운 기술에 관심이 많다 보니 BuzzScreen 과 HoneyScreen 할당 로직을 전부 Go 언어로 포팅했고 비약적인 성능 향상이 있었습니다. (Go 서버 개발하기)  4. 스타트업에서 혹은 광고업계에서 일하는 느낌이 어떠세요?  사람 > 회사 대기업에서의 경험과 다르게 스타트업에서는 한 사람 한 사람이 일당백인 경우가 많은 것 같습니다. 그리고 그런 한 사람에 의해서 회사가 좌지우지 할 수 있는 곳이 스타트업입니다. 회사가 겪는 크고 작은 성장과 위기 모두 그대로 직원들에게 전달 되다 보니 그만큼 Buzzvil 식구들 모두 함께 만들어가는 서비스의 성공에 초점을 맞출 수 있습니다.  모바일 광고 저는 사실 미디어에 큰 흥미가 없고 광고는 더더욱 관심이 없었습니다. 하지만 Mobile 이라는 Big wave 안에서 0에서 출발해서 수억 명이 사용하게 된 급속도로 성장하는 Messenger 를 개발을 몸으로 체험할 수 있었고 모바일 광고 역시 Buzzvil 을 성장시킨 Big wave 였다고 생각합니다. 이렇게 급속도로 변하고 성장하는 시장에서 스타트업에 분명히 가치를 계산할 수 없는 엄청난 기회가 있다고 생각합니다.  5. 이것만큼은 버즈빌이 참 좋다! 어떤 게 있으실까요?  밝고 명랑한 문화 회사 회식 중에서 저는 “친해지길 바래” 라는 테마를 정말 좋아하는데요. 그야말로 정해진 예산 안에서 소수의 사람들끼리 마음껏 놀 수 있습니다. 지난번 친해지길 바래 때는 간단히 막국수 먹고 그 외의 모든 예산을 사격 및 방탈출 등의 액티비티에 쏟아부었습니다. 회식 날 밤에 배가 고픈 건 태어나서 처음이었던 것 같아요. 올해 초에 다녀왔던 전 직원들과 함께 다녀온 Bali 에서의 워크숍도 빠질 수 없습니다. 워낙 서로 친하게 지내다 보니 밤잠을 아껴가며 놀았던 기억이 납니다. 휴양지를 다녀왔는데 한국 돌아와서 1~2주 체력적으로 정말 힘들었던 기억이 나네요. 어느 Slack 채널에서나 난무하는 아재개그와 어처구니없는 3행시, 직원들의 표정이 담긴 얼굴로 만든 이모티콘 등 직원들 사이에서 주고받는 대화에는 늘 위트가 넘칩니다. 다크할거야! 라고 생각할 틈을 주지 않습니다. 비록 웃기지 않더라도 응원해줍니다. 노력은 언젠가 결실을 맺을 것이라 기대하기 때문이죠. 같이 놀고 같이 공부하는 회사 마음껏 교육이나 운동을 할 수 있도록 지원해주는 프로그램이나 무제한 도서구매를 지원하고 다양한 주제의 동아리나 스터디 모임 등이 있고 이걸 회사 차원에서 장려하는 것이 빼놓을 수 없는 Buzzvil 의 특징인 것 같습니다. 머신러닝, 영어스터디, 통기타 등의 스터디 모임과 밴드, 축구, 배드민턴, 테니스, 필라테스 등의 동아리 모임 등 대부분 직원들이 하나 이상의 프로그램에 참여하고 있습니다.  6. 개인적인 목표나 꿈이 있으신가요? 있다면, 버즈빌에서의 경험이 어떻게 도움이 된다고 생각하시나요?  많은 사람들에게 편리함을 제공 잠금화면이라는 대부분 사람들이 기존에 크게 활용되지 않고 있던 공간에 Value 를 만드는 것이 버즈빌에서 더 열심히 프로그램을 개발하게 만드는 원동력입니다. 위에도 기술 했지만 저는 가능한 많은 사람들에게 유익을 끼치고 싶어서 Programming 을 하게 되었고 대부분의 다른 산업과 달리 제가 하는 개발 작업은 하나의 복제품을 생성하는데 Ctrl+C / Ctrl+V 만으로 충분하니까 좋은 제품을 만들면 더욱 발전돼서 긍정적인 영향을 더 널리 끼칠 수 있을 것 같습니다.  다른 개발자들이 읽기 쉬운 코드 실제 제가 일을 하면 할수록 기존의 코드를 구조화하고 모듈화하고 사용하지 않는 코드를 지우는 일에 열심을 가지고 있다는 사실을 알게 되었어요. 확장이나 활용이 가능한 Core 나 Library 쪽 개발을 주로 하면서 어떻게 짜면 제 코드를 사용하는 사람이 덜 혼란스럽고 잘 활용할 수 있는지와 어느 곳에 어떤 설계가 어울리는지도 많이 고민해왔던 것 같습니다 버즈빌에서 버즈스크린이라는 상품을 통해서 저의 이런 성향을 마음껏 발휘하고 있습니다. 여러 Publisher 가 쉽게 사용할 수 있어야 하고 SDK 등을 사용할 때 쉽게 Integration 되어야 하기 때문이죠. ‘내가 짠 코드를 인수인계 받을 사람이 연쇄살인범이고 그 사람은 너의 주소를 알고 있다고 생각하고 코딩하라.’ 라는 말이 있는데요. 누구에게도 부끄럽지 않은 코드를 짜려고 항상 노력합니다. 갈 길이 아직 멀지만 연쇄살인범이라도, 어떻게 이렇게 코드를 (잘?) 설계했는지 의논하러 오게 만드는 것이 저의 꿈입니다.     *고성장 스타트업 버즈빌의 채용공고(전문연구요원 포함)를 확인하고 싶으면 아래 버튼을 눌러주세요!
조회수 1177

레진 기술 블로그 - AWS Auto Scalinging Group 을 이용한 배포

레진코믹스의 서버 시스템은 잘 알려진대로 Google AppEngine에서 서비스되고 있지만, 이런저런 이유로 인해 최근에는 일부 컴포넌트가 Amazon Web Service에서 서비스되고 있습니다. AWS 에 새로운 시스템을 셋업하면서, 기존에 사용하던 PaaS인 GAE에서는 전혀 고민할 필요 없었던, 배포시스템에 대한 고민이 필요했습니다. 좋은 배포전략과 시스템은 안정적으로 서비스를 개발하고 운영하는데 있어서 필수적이죠.초기에는 Beanstalk을 이용한 운영에서, Fabric 을 이용한 배포 등의 시행착오 과정을 거쳤으나, 현재는 (스케일링을 위해 어차피 사용할 수밖에 없는) Auto Scaling Group을 이용해서 Blue-green deployment로 운영 중입니다. ASG는 여러 특징 덕분에 배포에도 유용하게 사용할 수 있습니다.ASG를 이용한 가장 간단한 배포는, Instance termination policy 를 응용할 수 있습니다. 기본적으로 ASG가 어떤 인스턴스를 종료할지는 AWS Documentation 에 정리되어 있으며, 추가적으로 다음과 같은 방식을 선택할 수 있습니다.OldestInstanceNewestInstanceOldestLaunchConfigurationClosestToNextInstanceHour여기서 주목할 건 OldestInstance 입니다. ASG가 항상 최신 버전의 어플리케이션으로 스케일아웃되게 구성되어 있다면, 단순히 인스턴스의 수를 두배로 늘린 뒤 Termination policy 를 OldestInstance 로 바꾸고 원래대로 돌리면 구버전 인스턴스들부터 종료되면서 배포가 끝납니다. 그러나 이 경우, 배포 직후 모니터링 과정에서 문제가 발생할 경우 기존의 인스턴스들이 이미 종료된 상태이기 때문에 롤백을 위해서는 (인스턴스를 다시 생성하면서) 배포를 다시 한번 해야 하는 반큼 빠른 롤백이 어렵습니다.Auto scaling lifecycle 을 이용하면, 이를 해결하기 위한 다른 방법도 있습니다. Lifecycle 은 다음과 같은 상태 변화를 가집니다.기본적으로,ASG의 인스턴스는 InService 상태로 진입하면서 (설정이 되어 있다면) ELB에 추가됩니다.ASG의 인스턴스는 InService 상태에서 빠져나오면서 (설정이 되어 있다면) ELB에서 제거됩니다.이를 이용하면, 다음과 같은 시나리오로 배포를 할 수 있습니다.똑같은 ASG 두 개를 구성(Group B / Group G)하고, 그 중 하나의 그룹으로만 서비스를 운영합니다.Group B가 라이브 중이면 Group G의 인스턴스는 0개입니다.새로운 버전을 배포한다면, Group G의 인스턴스 숫자를 Group B와 동일하게 맞춰줍니다.Group G가 InService로 들어가고 ELB healthy 상태가 되면, Group B의 인스턴스를 전부 Standby로 전환합니다.롤백이 필요하면 Standby 상태인 Group B를 InService 로 전환하고 Group G의 인스턴스를 종료하거나 Standby로 전환합니다.문제가 없다면 Standby 상태인 Group B의 인스턴스를 종료합니다.이제 훨씬 빠르고 안전하게 배포 및 롤백이 가능합니다. 물론 실제로는 생각보다 손이 많이 가는 관계로(특히 PaaS인 GAE에 비하면), 이를 한번에 해주는 스크립트를 작성해서 사용중입니다. 대략 간략하게는 다음과 같습니다. 실제 사용중인 스크립트에는 dry run 등의 잡다한 기능이 많이 들어가 있어서 걷어낸 pseudo code 입니다. 스크립트는 사내 PyPI 저장소를 통해 공유해서 사용 중입니다.def deploy(prefix, image_name, image_version): '''Deploy specified Docker image name and version into Auto Scaling Group''' asg_names = get_asg_names_from_tag(prefix, 'docker:image:name', image_name) groups = get_auto_scaling_groups(asg_names) # Find deployment target set future_set = set(map(lambda g: g['AutoScalingGroupName'].split('-')[-1], filter(lambda g: not g['DesiredCapacity'], groups))) if len(future_set) != 1: raise ValueError('Cannot specify target auto scaling group') future_set = next(iter(future_set)) if future_set == 'green': current_set = 'blue' elif future_set == 'blue': current_set = 'green' else: raise ValueError('Set name shoud be green or blue') # Deploy to future group future_groups = filter(lambda g: g['AutoScalingGroupName'].endswith(future_set), groups) for group in future_groups: asg_client.create_or_update_tags(Tags=[ { 'ResourceId': group['AutoScalingGroupName'], 'ResourceType': 'auto-scaling-group', 'PropagateAtLaunch': True, 'Key': 'docker:image:version', 'Value': image_version, } ]) # Set capacity, scaling policy, scheduled actions same as current group set_desired_capacity_from(current_set, group) move_scheduled_actions_from(current_set, group) move_scaling_policies(current_set, group) # Await ELB healthy of instances in group await_elb_healthy(future_groups) # Entering standby for current group for group in filter(lambda g: g['AutoScalingGroupName'].endswith(current_set), groups): asg_client.enter_standby( AutoScalingGroupName=group['AutoScalingGroupName'], InstanceIds=list(map(lambda i: i['InstanceId'], group['Instances'])), ShouldDecrementDesiredCapacity=True ) def rollback(prefix, image_name, image_version): '''Rollback standby Auto Scaling Group to service''' asg_names = get_asg_names_from_tag(prefix, 'docker:image:name', image_name) groups = get_auto_scaling_groups(asg_names) def filter_group_by_instance_state(groups, state): return filter( lambda g: len(filter(lambda i: i['LifecycleState'] == state, g['Instances'])) == g['DesiredCapacity'] and g['DesiredCapacity'], groups ) standby_groups = filter_group_by_instance_state(groups, 'Standby') inservice_groups = filter_group_by_instance_state(groups, 'InService') # Entering in-service for standby group for group in standby_groups: asg_client.exit_standby( AutoScalingGroupName=group['AutoScalingGroupName'], InstanceIds=list(map(lambda i: i['InstanceId'], group['Instances'])) ) # Await ELB healthy of instances in standby group await_elb_healthy(standby_groups) # Terminate instances to rollback for group in inservice_groups: asg_client.set_desired_capacity(AutoScalingGroupName=group['AutoScalingGroupName'], DesiredCapacity=0) current_set = group['AutoScalingGroupName'].split('-')[-1] move_scheduled_actions_from(current_set, group) move_scaling_policies(current_set, group) 몇 가지 더…Standby 로 돌리는 것 이외에 Detached 상태로 바꾸는 것도 방법입니다만, 인스턴스가 ASG에서 제거될 경우, 자신이 소속된 ASG를 알려주는 값인 aws:autoscaling:groupName 태그가 제거되므로 인스턴스나 ASG가 많아질 경우 번거롭습니다.cloud-init 를 어느 정도 최적화해두고 ELB healthcheck 를 좀 더 민감하게 설정하면, ELB 에 투입될 때까지 걸리는 시간을 상당히 줄일 수 있긴 하므로, 단일 ASG로 배포를 하더라도 롤백에 걸리는 시간을 줄일 수 있습니다. 저희는 scaleout 시작부터 ELB에서 healthy 로 찍힐 때까지 70초 가량 걸리는데, 그럼에도 불구하고 아래의 이유 때문에 현재의 방식으로 운영중입니다.같은 방식으로 단일 ASG로 배포를 할 수도 있지만, 배포중에 혹은 롤백 중에 scaleout이 돌면서 구버전 혹은 롤백 버전의 인스턴스가 투입되어버리면 매우 귀찮아집니다. 이를 방지하기 위해서라도 (Blue-green 방식의) ASG 두 개를 운영하는게 안전합니다.같은 이유로, 배포 대상의 버전을 S3나 github 등에 기록하는 대신 ASG의 태그에 버전을 써 두고 cloud-init 의 user-data에서 그 버전으로 어플리케이션을 띄우게 구성해 두었습니다. 이 경우 인스턴스의 태그만 확인해도 현재 어떤 버전이 서비스되고 있는지 확인할 수 있다는 장점도 있습니다.다만 ASG의 태그에 Tag on instance 를 체크해 두더라도, cloud-init 안에서 이를 조회하는 경우는 주의해야 합니다. ASG의 태그가 인스턴스로 복사되는 시점은 명확하지 않습니다. 스크립트 실행 중에 인스턴스에는 ASG의 태그가 있을 수도, 없을 수도 있습니다.굳이 인스턴스의 Lifecycle 을 Standby / InService 로 전환하지 않고도 ELB 를 두 개 운영하고 route 53 에서의 CNAME/ALIAS swap 도 방법이지만, DNS TTL은 아무리 짧아도 60초는 걸리고, JVM처럼 골치아픈 동작 사례도 있는만큼 선택하지 않았습니다.물론 이 방법이 최선은 절대 아니며(심지어 배포할때마다 돈이 들어갑니다!), 현재는 자원의 활용 등 다른 측면에서의 고민 때문에 새로운 구성을 고민하고 있습니다. 이건 언젠가 나중에 다시 공유하겠습니다. :)
조회수 2411

Tabnabbing 피싱 공격의 동작 원리와 대응책

브라우저에서 사용자의 개인 정보를 가로채는 여러가지 피싱 공격 기법이 있습니다. 이 글에서는 그 중에서도 상대적으로 단순해서 과소평가된 Tabnabbing 공격의 동작 원리와 대응책을 함께 알아보겠습니다.Tabnabbing 의 동작 원리Tabnabbing은 HTML 문서 내에서 링크(target이 _blank인 Anchor 태그)를 클릭 했을 때, 새롭게 열린 탭(또는 페이지)에서 기존의 문서의 location을 피싱 사이트로 변경해 정보를 탈취하는 공격 기술을 뜻한다. 이 공격은 메일이나 오픈 커뮤니티에서 쉽게 사용될 수 있습니다.(출처: blog.jxck.io 영어 스펠링이 이상해 보이는 것은 기분 탓입니다)공격 절차는 다음과 같습니다:사용자가 cg**m**.example.com에 접속합니다.해당 사이트에서 happy.example.com으로 갈 수 있는 외부 링크를 클릭합니다.새 탭에 happy.example.com가 열립니다.happy.example.com에는 window.opener 속성이 존재합니다.자바스크립트를 사용해 opener의 location을 피싱 목적의 cg**n**.example.com/login 으로 변경합니다.사용자는 다시 본래의 탭으로 돌아옵니다.로그인이 풀렸다고 착각하고 아이디와 비밀번호를 입력한다.cg**n**.example.com은 사용자가 입력한 계정 정보를 탈취한 후 다시 본래의 사이트로 리다이렉트합니다.예제: 네이버 메일 vs. Gmail시나리오를 하나 그려볼까요?공격자가 네이버 계정을 탈취할 목적으로 여러분에게 세일 정보를 담은 메일을 보냅니다. 그 메일에는 [자세히 보기]라는 외부 링크가 포함되어 있습니다. 물론 이 세일 정보는 가짜지만 공격자에겐 중요하지 않습니다. 메일을 읽는 사람이 유혹에 빠져 링크를 클릭하면 그만이죠.(상단의 주소를 주목하세요)하지만 Gmail은 이 공격이 통하지 않습니다. Gmail은 이러한 공격을 막기 위해 Anchor 태그에 data-saferedirecturl 속성을 부여해 안전하게 리다이렉트 합니다.rel=noopener 속성이러한 공격의 취약점을 극복하고자 noopener 속성이 추가됐습니다. rel=noopener 속성이 부여된 링크를 통해 열린 페이지는 opener의 location변경과 같은 자바스크립트 요청을 거부합니다. 정확히 말해서 Uncaught TypeError 에러를 발생시킵니다(크롬 기준).이 속성은 Window Opener Demo 페이지를 통해 테스트해볼 수 있습니다. 크롬은 버전 49, 파이어폭스 52부터 지원합니다. 파이어폭스 52가 2017년 3월에 릴리즈 된 것을 감안하면 이 속성 만으로 안심하긴 힘들겠네요. 자세한 지원 여부는 Link types를 참고하세요.따라서, 이러한 공격이 우려스러운 서비스라면 blankshield 등의 라이브러리를 사용해야 합니다:blankshield(document.querySelectorAll('a[target=_blank]')); 참고로, noopener 속성은 이 외에도 성능 상의 이점도 있습니다. _blank 속성으로 열린 탭(페이지)는 언제든지 opener를 참조할 수 있습니다. 그래서 부모 탭과 같은 스레드에서 페이지가 동작합니다. 이때 새 탭의 페이지가 리소스를 많이 사용한다면 덩달아 부모 탭도 함께 느려집니다. noopener 속성을 사용해 열린 탭은 부모를 호출할 일이 없죠. 따라서 같은 스레드일 필요가 없으며 새로운 페이지가 느리다고 부모 탭까지 느려질 일도 없습니다.성능 상의 이점에 대한 자세한 내용은 The performance benefits of rel=noopener을 참고하세요.참고자료Tabnabbing: A New Type of Phishing AttackTarget=”_blank” - the most underestimated vulnerability ever링크에 rel=noopener를 부여해 Tabnabbing을 대비(일어)The performance benefits of rel=noopener
조회수 4750

Elasticsearch X-Pack Alerting 체험기

Logstash로 로그를 수집한 후 Elasticsearch와 Kibana로 분석하는 방법을 다룬 글은 많다. 그런데 이상하더라 이 말이지. 로그를 분석하고 경향을 파악하는 정도라면야 괜찮은데 심각한 오류 로그를 발견했을 때 Slack이나 이메일 등으로 알람 받을 수단이 마땅치 않더라. 사람이 키바나 대시보드를 5분마다 확인할 수도 없는 노릇이다. (이건 새로운 차원의 고문?)이런 생각을 먼저 한 사람이 있기 마련이라 Yelp의 elastalert라던가 Elasticsearch의 X-Pack을 활용하면 이런 문제를 해소할 수 있다. 오늘은 그 중에서 후자를 살펴볼 예정이다.경고! X-Pack은 Elasticsearch가 유료 서비스 시장을 열려고 야심차게 미는 모양인데 “자기네가 직접 만들었으니 쿨하겠지?”라고 쉽게 생각하면 하루 안에 절벽 아래로 떨어지는 끔찍한 기분을 맞이할 수도 있다.X-Pack은 가격이 상당한데 Alert 등을 설정하려면 전적으로 RESTful API에 의존해야 한다. 적어도 아직까지는! 이 사실을 깨닫자마자 당황할 수 있는데 침착하자. 이것은 시작일 뿐이다. 여러분이 검색엔진의 초보라면 그 다음 난관은 검색 쿼리를 작성하는 것이다. “나는 그냥 OutOfMemoryError 로그를 발견하면 알람을 보내줬으면 좋겠어"라고 쉽게 생각했겠지만 그 간단한 결과를 얻으려면 험난한 여정을 거쳐야 한다."search" : { "request" : { "indices" : [ "", ], "body" : { "query" : { "bool" : { "must" : { "multi_match": { "query": "OutOfMemoryError", "fields": ["message", "log"] } }, "filter" : { "range": { "@timestamp": { "from": "{{ctx.trigger.scheduled_time}}||-5m", "to": "{{ctx.trigger.triggered_time}}" } } } } } } } }음… 좋다. 일단 이렇게 작성한 쿼리가 제대로 된 것인지 테스트하려면 어떻게 해야 하는가? 검색 API로 대충 테스트해볼 수는 있다.GET logstash-2017.02.2*/_search { "query" : { "bool" : { "must" : { "multi_match": { "query": "OutOfMemoryError", "fields": ["message", "log"] } } } } }어찌어찌 잘 나온다. 그래서 잘 돌 줄 알았지? 그럴 줄 알고 있다가 이런 메시지를 만난다.Trying to query 1157 shards, which is over the limit of 1000. This limit exists because querying many shards at the same time can make the job of the coordinating node very CPU and/or memory intensive. It is usually a better idea to have a smaller number of larger shards. Update [action.search.shard_count.limit] to a greater value if you really want to query that many shards at the same time.음… logstash 인덱스를 매시간마다 분할했더니 샤드가 꽤 많아진 모양이다. 그래서 최근 두 개의 인덱스로 검색 대상을 제한하려고 한다. Date math support in index names라는 문서에 인덱스 이름을 동적으로 바꾸는 법이 나와 있긴 하다. 그런데 막상 내가 짠 게 어떤 값이 나오는지 확인하는 방법은 제대로 안 나온다. 예를 들어 가 logstash-2017.02.22t01로 해석되는지 어떻게 아는가? 많은 삽질 끝에 방법을 찾았다.를 URL 인코딩한다.그렇게 얻은 값 을 가지고 인덱스 조회 API를 호출한다. GET /3Clogstash-{now-1h/d}t{now-1h{HH}}>그러면 다음과 같이 결과가 나와서 인덱스 이름이 어떻게 해석됐는지 확인할 수 있다.{ "logstash-2017.02.23t01": { "aliases": {}, "mappings": { /* 중략 */ } }여기까지는 전적으로 검색 쿼리 작성 경험이 부족해서 발생한 삽질이다. 하지만 애플리케이션 로그 분석을 패턴화하지 않고 이렇게 검색 쿼리를 복잡하게 짜야 한다니 아직 갈 길이 멀다는 생각이 든다. DataDog 또는 NewRelic 같은 상용 서비스를 참고해서 개선하면 좋겠다.이제 결과를 알람으로 보내면 된다. 이래저래 고생하다 대충 아래와 같은 형태로 완성했다.PUT _xpack/watcher/watch/outofmemoryerror { "trigger" : { "schedule" : { "cron" : "0 0/4 * * * ?" } }, "input" : { "search" : { "request" : { "indices" : [ "", "" ], "body" : { "query" : { "bool" : { "must" : { "multi_match": { "query": "OutOfMemoryError", "fields": ["message", "log"] } }, "filter" : { "range": { "@timestamp": { "from": "{{ctx.trigger.scheduled_time}}||-5m", "to": "{{ctx.trigger.triggered_time}}" } } } } }, "sort" : [ { "@timestamp" : {"order" : "desc"}}, "_score" ] } } } }, "condition" : { "compare" : { "ctx.payload.hits.total" : { "gt" : 0 }} }, "actions" : { "notify-slack" : { "throttle_period" : "5m", "slack" : { "message" : { "to" : [ "#ops", "@dev" ], "text" : "로그 모니터링 알람", "attachments" : [ { "title" : "OutOfMemoryError", "text" : "지난 5분 동안 해당 오류가 {{ctx.payload.hits.total}}회 발생했습니다. 가장 최근의 오류는 다음과 같습니다.", "color" : "warning" }, { "fields": [ { "title": "환경", "value": "Prod", "short": true }, { "title": "발생시각", "value": "{{ctx.payload.hits.hits.0._source.@timestamp}}", "short": true }, { "title": "메시지", "value": "{{ctx.payload.hits.hits.0._source.message}}", "short": false }, { "title": "확인명령어", "value": "`GET /{{ctx.payload.hits.hits.0._index}}/{{ctx.payload.hits.hits.0._type}}/{{ctx.payload.hits.hits.0._id}}`", "short": false } ], "color" : "warning" } ] } } } } }4분마다 검색 쿼리를 실행해서 최근 5분 간의 레코드를 감시하기 때문에 동일한 오류에 대해 2회 연속으로 알람을 받을 가능성이 있다. X-Pack은 이를 우회할 방법을 제공하지 않는 것 같다. 그래서 쿼리가 발견한 레코드의 인덱스 ID를 Slack 메시지 중 확인명령어 필드에 넣었다. 알람이 두 번 왔지만 인덱스 아이디가 동일하다면 오류가 한번 발생한 것으로 간주하면 된다.참고 문서위의 Alert를 작성하며 도움을 받은 문서는 다음과 같다.Multi Search Template은 검색 쿼리를 짤 때 도움이 됐다.Search Input 문서는 검색 쿼리 또는 검색 결과를 작성할 때 어떤 변수를 사용할 수 있는지 설명한다. 예) {{ctx.payload.hits.hits.0._source.message}}Watcher APIsSlack ActionDate math support in index names 문서는 인덱스 이름을 동적으로 바꾸는 법을 설명한다.기타Elasticsearch Cloud는 기본적으로 이메일 발송을 지원하기 때문에elasticsearch.yml 설정에 xpack.notification.email를 추가하지 않아도 된다. 아니, 추가하면 잘못된 설정이라며 거부한다. Illegal이라고만 하지 이유를 자세히 알려주지 않기 때문에 삽질하기 쉽니다. Invalid addresses라고 오류 로그가 찍히면 이것은 설정 문제가 아니다. 이메일 설정 메뉴로 가서 Watcher Whitelist에 수신 이메일 주소를 등록하면 문제가 해결된다.테스트용 로그 메시지를 Fluentd로 보내고 싶다면 fluent-cat 명령을 이용한다.echo '{"message":"Dummy OutOfMemoryError"}' | fluent-cat kubernetes.logOriginally published at Andromeda Rabbit.#데일리 #데일리호텔 #개발 #개발자 #개발팀 #인사이트
조회수 1285

jekyll의 메커니즘을 이해하고 커스터마이징하기

편집자 주-PHP 기반의 서비스를 기준으로 설명했다.-서버의 프로그램은 ‘서버 스크립트’로 표기했다.-HTML/html: 약어로 사용할 경우엔 대문자, 파일명으로 사용할 경우엔 소문자로 표기했다.목차jekyll이 어렵게 느껴지는 이유 jekyll은 모든 화면을 미리 만들어둔다.서버 스크립트 없이 검색 기능을 어떻게 만들까?이미지 캡션 추가이미지 사이즈 대응부록: 글 반영 과정, 도메인 연결 방법, 추가 옵션에 대하여Overview기술 블로그인 브랜디 랩스를 관리하기에 jekyll은 안성맞춤인 도구입니다. 1년 넘게 탈 없이 잘 사용하고 있죠. 물론 커스터마이징을 하려면 고생이 이만저만이 아닙니다. 그 과정은 jekyll을 이용한 Github 블로그 만들기에도 잘 나와있습니다. 도대체, jekyll은 왜 이리도 어려운 걸까요? 브랜디 랩스를 사례로 설명하겠습니다.jekyll이 어렵게 느껴지는 이유일반적인 웹서비스는 정적 리소스와 동적 스크립트의 조합으로 이뤄집니다. 예를 들어 PHP 서비스에서는 정적인 부분을 아파치 웹서버로, 동적인 부분을 PHP 스크립트로 작동합니다.하나의 게시글이 생기면 PHP 스크립트가 데이터베이스에 row 생성을 요청합니다. 게시글 등록 요청을 마치고, 글 목록 화면 요청을 한다면 데이터베이스에서 등록된 글목록을 정리해 HTML 양식으로 응답값을 만들어줄 것입니다.PHP 기반의 블로그 프로그램하지만 jekyll은 컨셉부터 다릅니다. 아주 생소한 메커니즘을 갖고 있습니다. 파일 기반의 데이터를 정적인 리소스로 빌드해서 서비스하죠. 게시글마다 md 파일이나 html 파일을 생성합니다. 글을 작성하고 배포하기 위한 빌드를 진행하면 응답할 html 화면을 만들고, 파일로 저장해 준비합니다. 이 상태에서 유저가 특정 화면을 요청하면 미리 생성한 html 파일을 찾아 꺼내주기만 하면 되죠. 다시 말해, 데이터베이스를 조회하고 HTML 양식으로 응답값을 만드는 과정이 생략되는 것입니다.실제로 Github page가 아파치 서버를 쓰는지는 알 수 없지만 개념 설명을 위해 동일하게 그렸다.jekyll은 모든 화면을 미리 만들어둔다.jekyll은 유저가 요청할 수 있는 모든 화면을 미리 빌드하는 방식을 씁니다. 앞서 다뤘던 브랜디 랩스의 gnav 영역의 회사소개, 채용 화면도 미리 빌드해둬야 합니다. 저자를 소개하는 프로필 페이지도 마찬가지죠. 글이 많아지면서 점점 길어지는 글 목록 화면도 예외는 아닙니다. 글 목록을 보여주는 화면이 많아지만 페이지 수만큼 미리 만들어야 합니다.위의 이미지는 jekyll이 동작하는 메커니즘을 간단히 정리한 것입니다. jekyll을 커스터마이징하려면 완전히 새로운 관점으로 접근해야 합니다. 지금부터는 브랜디 랩스의 검색 기능 구현 과정을 살펴보면서 커스터마이징을 자세히 알아보겠습니다.서버 스크립트 없이 검색 기능을 어떻게 만들까?검색을 하려면 작성된 모든 글의 제목과 내용에 원하는 키워드가 있는지 찾아야 합니다. 하지만 검색어는 변동값이므로 미리 빌드하는 방식으로는 커버할 수 없습니다. 검색어마다 화면을 미리 만들 수 없기 때문입니다.이럴 때는 클라이언트 스크립트는 활용해야 합니다. 서버 스크립트를 쓸 수 없기 때문에 어쩔 수 없는 선택이기도 합니다. 검색에 필요한 정보를 json 파일로 빌드시키고 자바 스크립트를 이용해서 검색하도록 했습니다.먼저 최상위 경로에 search.json을 만듭니다. 파일 시작점에 아래와 같은 패턴이 있다면 빌드 대상으로 인식됩니다.--- --- 이전에 쓴 jekyll 문서를 PDF로 배포하기에서 pdf.html 파일을 만들 때도 비슷한 방법을 사용했습니다.--- --- [ {% for post in site.posts %} { "title" : "{{ post.title | escape }}", "category" : "{{ post.category }}", "tags" : "{{ post.tags | join: ‘, ’ }}", "url" : "{{ site.baseurl }}{{ post.url }}", {% if post.author %}{% for author in site.data.authors %}{% if post.author == author.name %} "author" : "{{author.koname}}", "email" : "{{author.email}}", {% endif %}{% endfor %}{% endif %} "date" : "{{ post.date }}", "content" : "{{ post.content | strip_html | replace: "\", ‘’ | replace: ‘"’, ‘\"’ | replace: ' ‘,’ ' | replace: ' ‘, ’ ' }}" } {% unless forloop.last %},{% endunless %} {% endfor %} ] ▲서머리 데이터를 만드는 json 파일search.json은 모든 페이지의 제목과 내용을 정리해 json으로 만들어야 하기 때문에 site.posts변수를 이용해 만들었습니다. post내용에는 글의 저자, 작성일, 제목, 내용 등 필요한 정보가 있으니 출력하면 됩니다. json을 만드는 것이므로 내용에 “가 들어가면 안되 "으로 치환시켰습니다. 마지막으로 HTML 태그는 검색에 필요하지 않기 때문에 luqid strip_html 함수를 이용해 제거했습니다.http://labs.brandi.co.kr/search.json위의 URL을 클릭하면 브랜디 랩스에서 검색에 사용하는 json을 볼 수 있습니다. 빌드하면 search.json이 만들어지는 것을 확인할 수 있습니다. 이제 json을 로딩하고 해당 키워드를 가진 글을 찾아내기만 하면 됩니다. json 내에 제목과 내용에 입력한 키워드가 있을 때 아래와 같은 UI로 표현했습니다. 기능 구현은 Simple-Jekyll-Search를 이용했습니다. 1)이미지 캡션 추가블로그는 이미지를 많이 사용하고, 상황에 맞게 노출도 해야 합니다. 아래 이미지는 최종적으로 적용한 이미지와 캡션의 결과 화면입니다. {% include figure.html file="/assets/20190415/05.png" alt="05" caption="커스터마이징한 gnav 영역" width="fitcontent" border="true" %} 위와 같이 구성하려고 html과 css를 다음과 같이 구성했습니다. 커스터마이징한 Gnav영역 ▲캡션 html 소스figure { margin: 1em auto; } figcaption { text-align: center; font-weight: bold; color:#999; } ▲캡션에 관련된 css 소스이미지는 가운데 정렬했고, 캡션 텍스트도 옅은 회색으로 가운데 정렬했습니다. 하지만 편집을 담당하는 장근우 대리는 개발자가 아니므로 태그를 입력해달라고 하기엔 무리가 있었습니다. 좀 더 편리한 방식이 없을지 고민하다가 liquid 템플릿의 include 기능을 쓰면 되겠다는 생각이 들었죠. 아래는 브랜디 랩스 원고에 이미지를 넣을 때 쓰는 liquid 문법입니다.{% include figure.html file="/assets/easydebug/5.png" alt="07" caption="커스터마이징한 Gnav영역" %} liquid 템플릿 엔진에서 include할 때 추가 파라미터를 전달할 수 있습니다. file, alt, caption은 파라미터로 전달하고, include되는 파일에서 전달할 내용을 바탕으로 프로그램을 구현할 수 있습니다. {{include.caption}} ▲ /_includes/figure.html이미지 사이즈 대응작은 이미지를 확대하면 이렇게 된다.대부분은 이미지는 화면에 꽉 차지만, 어떤 이미지는 사이즈가 너무 작아 원래의 사이즈로 보여줘야 했습니다.{% include figure.html width="fitcontent" border="true" file="/assets/easydebug/5.png" alt="07" caption="커스터마이징한 Gnav영역" %} ▲사이즈와 외곽 테두리 선에 스펙을 추가했다.추가 전달 인자를 넣고, figure.html 파일에서도 사이즈 대응을 했습니다. {{include.caption}} ▲완성된 /_includes/figure.html 파일figure { margin: 1em auto; } figure.percent100 { width: 100%; } figure.percent90 { width: 90%;} figure.percent80 { width: 80%;} figure.percent70 { width: 70%;} figure.percent60 { width: 60%;} figure.percent50 { width: 50%;} figure.percent40 { width: 40%;} figure.percent30 { width: 30%;} figure.percent20 { width: 20%;} figure.percent15 { width: 15%;} figure.percent10 { width: 10%;} figure.percent5 { width: 5%;} figure.fitcontent { width: fit-content;} figcaption { text-align: center; font-weight: bold; color:#999; } ▲완성된 css이제 원하는 사이즈를 지정해 이미지 상황별 적절한 대응을 할 수 있게 되었습니다.Conclusionjekyll은 브랜디 랩스를 운영하기에 아주 유용한 도구입니다. 기본 템플릿도 훌륭하지만 상황과 편의에 맞게 변경하면 개성 있는 기술 블로그를 만들 수 있을 겁니다. 물론 커스터마이징이 어려울 수 있지만 jekyll의 메커니즘을 이해한다면 금방 적응할 수 있을 겁니다. 이제 블로그를 만들 모든 준비가 끝났습니다. 자, 도전해봅시다!부록1.글 반영 과정jekyll을 이용해서 글을 작성했나요? 이제 Github 저장소에 push하면 글이 반영될 겁니다. push하는 과정을 보면 빌드된 파일을 push하는 게 아니라, 원본에 해당하는 md파일 또는 html 파일을 push하는 걸 알 수 있습니다. push하면 Github page에 바로 반영되지 않고, 몇 분 정도 걸립니다. 이것을 통해 작성한 글이 저장소에 push되면 스케줄러나 트리거에 의해 빌드된다는 걸 유추할 수 있습니다. 아마도 빌드 결과를 위한 저장소가 따로 있고, 빌드된 결과가 저장되는 것이라 예상합니다.2.도메인 연결 방법jekyll 서비스에서는 구매한 도메인을 간편하게 연결할 수 있습니다. 프로젝트의 가장 위쪽에 CNAME 파일을 만들고 push하면 금방 적용됩니다.CNAME 파일3.추가 옵션에 대하여자료를 조사하던 중에 공식 사이트의 빌드 추가 옵션을 찾았지만 0.2초 정도로 큰 차이가 없었습니다. 만약 별도의 옵션이 없다면 빌드 결과는 _site 폴더로 모일 겁니다.공식 사이트 빌드 옵션옵션을 넣어 빌드옵션을 넣지 않고 빌드참고1) GitHub - christian-fei/Simple-Jekyll-Search: A JavaScript library to add search functionality to any Jekyll blog.글천보성 팀장 | R&D 개발2팀[email protected]브랜디, 오직 예쁜 옷만

기업문화 엿볼 때, 더팀스

로그인

/