스토리 홈

인터뷰

피드

뉴스

조회수 1162

Single Layer Perceptron

Single Layer Perceptron이번 포스팅에서는 모든 인공신경망의 기초가 되는 perceptron의 개념에 대해서 배워보고, 이를 이용한 단층 퍼셉트론 구조를 구현해보도록 하겠습니다.퍼셉트론은 여러분이 고등학교 과학시간에 한 번쯤은 들어보았을 인간의 신경망, 뉴런으로부터 고안되었습니다. 퍼셉트론은 여러 개의 신호를 입력받으면, 하나의 신호를 출력합니다. 이 때 퍼셉트론이 출력하는 신호는 전달 혹은 차단이라는 1 또는 0의 값을 갖게됩니다. 직관적인 예시를 들어보도록 하죠. 여러분이 매달 초 용돈, 아르바이트비를 받거나(1) 받지 않는다(0)고 가정해보겠습니다. 여러분의 통장에 입금된 이 두 가지 수익을 input(입력) 신호라고 합니다. 이 때 여러분은 두 개의 수익이 합쳐진 통장 잔고를 확인하고 전부터 갖고 싶던 옷을 살지(1) 혹은 사지 않을지(0)를 결정합니다. 이렇게 여러분이 내리는 결정이 output(출력) 신호가 되는 것입니다.하지만 여러분의 의사결정은 이것보다는 복잡할 것입니다. 용돈은 거의 생활비로만 사용하고, 아르바이트비를 주로 취미생활에 사용한다고 가정해보죠. 그럼 여러분이 옷을 살지 여부를 결정할 때에는 아르바이트비가 들어왔는지가 좀더 중요할 것입니다. 따라서 우리는 각 input(입력) 신호를 그대로 사용하지 않고, 각각에 가중치(weight)를 주어 output(출력) 신호를 결정하게 됩니다. 이것을 도식으로 나타내면 다음과 같습니다. 이처럼 input에 weight가 곱해진 형태가 정해진(혹은 학습된) 임계치를 넘을 경우 1을 출력하고 그렇지 않을 경우 0을 출력하게 하는 것이 퍼셉트론의 동작 원리입니다. 정말 간단하죠! 이는 아래 수식과 같습니다.하지만 임계치를 그때그때 바꿔주는 것은 조금 직관적이지 않습니다(저만 그런가요). 그래서 우리는 아래 형태로 식을 바꾸게 되며, 이 때 추가된 b를 bias 혹은 절편이라고 말합니다. 위 식은 여러분이 중고등학교 수학 수업을 잘 들었다면 굉장히 익숙한 형태일 것입니다. 바로 2차원 좌표축을 그리고 직선을 그었을 때, 그 직선을 기준으로 나뉘는 두 개의 공간을 표현한 식입니다. 역시 말보다는 그림이 이해하기 쉬울테니, 아래에 그림을 그려보도록 하겠습니다.위처럼 공간을 올곧은 직선으로 나누는 것을 선형으로 나눴다고 말합니다. 하지만 직선만으로 공간을 나누는 것은 유연하지 않습니다. 위와 같은 방식으로는 OR, AND, NAND 문제는 해결할 수 있지만, XOR 문제는 해결할 수 없습니다. 이와 같은 문제를 해결하기 위해서는 층을 하나 더 쌓고, 공간을 단순한 선형이 아닌 곡선으로 분리해내어 좀더 유연한 적용이 가능해져야합니다.(사실 XOR은 선형만으로도 층을 하나 더 쌓으면 해결이 가능합니다). 이에 따라 multi layer perceptron(MLP) 의 개념이 등장하고, activation function(활성함수) 의 개념이 등장하게 됩니다. 후에 활성함수의 개념을 배우게 되면, 지금 배운 단순 퍼셉트론은 활성함수로 계단함수를 가진 것과 동일하다는 것을 알게 되실겁니다.정리단층 퍼셉트론은 모든 딥러닝 공부의 시작이다.단층 퍼셉트론은 입력 신호를 받으면 임계치에 따라 0 또는 1의 값을 출력한다.이러한 단층 퍼셉트론은 결국 공간을 선형으로 잘라서 구분하는 것과 동일하다.
조회수 1590

[Tech Blog] PhantomJS를 Headless Chrome(Puppeteer)로 전환하며

버즈빌에서는 모바일 잠금화면에 내보내기 위한 광고 및 컨텐츠 이미지를 생성하기 위한 PhantomJS 렌더링 서버를 다수 운영하고 있습니다. 일반적으로 PhantomJS는 웹페이지 캡쳐에 많이 쓰이지만, 기본적으로 headless하게 웹페이지를 렌더링하고 캡쳐할 수 있다는 특성 때문에 동적인 이미지 생성에도 많이 활용됩니다. 버즈빌의 렌더링 서버는 200개 이상의 컨텐츠 프로바이더로부터 실시간으로 잠금화면 컨텐츠 이미지를 생성하고 있어 분당 수백 건의 이미지를 안정적으로 생성하는 것이 가능해야 합니다.  렌더링 서버의 스케일링 이슈를 해결하기 위해 버즈빌에서는 여러 대의 렌더링 서버를 둬서 횡적으로 확장을 함과 동시에, 개별 서버 내에서도 리소스 사용률을 높이기 위해 Ghost Town이라는 라이브러리를 작성해 PhantomJS 프로세스 풀을 구성하여 사용하고 있었습니다(Scaling PhantomJS With Ghost Town ) 한편, 시간이 지나면서 잠금화면에서 렌더링하는 이미지 템플릿의 종류가 다양해지고, emoji 및 여러 특수문자를 표현하기 위해 렌더링 서버에 여러 폰트(대표적으로 Noto Sans CJK)를 설치해야 하는 요구사항이 추가됐는데, PhantomJS에서 폰트 렌더링이 일관적이지 않은 문제가 발생했습니다. 동일한 템플릿이지만 폰트가 비일관적으로 렌더링되고 있는 모습 이 문제의 정확한 원인은 결국 찾지 못했지만 PhantomJS의 이슈였거나 시스템 상에 폰트가 시간이 지나면서 추가 설치됨에 따라 font cache가 서버마다 일관되지 않은 상태가 되었기 때문인 것으로 짐작하고 있습니다. 다른 워크로드와 마찬가지로 렌더링 서버도 최초에는 packer를 이용해 일관되게 이미지를 빌드하고 업데이트하려고 했지만, 자주 기능이 추가되거나 배포되는 서비스가 아니기에 서버를 오래 띄워놓고 수동으로 유지보수를 한 케이스들이 누적되어 더 이상 packer를 이용해 시스템이나 폰트를 최신 상태로 유지하는 것이 어려운 상태였습니다. 모든 눈꽃송이가 자세히 보면 조금씩 다르게 생겼다는 것에서 비롯된 snowflake, 즉 배포된 서버들이 시간이 지남에 따라 조금씩 다른 상태가 된 것입니다. 평소에는 문제가 없어 보이지만, 추가적인 확장성이 필요해 scale out을 하거나 새로운 템플릿을 개발해 배포를 하면 문제가 발생하는 상황이었습니다. 사실 더 큰 문제는 PhantomJS 프로젝트가 더 이상 관리되지 않는다는 점이었습니다. 2017년 Google Chrome 59버전부터 Headless Chrome이 내장되기 시작하였고, 곧바로 Node API인 puppeteer가 릴리즈 되어, 현시점에서 가장 많이 쓰이는 렌더링 엔진을 손쉽게 headless로 사용할 수 있는 환경이 되었습니다. 때문에 PhantomJS 관리자가 사실상의 중단을 선언하였고, 2018년에는 최초 개발자에 의해 프로젝트가 아카이브 되었습니다. 프로젝트가 업데이트되지 않는 것은 템플릿에 최신 CSS 스펙을 사용하지 못한다는 것을 의미하고, 버그 수정도 되지 않기에 어플리케이션의 유지보수가 굉장히 어려워짐을 의미합니다. 현재까지의 문제점을 정리하면 아래와 같습니다.  자주 배포되지 않는 서비스 특성으로 인한 서버들이 snowflake화 되는 현상(특히 폰트) PhantomJS의 개발 중단으로 인해 버그 픽스 및 최신 CSS 속성 사용이 어렵게 되고, 향후 유지보수나 새로운 템플릿 개발이 어려워짐  해결방안은 명확했습니다. 첫번째 문제를 해결하기 위해서는 어플리케이션과 폰트가 설치된 시스템을 통째로 컨테이너로 만들고, CI/CD 파이프라인을 통해 지속적으로 빌드하여 snowflake화 되지 않도록 하면 됩니다. 사실 최초에 packer를 이용해 AMI 이미지를 생성하도록 구성이 되어있었기에, 매 배포마다 AMI를 새로 생성하고 지속적으로 렌더링 서버를 배포하는 환경이기만 했으면 snowflake를 방지할 수 있었을 것입니다. 하지만 자주 기능이 추가되거나 배포되는 서비스가 아닌데다, AMI를 빌드하는 과정이 CI/CD에 통합돼 있지 않고 어플리케이션만 지속적으로 배포하는 환경이었기에 편의상 서버를 종료하지 않고 장기간 관리를 해 오게 되었고, packer로 새로운 AMI 이미지를 빌드하는 것이 어려워 졌습니다. 때문에 AMI 빌드를 통한 배포 대신, 이미 운영 중인 kubernetes 클러스터에 도커 컨테이너를 빌드해 immutable한 형상으로 배포하기로 결정하였습니다. 두번째 문제의 간단한 해결책은 PhantomJS를 puppeteer로 변경하는 것입니다. 이 부분은 생각보다 간단했습니다. 의도했는지는 알 수 없으나 puppeteer의 api는 PhantomJS와 꽤나 비슷합니다. drop-in replacement까진 아니지만, PhantomJS api 호출하는 부분만 살짝 바꿔주는 정도로 교체가 가능하였습니다. 물론 교체만 하였다고 해서 기존에 개발된 템플릿이 의도된 대로 출력되는 것을 보장하지는 않기에, 렌더링 서버가 렌더링하는 수많은 템플릿들을 PhantomJS와 puppeteer로 각각 출력하여 일일히 비교하는 작업이 필요했습니다. 어떤 템플릿이 어떤 인자를 필요로하며 의도된 출력 결과가 무엇인지에 대한 정의가 남아있지 않았기에 템플릿마다 샘플 케이스들을 생성하는 작업이 필요했습니다. 아직까지는 수동으로 결과를 비교해야하는 문제점이 있지만 적어도 직접 확인할 수 있는 것은 큰 도움이 되었습니다. 향후에는 자동화된 테스트 케이스를 구성하여 기능 개발이 좀 더 용이하도록 보완할 계획입니다. 결과는 만족스러웠습니다. 많은 경우 기존과 출력 결과가 달랐지만, 최신의 크롬 웹킷이 사용되면서 오히려 템플릿을 개발할 때 의도했던대로 CSS를 더 정확하게 렌더링하게 된 것이었습니다.  FROM node:10-slim RUN apt-get update && \ apt-get install -yq gconf-service libasound2 libatk1.0-0 libc6 libcairo2 libcups2 libdbus-1-3 \ libexpat1 libfontconfig1 libgcc1 libgconf-2-4 libgdk-pixbuf2.0-0 libglib2.0-0 libgtk-3-0 libnspr4 \ libpango-1.0-0 libpangocairo-1.0-0 libstdc++6 libx11-6 libx11-xcb1 libxcb1 libxcomposite1 \ libxcursor1 libxdamage1 libxext6 libxfixes3 libxi6 libxrandr2 libxrender1 libxss1 libxtst6 \ fonts-ipafont-gothic fonts-wqy-zenhei fonts-thai-tlwg fonts-kacst ttf-freefont \ ca-certificates fonts-liberation libappindicator1 libnss3 lsb-release xdg-utils wget unzip && \ wget https://github.com/Yelp/dumb-init/releases/download/v1.2.1/dumb-init_1.2.1_amd64.deb && \ dpkg -i dumb-init_*.deb && rm -f dumb-init_*.deb && \ apt-get clean && apt-get autoremove -y && rm -rf /var/lib/apt/lists/* RUN yarn global add [email protected] && yarn cache clean ENV NODE_PATH="/usr/local/share/.config/yarn/global/node_modules:${NODE_PATH}" RUN groupadd -r pptruser && useradd -r -g pptruser -G audio,video pptruser # Set language to UTF8 ENV LANG="C.UTF-8" RUN wget -P ~/fonttmp \ https://noto-website-2.storage.googleapis.com/pkgs/NotoSans-unhinted.zip \ https://noto-website-2.storage.googleapis.com/pkgs/NotoSansCJKjp-hinted.zip \ https://noto-website-2.storage.googleapis.com/pkgs/NotoSansCJKkr-hinted.zip \ https://noto-website-2.storage.googleapis.com/pkgs/NotoSansCJKtc-hinted.zip \ https://noto-website-2.storage.googleapis.com/pkgs/NotoSansCJKsc-hinted.zip \ https://noto-website-2.storage.googleapis.com/pkgs/NotoColorEmoji-unhinted.zip \ && cd ~/fonttmp \ && unzip -o '*.zip' \ && mv *.*tf /usr/share/fonts \ && cd ~/ \ && rm -rf ~/fonttmp WORKDIR /app # Add user so we don't need --no-sandbox. RUN mkdir /screenshots && \ mkdir -p /home/pptruser/Downloads && \ mkdir -p /app/node_modules && \ chown -R pptruser:pptruser /home/pptruser && \ chown -R pptruser:pptruser /usr/local/share/.config/yarn/global/node_modules && \ chown -R pptruser:pptruser /screenshots && \ chown -R pptruser:pptruser /usr/share/fonts && \ chown -R pptruser:pptruser /app # Run everything after as non-privileged user. USER pptruser RUN fc-cache -f -v COPY --chown=pptruser:pptruser package*.json /app/ RUN npm install && \ npm cache clean --force COPY --chown=pptruser:pptruser . /app/ ENTRYPOINT ["dumb-init", "--"] CMD ["npm", "start"]  puppeteer를 사용하면서 약간의 권한 문제가 있어서 결과적으로 위와 같은 Dockerfile을 작성하게 되었는데, puppeteer 도커 이미지 작성에 관한 최신 정보는 여기서 확인할 수 있습니다. 컨테이너 오케스트레이션(K8s)을 사용하면 process 기반의 스케일링은 컨테이너를 여러대 띄워 로드밸런싱을 손쉽게 할 수 있지만, 개별 컨테이너의 throughput을 향상시키기 위해 기존에 Ghost town을 작성해 PhantomJS 프로세스 풀을 만든 것처럼 크롬 프로세스 풀을 구성하기로 하였습니다. 프로세스 풀 구성에는 generic-pool 라이브러리를 사용하였으며 아래처럼 구성하였습니다.  const puppeteer = require("puppeteer"); const genericPool = require("generic-pool"); const puppeteerArgs = ["--no-sandbox", "--disable-setuid-sandbox", "--disable-dev-shm-usage"]; const createPuppeteerPool = ({ max = 5, min = 2, maxUses = 50, initialUseCountRand = 5, testOnBorrow = true, validator = () => Promise.resolve(true), idleTimeoutMillis = 30000, ...otherConfig } = {}) => { const factory = { create: async () => { const browser = await puppeteer.launch({ headless: true, args: puppeteerArgs }); browser.useCount = parseInt(Math.random() * initialUseCountRand); return browser; }, destroy: (browser) => { browser.close(); }, validate: (browser) => { return validator(browser) .then(valid => Promise.resolve(valid && (maxUses <= 0 || browser.useCount < maxUses xss=removed xss=removed xss=removed> genericAcquire().then(browser => { browser.useCount += 1; return browser; }); pool.use = (fn) => { let resource; return pool.acquire() .then(r => { resource = r; return resource; }) .then(fn) .then((result) => { pool.release(resource); return result; }, (err) => { pool.release(resource); throw err; }); }; return pool; }; module.exports = createPuppeteerPool;  Caveats PhantomJS에서 puppeteer로 전환함에 있어서 몇가지 주의해야 할 점이 있었는데요. 첫째는 기존에 사용하던 템플릿의 html에 이미지 소스를 file:// url 프로토콜을 이용해 로드하는 경우가 있었는데, PhantomJS에서는 정상적으로 로드가 되지만 Headless Chrome에서는 보안 정책으로 인해 로컬 파일을 로드할 수 없었습니다(관련 이슈). 때문에 로컬 이미지가 필요한 템플릿은 Express 서버에서 static file serving을 하도록 하고 http:// 프로토콜로 변경하였습니다. 다음으로 발생한 문제는 PhantomJS을 이용한 기존 구현에서는 jade template을 compile한 후 page 객체의 setContent 메소드를 이용해 html을 로드하였는데, puppeteer에서는 page#setContent API 호출 시 외부 이미지가 로드될 때까지 기다리지 않는다는 점입니다. puppeteer 에 올라온 관련 이슈에서는 `=setContent`= 대신 아래와 같이 html content를 data URI로 표현하고 page#goto의 인자로 넘기면서 waitUntil 옵션을 주는 방식을 해결방법으로 권하고 있습니다.  await page.goto(`data:text/html,${html}`, { waitUntil: 'networkidle0' });  이 때 주의해야 할 점은 waitUntil의 옵션으로 networkidle0이나 networkidle2 등을 사용하면 외부 이미지가 충분히 로드될 때 까지 기다리는 것은 맞지만, 500ms 이내에 추가적인 네트워크 커넥션이 발생하지 않을 때까지 기다리는 옵션이기 때문에 외부 이미지가 로드되더라도 추가적으로 500ms를 기다리게 됩니다. 때문에 SPA 웹페이지를 캡쳐하는 경우가 아니라 정적인 html을 로드하는 경우라면 `load` 이벤트로 지정하면 됩니다. 이외에도 향후에 프로젝트의 유지관리나 운영 중인 서비스의 모니터링을 위해 Metrics API 엔드포인트를 만들어 prometheus에서 메트릭을 수집할 수 있도록 하고 grafana 대시보드를 구성하였습니다. 이 대시보드는 어떤 템플릿이 실제로 사용되고 있는지, 템플릿 렌더링에 시간이 얼마나 소요되는지 등을 모니터링할 수 있도록 구성하여 사용되지 않고 있는 템플릿을 판단하거나 서비스 지표를 모니터링 하는 데 이용하고 있습니다. grafana와 prometheus를 이용해 구현한 렌더링 서버 모니터링 대시보드. 마치며 최근에 들어서는 PhantomJS를 사용하던 많은 곳에서 puppeteer로의 전환을 해오고 있어 본 포스팅에서 다루고 있는 내용이 크게 새로운 내용은 아닐 수 있습니다. 하지만 버즈빌에서는 렌더링 서버가 과거에 이미 PhantomJS를 사용하는 것을 전제로 상당한 최적화가 진행되어 왔고, 꽤나 높은 동시 처리량이 요구되는 상황에서 puppeteer로 교체를 해버리기에는 여러 불확실한 요소들이 존재하는 상황이었습니다. 버즈빌의 핵심 비즈니스 중 하나인 잠금화면에 사용되는 이미지를 렌더링하는 서비스가 레거시(개발이 중단된 PhantomJS)에 의존하는 코드베이스 때문에 변경이 어려워지는 것은 향후 꽤나 큰 기술부채로 작용할 것이라 판단하였습니다. 이번 마이그레이션을 진행하면서는 이 부분을 염두에 두고 컨테이너를 사용해 CI/CD 파이프라인을 구축해 지속적으로 컨테이너 기반의 이미지를 생성하도록 변경하였고, 그 결과는 꽤나 만족스러웠습니다. 마이그레이션 이후 그간 밀려 있던 신규 템플릿 개발이나 신규 컨텐츠 프로바이더를 추가하는 과정이 수월해졌기 때문입니다. 빠르게 변화하는 비즈니스 요구사항에 대응하다보면 기술부채는 필연적으로 쌓일 수밖에 없습니다. 개발자에게는 당연히 눈에 보이는 모든 기술부채들을 청산하고 싶은 욕구가 있지만 늘 빚 갚는데 시간을 쓰고 있을 수만은 없는 노릇입니다. 리소스에는 한계가 있으니까요. 어떤 기술부채를 지금 당장 해결해야하는지 의사결정을 하는데 있어 고민이 된다면 일단 “측정”을 해보는 것을 권장합니다. 수치화된 지표가 있다면 당장 의사결정권자나 팀을 설득하는 데 사용할 수도 있지만, 서비스의 핵심 지표들을 하나 둘씩 모니터링 해나가다 보면 서비스에 대한 가시성이 높아지고 미래에 정말로 병목이 되는 지점을 찾아내기 쉬워질 것입니다. 참고 자료  https://docs.browserless.io/blog/2018/06/04/puppeteer-best-practices.html https://github.com/GoogleChrome/puppeteer/blob/master/docs/api.md Icons made by Freepik from Flaticon is licensed by Creative Commons BY 3.0    *버즈빌에서 개발자를 채용 중입니다. (전문연구요원 포함)작가소개 Liam Hwang, Software Engineer 버즈빌에서 DevOps를 담당하고 있습니다. Cloud Native 인프라를 구현하기 위해 여러 노력을 기울이고 있으며 새로운 기술들을 공부하는 것을 좋아합니다.
조회수 2687

Next.js 튜토리얼 4편: 동적 페이지

* 이 글은 Next.js의 공식 튜토리얼을 번역한 글입니다.** 오역 및 오탈자가 있을 수 있습니다. 발견하시면 제보해주세요!목차1편: 시작하기 2편: 페이지 이동 3편: 공유 컴포넌트4편: 동적 페이지  - 현재 글5편: 라우트 마스킹6편: 서버 사이드7편: 데이터 가져오기8편: 컴포넌트 스타일링9편: 배포하기개요여러 페이지가 있는 Next.js 애플리케이션을 만드는 방법을 배웠습니다. 페이지를 만들기 위해 한 개의 실제 파일을 디스크에 만들어야 합니다.그러나 진짜 애플리케이션에서는 동적 컨텐츠를 표시하기 위해 동적으로 페이지를 생성해야 합니다. Next.js를 사용해 이를 수행하는 여러 방법들이 있습니다.쿼리 문자열을 사용하여 동적 페이지를 생성해봅시다.간단한 블로그 애플리케이션을 만들 예정입니다. 이 애플리케이션은 home (index) 페이지에 전체 포스트 목록을 가지고 있습니다.포스트 제목을 클릭하면 뷰에서 각 포스트를 볼 수 있어야 합니다.설치이번 장에서는 간단한 Next.js 애플리케이션이 필요합니다. 다음의 샘플 애플리케이션을 다운받아주세요:아래의 명령어로 실행시킬 수 있습니다:이제 http://localhost:3000로 이동하여 애플리케이션에 접근할 수 있습니다.포스트 목록 추가하기먼저 home 페이지 안에 포스트 제목 목록을 추가해봅시다.pages/index.js에 다음과 같은 내용을 추가해주세요.위의 내용을 추가하면 다음과 같은 페이지가 보입니다:첫 번째 링크를 클릭하면 404 페이지가 나지만 괜찮습니다.페이지의 URL은 무엇인가요?- /?id=Hello Next.js- /post?title=Hello Next.js- /post?title=Hello Next.js- /post쿼리 문자열을 통해 데이터 전달하기쿼리 문자열(쿼리 파라미터)를 통해 데이터를 전달했습니다. 우리의 경우에는 "title" 쿼리 파라미터입니다. 다음에서 보이는 것처럼 PostLink 컴포넌트를 이용해 구현해봅시다:(Link 컴포넌트의 href prop를 확인해주세요.)이처럼 쿼리 문자열을 이용하여 원하는 모든 종류의 데이터를 전달할 수 있습니다."post" 페이지 생성이제 블로그 포스트를 보여줄 post 페이지를 생성해야 합니다. 이를 구현하기 위해 쿼리 문자열로부터 제목을 가져와야 합니다. 어떻게 구현하는지 살펴봅시다:pages/post.js 파일을 추가하고 다음과 같이 내용을 작성해주세요:다음과 같이 보입니다:위의 코드에서 무슨 일이 일어났는지 살펴봅시다.- 모든 페이지에서 현재 URL과 관련된 내용들을 가진 "URL" prop를 가져옵니다.- 이 경우 쿼리 문자열을 가진 "query" 객체를 사용하고 있습니다.- props.url.query.title를 사용해 제목을 가져왔습니다.애플리케이션에서 몇 가지를 수정해봅시다. "pages/post.js"를 다음과 같이 변경해주세요: http://localhost:3000/post?title=Hello Next.js 페이지로 이동하면 무슨 일이 일어날까요?- 예상대로 동작할 것이다.- 아무 것도 랜더링하지 않을 것이다.- 해더만 랜더링할 것이다.- 에러를 발생시킬 것이다.특별한 prop "url"보다시피 위의 코드는 이와 같은 에러를 발생시킵니다:url prop는 페이지의 메인 컴포넌트에만 전달되기 때문입니다. 페이지에서 사용되는 다른 컴포넌트에는 전달되지 않습니다. 필요하다면 다음과 같이 전달할 수 있습니다:마치며쿼리 문자열을 사용하여 동적 페이지를 생성하는 방법을 배웠습니다. 이제 시작일 뿐입니다.동적 페이지를 렌더링하기 위해 더 많은 정보가 필요합니다. 그리고 쿼리 문자열을 통해 모든 것을 전달할 수는 없을 것입니다. 또는 http://localhost:3000/blog/hello-nextjs와 같은 깔끔한 URL을 원할 것입니다.다음 편에서 이것들에 대해 모두 배울 수 있습니다. 이번 편은 모든 것의 기초입니다.#트레바리 #개발자 #안드로이드 #앱개발 #Next.js #백엔드 #인사이트 #경험공유
조회수 1812

프론트엔드 개발자라면!

Angular의 A마크를 알아본 프론트엔드 개발자님!이 글은 새로운 플랫폼을 개발하고 있는 타운컴퍼니 개발팀으로 당신을 모셔보려는 글이에요.이들이 당신과 함께 일하고 싶은 동료입니다..타운컴퍼니팀은 알고 있습니다.잘 만들어진 편리한 앱과 고객의 이탈률이 얼마나 밀접한 관계가 있는가를요.1%의 스타트업에는 1% 개발자가 필요하며 그들이 1%의 플랫폼을 만든다는 것을요.자율적이며 열정이 넘치는 팀으로 즐겁게 높은 수준의 개발을 할 수 있는 환경이죠!당신에게 즐거운 회사, 좋은 동료가 되어 줄 수 있습니다.급여는 협의 후 결정이니 원하는걸 말해봐요!좋은 동료를 얻을 수 있다면 그정도가 어렵겠어요 ; )우리는 현재 플랫폼(townus.co.kr)이 많이 부족하다는걸 알고 있어요.그래서 완전 멋있게 새롭게 만들고 있는 중입니다 :)일단 우리는 협업툴 JIRA와 Confluence, Slack을 사용하고 있어요.우리팀은 Agile 칸반을 바탕으로 테스트 주도 개발, 코드 리뷰, 페어프로그래밍으로 프로젝트를 진행하고 있죠.도메인이 잘 분석된 명세서가 Confluence에 정리되어 있고 사용자를 위한 깊은 고민이 녹아있는 디자인이 Zeplin에 올라가고 있어요.- Back-End는 Django(DRF) 기반으로 개발되고 있고, AWS, Vagrant, Docker같은 기술을 사용해요.- Front-End는 Angular 5를 사용해서 개발하고 있고, Less, RxJS, Webpack 등의 기술을 사용하고 있어요.Angular 상용 프로젝트 개발 경험이 있다면 격하게 환영하며 모십니다. 리엑티브 프로그래밍, Ionic 경험이 있다면 더 좋구요!엥 이거 완전 나 아니냐!? 라는 생각이 들었다구요? 그렇다면 얼른 지원해야지 뭐해요!무엇보다 개발을 즐기고 오픈소스활동을 좋아하는 사람이라면,종종 맛있는것도 먹으면서 많은 대화를 나눌수 있지 않을까요? :>우리 개발자는 맥주제조도 할 줄 알거든요 (겁나 맛이 좋더라구요)물론 당신에 대해 알 수 있는 Github 주소와 이력서를 보내준다면 우리가 연락하기 더 쉬울거에요!아! 참고로 보충역 산업기능요원 편입도 가능하니 문의가 필요하다면 언제든 환영이에요!타운컴퍼니팀에게 연락하고 싶다면 02–561–0950 잊지말아요,[email protected]로 메일 보내준다면 언제든 답변줄게요 :D#타운컴퍼니 #개발자 #채용 #팀빌딩 #조직문화
조회수 2614

8퍼센트 Test case 작성 가이드

8퍼센트에서 Python Django 코드에 대한 Test case 작성시 사용하는 가이드를 공유해보려고 합니다.클래스명일반적으로 TestCase 를 상속 받는 클래스일 경우 class 명의 마지막에 TestCase 를 붙입니다.예제: SimpleTestCase(TestCase)함수명테스트 함수명의 경우 test_ 로만 시작하면 동작하는데 문제가 없고 테스트 코드에까지 주석을 다는 것은 번거로우므로 함수명의 test_ 뒷부분을 한글로 하여 설명을 대신하도록 합니다.class IUPaginationMethodTestCase(TestCase): @classmethod def setUpTestData(cls): cls.request = Mock() cls.request.GET = {'page': 1, 'items_per_page': 1} cls.pagination = IUPagination(cls.request) def test_page_url_기본(self): expected = '?{}=1'.format(self.pagination.page_key) self.assertEqual(self.pagination.page_url(), expected) def test_page_url_쿼리스트링_없는경우_물음표_붙인다(self): expected = '/?{}=1'.format(self.pagination.page_key) self.pagination.url_prefix = '/' self.assertEqual(self.pagination.page_url(), expected) def test_page_url_쿼리스트링_있는경우_엠퍼센드로_붙인다(self): expected = '{}&{}=1'.format( self.pagination.url_prefix, self.pagination.page_key )) self.pagination.url_prefix = '?utm=source' self.assertEqual(self.pagination.page_url(), expected) factory_boyfixture 를 대신해서 가급적 factory_boy 를 사용합니다.signals 끄기factory boy로 모델 객체 생성시 signal 이 호출되는데 signal에 대한 테스트가 아니라면 대부분 실행할 필요가 없습니다.이 때 factory.django.mute_signals를 사용해서 끄면 됩니다.decorator, context manager 둘 다 사용 가능합니다.decorator@mute_signals(signals.post_save) def test_some_code(self): some = SomeFactory() context managerwith mute_signals(signals.post_save): some = SomeFactory() 참고 링크factory_boyDisabling signalssetUpTestData vs setUpfixture를 사용하면 fixture로 정의한 모델 객체가 모든 테스트 시작 전에 생성이 되는데 유사하게 setUp 에서 factory 생성을 하게 되면 매번 객체 생성을 하게 되므로 느립니다.테스트에서 read only 로만 사용하는 객체의 경우 class method인 setUpTestData 에서 생성하면 1번만 생성이 되므로 빨라집니다.가급적 setUp 에서 매번 객체를 생성하는 것을 지양하고 테스트 함수 내에서 필요한 객체만 생성하는 것이 효율적이고 빠릅니다.method mock메소드를 mock 하는 경우 unittest.mock.patch() 를 사용합니다.decorator보통 테스트 메소드에 대한 decorator 로 사용합니다.직접 호출class 내의 여러 테스트 메소드 혹은 모든 테스트 메소드에서 동일한 함수를 mock 하는 경우에는 start, stop 을 활용하면 편합니다.예제 코드from unittest import mock class MyTest(TestCase): def setUp(self): self.mock_method1 = mock.patch('package.module.method1').start() self.mock_method1 = mock.patch('package.module.method2').start() def tearDown(self): mock.patch.stopall() def test_something(self): something() self.assertTrue(self.mock_method1.called) 참고 링크: patch methods start and stoptimezonedatetime.datetime.now() datetime.datetime.strptime() 등을 사용해서 naive datetime 객체를 django 모델의 DateTimeField 에 할당할 필요가 있는 경우 반드시 django.utils.timezone.make_aware() 를 사용해서 time-zone-aware datetime 객체로 변환한 후에 합니다.참고 링크: Django timezone 문제 파헤치기freezegun특정 시점에서의 테스트가 필요한 경우 freezegun 을 사용해서 현재 시간값을 고정합니다.가급적 decorator 나 context manager 를 사용해서 특정 클래스나 메소드, 혹은 코드 블럭에만 적용하도록 하는 것이 좋습니다.decorator 예제from freezegun import freeze_time import datetime import unittest @freeze_time("2012-01-14") def test(): assert datetime.datetime.now() == datetime.datetime(2012, 1, 14) context manager 예제from freezegun import freeze_time def test(): assert datetime.datetime.now() != datetime.datetime(2012, 1, 14) with freeze_time("2012-01-14"): assert datetime.datetime.now() == datetime.datetime(2012, 1, 14) assert datetime.datetime.now() != datetime.datetime(2012, 1, 14) 특정 테스트 케이스 전체에 적용을 하기 위해 start(), stop() 메소드를 사용하기도 하는데 이 경우 반드시 stop() 을 해주어야 다른 테스트 케이스의 시간 값에 영향을 주지 않습니다.예제from django.test import TestCase from freezegun import freeze_time class SomeTestCase(TestCase): def setUp(self): self.freezer = freeze_time("2016-01-05 00:00:00") self.freezer.start() def tearDown(self): self.freezer.stop() 참고 링크: freezegun맺음말Python Django 개발시 Test case 작성을 잘 하기 위한 8퍼센트 개발팀의 가이드를 공유해 보았습니다. Python Django 개발자들이 Test case 작성을 효율적으로 잘 해서 서비스의 안정성을 높이는데 도움이 되기를 기대해 봅니다.#8퍼센트 #에잇퍼센트 #Django #Python #장고 #파이썬 #개발 #개발자 #가이드 #꿀팁 #인사이트
조회수 1633

자바스크립트 기초 문법 정리 Part 1

웹 프로젝트 경험은 많지 않아서 JavaScript(이후 '자바스크립트'로 통칭)를 많이 다뤄보지 못했다. 그래서 Node.js(이후 '노드'로 통칭)를 배우기 전에 자바스크립트 기초 문법을 먼저 정리하고 시작하려고 한다. 이후 계속 노드를 공부하면서 자바스크립트에 대해서도 꾸준히 공부하고 정리할 예정이다.간략하게 정리를 한 글이니 혹시나 개발을 처음 공부하시는 분들은 다른 가이드를 찾아보시는 게 적합할 듯합니다. 이 글은 다른 개발 언어에 대한 경험이 있으신 저와 같은 상황인 분들이 빠르게 자바스크립트를 훑고 넘어가기 좋도록 정리하였습니다.출력[removed]("Hello World!");주석// 한 줄 주석/* 여러 줄주석*/<!-- HTML 주석 -->외부 자바스크립트 연동 - 기본형[removed][removed]변수변수에 저장할 수 있는 데이터의 종류: String / Number / Boolean / Nullvar message;    message = "Hello World!";문자열 안에 HTML 태그를 포함하여 출력하면 태그로 인식되어 출력됨var tag="Tag!!";문자열 데이터에서 숫자열 데이터로 바꾸는 경우var num=Number("7");논리형 데이터 var isChecked=true;var isSmall=150>100;  // truevar string=Boolean("hi");   // 0과 null을 제외한 모든 데이터 true 반환typeof변수에 저장된 데이터형 추출var num=10;[removed](typeof num);    // number가 출력됨비교 연산자다른 연산자들은 타 언어들과 동일하여 생략.var a=10;var b="10";// 데이터형과 무관하게 표기된 숫자만 비교[removed](a==b);   // true[removed](a!=b);    // false// 데이터형도 반영하여 비교[removed](a===b);   // false[removed](a!==b);    // true제어문Java의 문법과 동일if(조건식) {    실행문;} else if(조건식 2) {    실행문 2;} else {    실행문 3;}var 변수=초깃값;switch(변수) {    case 값 1:        실행문 1;        break;    case 값 2:         실행문 2;        break;    default:        실행문 3;var 변수=초깃값;while(조건식) {    실행문;    증감식;}var 변수=초깃값;do {    실행문;    증감식;} while(조건식)for(초깂값; 조건식; 증감식) {    실행문;}여기까지가 '자바스크립트 기초 문법 정리 Part 1'이후 포스팅에서는 자바스크립트의 객체와 함수, 이벤트에 대해 다룰 예정이다.각 객체에서 지원하는 메서드에 대해서는 이번 포스팅보다는 좀 더 자세하게 각 메서드에 대한 기능까지 정리할 것이다. 후에 이벤트까지 정리가 끝나면 보다 간략하게 한 게시글에서 확인할 수 있도록 모든 파트를 통합한 게시글을 포스팅해보자!참고문헌:Do it! 자바스크립트+제이쿼리 입문 - 정인용티스토리 블로그와 동시에 포스팅을 진행하고 있습니다.http://madeitwantit.tistory.com#트레바리 #개발자 #안드로이드 #앱개발 #Node.js #백엔드 #인사이트 #경험공유
조회수 396

프로그래밍 수업의 모든 것 — 엘리스 코스 매니저 인터뷰.

안녕하세요 엘리스입니다:)엘리스의 프로그래밍 수업은 누구에 의해서, 어떻게, 어떤 생각을 바탕으로 만들어질까요? 미래를 이끌어나갈 컴퓨터 사이언스 기술과 그 근간이 되는 교육 사이에서 좋은 프로그래밍 수업을 만들기 위해 치열하게 고민하는 엘리스의 코스 매니저가 직접 이야기합니다! 마침 엘리스는 코스 매니저 채용 중에 있으니 관심이 있다면 눈여겨 봐주세요.코스 매니저가 관여한 프로덕트로 인하여 사용자가 성장을 하고 있다면 그것은 충분히 의미 있는 일.# 안녕하세요 저는,“트라우마를 극복한 프로그래밍 수업 크리에이터.”Q. 자기소개 부탁드려요.A. 엘리스의 프로그래밍 과목을 만드는 코스 매니저 이용희입니다.Q. 엘리스에서 일하게 된 이유는 무엇인가요?A. 원래는 프로그래밍에 대한 트라우마가 있었어요. 하지만 기술 창업에 대한 꿈이 있었기 때문에 프로그래밍은 극복해야 할 산이었죠. 엘리스는 가장 뛰어난 기술자들이 모여 창업한 스타트업이에요. 당연히 기술 창업을 가장 가까이에서 경험할 수 있는 매력적인 곳으로 느껴졌죠. 그리고 프로그래밍 교육을 제공한다는 것 역시 기회로 느껴졌어요. 저와 같이 프로그래밍을 미워하고 두려워하는 사람들에게 보다 쉽게 배울 수 있는 환경을 마련해주고 싶다는 기대로 일을 시작하게 되었습니다.Q. 두려운 대상을 향해 몸을 던지셨군요! 그런데 코스 매니저가 프로그래밍을 몰라도 되나요?A. 많이 알면 알수록 당연히 좋아요. 많이 알고 있을수록 시도할 수 있는 것도 많고 학생에게 전달해줄 수 있는 것은 더욱더 많기 때문에요. 하지만 최소한으로는 Class가 뭔지 알고 있으면 OK. 예를 들어서 코드를 보고 이 코드가 어떤 목적을 갖는지 알 수 있으면 직접 코딩을 하지는 못한다고 해도 괜찮아요.Q. 코스 매니징 외에도 라이브 수업 참여, 조교, 챌린지 사회자 등 많은 역할을 하셨는데 이유가 있나요?A. 좋은 수업을 만들기 위한 첫 번째 방법은 코스를 만드는 모든 과정에 참여하는 사람들의 역할을 직접 체험해 보는 것이라고 생각했어요. 학생으로서, 조교로서, 사회자나 라이브 어시스턴트로서. 이렇게 하니까 학생으로서 수업을 접할 때의 감상은 무엇인지, 조교로서 가르쳤을 때는 어떤 어려움이 있는지를 알 수 있었어요. 라이브 수업 어시스턴트로 참여했을 때는 방송하시는 선생님들의 애로사항을 알 수 있겠더라고요.# 코스 매니징의 정수.“프로그래밍적 성장을 도움으로써 가치를 만들어 냅니다.”Q. 코스 매니징의 A to Z는? 구체적인 업무 프로세스가 궁금해요.A. 크게 기획 — 모집 — 제작 — 분석의 네 단계로 이루어져 있어요.수업 기획 — 어떤 과목을 만들 것인가? 주차별로 무엇을 다룰 것인가? 흥미로운 콘텐츠는?선생님, 조교 모집 — 엘리스가 구상한 수업을 가장 잘 전달할 수 있는 선생님과 조교를 모집.수업 제작 및 운영 — 실습 문제, 강의 자료 등을 엘리스의 색깔로 제작하여 수업을 운영.데이터 분석 — 학생들의 피드백과 데이터를 다음 수업의 발전 및 교육자와의 관계 개선에 반영.Q. 업무 방식은? 어떤 메리트가 있나요?A. 처음부터 끝까지 모든 과정을 주도해나가는 방식이에요. 어떤 회사를 가도 프로덕트의 end to end 프로세스를 전부 경험하기는 어려운데 엘리스에서는 그 전 과정을 경험할 수 있어요. 저는 이러한 경험이 교육 업계나 특정 프로덕트에만 적용할 수 있는게 아니라 다른 업계에 간다고 하더라도 충분히 전환될 수 있는 좋은 경험이라고 생각해요.Q. 미래 산업의 근간이 될 교육을 직접 만든다는 중책을 맡고 계신다고 생각하는데요, 좋은 프로그래밍 수업을 만들기 위해 어떤 노력들을 하시나요?A. 그런 영향을 미칠 수 있다는 게 무서운 일인 것도 같아요. 어떤 사람들은 엘리스를 통해서 프로그래밍을 처음 접하는 것일 수도 있는데 그 경험이 불쾌했다면 앞으로 프로그래밍을 배울 생각이 전혀 들지 않을 수도 있는 거잖아요. 그래서 최대한 다양한 피드백을 받아서 수렴하려고 해요. 외적으로는 대학강의, 수많은 수업들을 참고해요. 여러 강의를 보다보면 좋은 예도 많지만 모든 수업이 재미있지는 않아요. 중간에 듣다 마는 경우도 있고요. 그럴 때마다 내가 왜 중단했고 어떤 요소를 바꾸면 엘리스에서는 학생들이 끝까지 들을 수 있을까 고민해서 반영하려고 하죠.Q. 언제 보람을 느끼나요?A. 내가 관여한 프로덕트가 누군가에게 임팩트를 만들어내고 나뿐만 아니라 프로덕트를 사용하는 사람들이 성장을 하고 있다면 그것은 충분히 가치 있는 일인 것 같아요. 저희 플랫폼에서는 대시보드를 통해서, 그리고 학생이 코드를 어떻게 짜고 있는지 보면서 그 결과를 가시적으로 확인할 수 있어요. 누군가 제가 만든 코스를 수강함으로써 실질적으로 성장하는 게 눈에 보일 때 가장 큰 보람을 느끼는 것 같아요.한 번은 한 선생님께서 학생으로부터 ‘선생님 덕분에 취업할 수 있었어요’라는 메시지를 받은 것을 엘리스와 공유해주셨는데 그때 정말 행복하더라고요. 이게 엘리스가 추구하는 거다,라는 생각을 했어요. 엘리스도 하나의 커뮤니티이고 싶거든요. 이 경우에는 학생-선생님-엘리스가 서로의 영향으로 좋은 결과를 만들어 낸 거죠. 이런 접점을 앞으로 더 많이 만들려고 생각하고 있어요.대시보드에 나타나는 학생들의 학습 현황 및 성취도.# 엘리스는 이런 팀.“가치, 성장, 사람. 포기할 수 없는 세 가지가 있는 곳.”Q. 함께 일하는 동료들은 어떤 사람들인가요? 총평을 하자면?A. 항상 내가 최고의 사람들과 함께하고 있다라는 확신이 있어요. 각자 자기 분야에서 최고의 실력을 가진 사람들과 함께 일한다는 것만으로도 큰 자극이 되죠. 프로그래밍이든 스타트업 생존 노하우든 항상 뭔가를 새롭게 배우고 성장하게끔 동기부여를 해주는 사람들이에요. 저는 트라우마가 있었을 정도로 프로그래밍을 두려워했지만 이들과 함께 일하며 작은 피드백을 하나 듣는 것만으로도 제 실력이 빠르게 성장한다는 것을 몸소 느낄 수 있었어요. Q. 엘리스의 분위기, 팀 문화는 어떤가요?A. 새로운 것에 도전하는 것을 환영하는 수평적이고 자유로운 팀. 인턴도 아이디어를 제시할 수 있어요. 이 다음이 더 중요한데, 아이디어에서 그치는 게 아니라 활발한 피드백이 오가요. 아이디어를 실행하기 어렵다고 판단하더라도 왜 그렇고 어떻게 발전시킬 수 있는지 이야기하죠. 실행하게 되었을 때는 아이디어를 제시한 사람에게 일에 대한 권한이 전적으로 주어지고요. 저도 처음엔 파트타임 인턴이었지만, 이런 팀문화 덕분에 계속해서 업무 범위를 확장하고 제 역량을 키울 수 있었어요.# 코스 매니저 채용.“Generalist & Infinite Learner”Q. 현재 코스 매니저를 구인 중인데요. 코스 매니저에 적합한 성향이 있나요?A. Generalist, 그리고 Infinite Learner. 깊게 한 분야를 아는 사람보다는 얕고 넓게 아는 사람이 더 적합하다고 생각해요. 다르게 말하면 새로운 것을 시도하는 것을 좋아하고 새로운 것을 접할 때 포용력이 높은 사람이요. 두 번째로는 배움에 재미를 느끼는 사람. 엘리스는 교육 스타트업이고 코스 매니저는 직접 교육의 경험을 만드는 사람이니 스스로가 배움에서 행복을 느끼는 사람이라면 훨씬 더 재미있게 일할 수 있겠죠. 한 가지 덧붙이면, 데이터 분석을 배우고 싶은 분께 엘리스는 최고의 장소입니다.Q. 코스 매니저로서 갖추고 있으면 좋은 역량이나 자질이 있다면?A. 소통 능력과 균형 감각. 코스 매니저는 수업을 만드는 모든 단계에서 다양한 이해당사자들과 일하게 돼요. 이들과 원활하게 소통하고 의견을 공유하는 게 중요하죠. 그리고 다양한 사람들 사이에서 최고의 균형을 찾아내는 것도 중요해요. 예를 들어서 선생님의 경우 개발만 해왔고 교육이라는 것을 접해본 적이 없는 분들이 대부분이고, 학생은 프로그래밍을 처음 접하면 그 수업이 좋은 건지 아닌지 평가하기 어려워요. 때문에 코스 매니저가 이 둘 사이에 다리를 놓는 중재자의 역할을 하기 위해서는 다양한 시각에서 볼 수 있는 균형 감각이 필요하다고 생각해요.최고의 실력자들과 함께 일하며 프로덕트의 처음부터 끝까지를 만드는 경험을 통해서 사람들의 성장을 돕는 가치를 창출하고 싶으신 분이라면,>> 코스 매니저에 도전해 보세요! <<#엘리스 #코딩교육 #교육기업 #기업문화 #조직문화 #서비스소개 #팀원인터뷰 #팀원소개
조회수 1497

레진 기술 블로그 - SVG를 이용해 간단한 웹 게임 만들어보기

근래 소규모로 게임 프로그래밍 스터디를 시작했습니다. 서비스 UI를 개발하는 프론트엔드개발자에게 있어 게임 프로그래밍은 언제나 커튼 뒤에 비친 풍경처럼 흐릿하고 형체를 쉽게 알 수 없는 신비한 존재입니다. 이번에 미약하게나마 커튼을 걷어 창문 너머 펼쳐진 풍경을 감상해 보자는 게 이번 스터디의 개인적인 목표입니다.왜 SVG를 선택했나게임을 만드는 데 어떤 기술을 사용할지 고민했습니다. 일반적인 DOM은 쉽게 객체를 조작할 수 있지만, 문서의 엘리먼트를 추상화한 것에 불과하므로 다양한 도형을 만들거나 좌표계에 사상(寫像, Mapping)1하기 쉽지 않습니다.캔버스는 그래픽 처리에 환상적인 성능을 보여주고 원, 다각형 등 다양한 도형을 그리기 쉽지만 일일이 객체화해야 하고 이를 관리하기 쉽지 않습니다. 여기에 필자가 캔버스를 좀 처럼 써 본 경험이 없어서 무턱대고 사용하기에도 부담을 느꼈습니다.하지만 SVG는 이 두 장점을 모두 갖고 있습니다. 확장 가능한 벡터 그래픽(Scalable Vector Graphics)이라는 이름을 통해서 알 수 있듯이 그래픽 요소를 그리는데 적합한 포멧이며 DOM처럼 추상화된 객체도 지원합니다.어떤 게임을 만들었나필자가 만든 게임은 크롬에 내장된 Running T-Rex와 비슷한 것으로 JUMPING CAR라고 이름을 붙였습니다. 플레이해보고 싶은 분은 uyeong.github.io/jumping-car를 방문하시기 바랍니다.규칙은 단순합니다. 게임을 시작하면 자동차가 달려나가고 이윽고 장애물을 만나게 됩니다. 장애물을 뛰어넘으면 점수가 1씩 증가하지만 부딪히면 게임이 종료됩니다.이 글에서는 게임을 만드는 과정을 소개하기보다 SVG를 이용하면서 알게 된 몇 가지 주요한 내용을 다룹니다.Pattern을 사용한 요소는 느리다이미지를 반복해서 출력할 때 HTML에서는 CSS의 background-url 속성으로 간단히 해결할 수 있습니다. 하지만 SVG에서는 Pattern 요소를 이용해야 합니다.아래 그림처럼 pattern#pat-land 요소를 만들고 이를 rect.parallax에서 사용하여 그림을 반복 출력되도록 합니다. 그리고 rect.parallax를 조금씩 Transform 하여 앞으로 이동하도록 구현합니다.코드는 다음과 같습니다(예제: svg-parallax-test/parallax1).<svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="..."> <defs> <pattern id="pat-land" x="0" y="0" width="..." height="100%" patternUnits="userSpaceOnUse"> <image x="0" y="0" xlink:href="../images/land.png" width="..." height="100%"></image> </pattern> </defs> <g> <rect class="parallax" x="0" y="0" width="..." height="100%" fill="url(#pat-land)" transform="translate(0,0)"></rect> </g> </svg> 표면상으론 전혀 문제가 없는 코드지만 크롬 브라우저에서 이 코드를 실행하면 프레임이 50 이하로 떨어지는 경우도 발생합니다. 이 정도면 육안으로도 화면의 움직임이 매끄럽지 않게 느껴지는 수치입니다.따라서 성능에 영향을 주는 pattern을 제거하고 image 요소로 대체합니다. image 요소는 자동으로 반복할 수 없으므로 두 개의 요소를 이어 붙여 사용합니다(예제: svg-parallax-test/parallax2).<svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="..."> <g> <image x="0" y="0" xlink:href="../images/land.png" width="..." height="100%"></image> <image x="..." y="0" xlink:href="../images/land.png" width="..." height="100%"></image> </g> </svg> 실행 결과 프레임이 안정적이고 육안으로도 이질감을 느낄 수 없습니다. 이처럼 Pattern을 이용한 SVG 요소를 애니메이션 처리할 때에는 주의가 필요합니다.일부 안드로이드 기종에서의 성능 문제pattern을 제거하고 image로 대체하면서 Parallax 처리 시 발생한 문제를 해결할 수 있습니다. 하지만 image로 대체하더라도 일부 안드로이드 기종에서는 여전히 성능 문제가 발생합니다.아래 영상처럼 image 요소를 Transform 할 경우 프레임이 급격하게 떨어집니다. 이는 크롬 개발자 도구에서도 쉽게 발견하기 힘든데 CPU 성능을 10배 줄여 테스트해도 수치상으로는 크게 차이 나지 않기 때문입니다.<style>.video-container { position: relative; padding-bottom: 56.25%; padding-top: 30px; height: 0; overflow: hidden; } .video-container iframe, .video-container object, .video-container embed { position: absolute; top: 0; left: 0; width: 100%; height: 100%; }</style><iframe width="560" height="315" src="https://www.youtube.com/embed/F_-zXf1jb8I?rel=0" frameborder="0" allowfullscreen="">이 처리를 DOM으로 바꿔보면 어떻게 될까. 놀랍게도 큰 차이를 보여줍니다(예제: svg-parallax-test/parallax3).<iframe width="560" height="315" src="https://www.youtube.com/embed/VXQ1aT79D2s?rel=0" frameborder="0" allowfullscreen="">SVG에 대한 최적화 상황은 브라우저마다 조금씩 다릅니다. DOM은 과거부터 최적화 노력이 많이 이뤄졌지만, SVG는 pattern 요소나 다음 절에서 이야기할 리페인팅 문제 등 성능 문제를 일으키는 부분이 아직 남아있습니다.따라서 충돌 계산처럼 특별히 좌표계 연산이 필요 없는 배경은 DOM으로 옮기고 자동차, 장애물만 SVG로 구현했습니다(예제: svg-parallax-test/parallax4).SVG는 항상 페인트를 발생시킨다SVG는 이상하게도 svg 요소의 크기를 고정하더라도 자식 요소를 변경하면 페인팅이 발생합니다. 아래는 svg 요소의 자식 요소인 rect의 좌표를 수정하는 예제 코드입니다.<svg"http://www.w3.org/2000/svg" width="500px" height="500px" viewBox="0 0 500 500"> width="500" height="500" x="0" y="0"> </svg> [removed] setTimeout(() => { rect.setAttribute('x', '100'); }, 3000); [removed] svg는 viewBox로 설정한 사이즈 만큼 내부에 그림을 그립니다. 즉, 내부의 어떠한 그래픽적 변화가 문서에 변화를 일으킬 가능성이 없습니다. 그래서 개인적으로 쉽게 이해가 되지 않는 렌더링 흐름입니다.그러면 SVG 요소의 크기나 좌표를 바꾸지 않고 색상 또는 투명도를 변경하면 어떨까요. 이번에는 rect 요소의 좌표가 아니라 색상을 바꿔봅니다.<svg"http://www.w3.org/2000/svg" width="500px" height="500px" viewBox="0 0 500 500"> width="500" height="500" x="0" y="0"> </svg> setTimeout(() => { rect.setAttribute('fill', '#ebebeb'); }, 3000); 그래도 페인트가 발생합니다. 하지만 앞서 진행한 테스트의 페인팅 시간은 수십 마이크로세컨드로 크게 의미가 없어 보입니다. 그래서 현재 서비스 중인 레진코믹스의 메인페이지에 SVG를 넣고 테스트했습니다.페인팅에 0.51ms가 소요됐습니다. 작다고 느낄 수 있지만 페이지 전반적으로 영향을 줄 수 있으며, 애니메이션 처리 중인 SVG라면 성능적 문제를 발생시킬 수 있는 부분입니다.그래서 svg 요소에 null transforms 핵을 선언해 문서 상위 레벨까지 페인팅이 전파되지 않도록 합니다.<svg"http://www.w3.org/2000/svg" width="500px" height="500px" viewBox="0 0 500 500" style="transform:translate3d(0,0,0)"> width="500" height="500" x="0" y="0"> </svg> 또는 아예 svg 내부의 요소를 개별로 분리하는 방법도 있습니다(참고: Doubling SVG FPS Rates at Khan Academy).<svg> fill="red" transform="translate(2px, 3px)"> fill="blue" transform="scale(2)"> </svg> style="transform:translate(2px, 3px)"> <svg> fill="red"> </svg> style="transform:scale(2)"> <svg> fill="blue"> </svg> 끝으로여기까지 SVG를 이용해 게임을 개발하면서 만나게 된 이슈와 해결 방법을 간단히 정리했습니다.필자는 간단한 게임은 SVG로 만들 수 있고 괜찮은 성능을 보장할 것이라고 기대했습니다. 하지만 현실은 달랐습니다. 이 글에서 다룬 문제 외에도 사파리와 크롬 브라우저의 성능 차이, 자동차를 움직일 때 버벅이는 현상 등 다양한 문제를 해결해야 했습니다. 객체의 개수도 적고 애니메이션도 복잡하지 않은 단순한 게임이었는데 말이죠.다음 게임은 캔버스로 시작하고자 합니다.공간(空間)의 한 점에 대(對)하여, 다른 공간(空間) 또는 동일(同一)한 공간(空間)의 한 점(點)을 어떤 일정(一定)한 법칙(法則)에 의(依)하여 대응(對應)시키는 일 ↩
조회수 4691

Elasticsearch X-Pack Alerting 체험기

Logstash로 로그를 수집한 후 Elasticsearch와 Kibana로 분석하는 방법을 다룬 글은 많다. 그런데 이상하더라 이 말이지. 로그를 분석하고 경향을 파악하는 정도라면야 괜찮은데 심각한 오류 로그를 발견했을 때 Slack이나 이메일 등으로 알람 받을 수단이 마땅치 않더라. 사람이 키바나 대시보드를 5분마다 확인할 수도 없는 노릇이다. (이건 새로운 차원의 고문?)이런 생각을 먼저 한 사람이 있기 마련이라 Yelp의 elastalert라던가 Elasticsearch의 X-Pack을 활용하면 이런 문제를 해소할 수 있다. 오늘은 그 중에서 후자를 살펴볼 예정이다.경고! X-Pack은 Elasticsearch가 유료 서비스 시장을 열려고 야심차게 미는 모양인데 “자기네가 직접 만들었으니 쿨하겠지?”라고 쉽게 생각하면 하루 안에 절벽 아래로 떨어지는 끔찍한 기분을 맞이할 수도 있다.X-Pack은 가격이 상당한데 Alert 등을 설정하려면 전적으로 RESTful API에 의존해야 한다. 적어도 아직까지는! 이 사실을 깨닫자마자 당황할 수 있는데 침착하자. 이것은 시작일 뿐이다. 여러분이 검색엔진의 초보라면 그 다음 난관은 검색 쿼리를 작성하는 것이다. “나는 그냥 OutOfMemoryError 로그를 발견하면 알람을 보내줬으면 좋겠어"라고 쉽게 생각했겠지만 그 간단한 결과를 얻으려면 험난한 여정을 거쳐야 한다."search" : { "request" : { "indices" : [ "", ], "body" : { "query" : { "bool" : { "must" : { "multi_match": { "query": "OutOfMemoryError", "fields": ["message", "log"] } }, "filter" : { "range": { "@timestamp": { "from": "{{ctx.trigger.scheduled_time}}||-5m", "to": "{{ctx.trigger.triggered_time}}" } } } } } } } }음… 좋다. 일단 이렇게 작성한 쿼리가 제대로 된 것인지 테스트하려면 어떻게 해야 하는가? 검색 API로 대충 테스트해볼 수는 있다.GET logstash-2017.02.2*/_search { "query" : { "bool" : { "must" : { "multi_match": { "query": "OutOfMemoryError", "fields": ["message", "log"] } } } } }어찌어찌 잘 나온다. 그래서 잘 돌 줄 알았지? 그럴 줄 알고 있다가 이런 메시지를 만난다.Trying to query 1157 shards, which is over the limit of 1000. This limit exists because querying many shards at the same time can make the job of the coordinating node very CPU and/or memory intensive. It is usually a better idea to have a smaller number of larger shards. Update [action.search.shard_count.limit] to a greater value if you really want to query that many shards at the same time.음… logstash 인덱스를 매시간마다 분할했더니 샤드가 꽤 많아진 모양이다. 그래서 최근 두 개의 인덱스로 검색 대상을 제한하려고 한다. Date math support in index names라는 문서에 인덱스 이름을 동적으로 바꾸는 법이 나와 있긴 하다. 그런데 막상 내가 짠 게 어떤 값이 나오는지 확인하는 방법은 제대로 안 나온다. 예를 들어 가 logstash-2017.02.22t01로 해석되는지 어떻게 아는가? 많은 삽질 끝에 방법을 찾았다.를 URL 인코딩한다.그렇게 얻은 값 을 가지고 인덱스 조회 API를 호출한다. GET /3Clogstash-{now-1h/d}t{now-1h{HH}}>그러면 다음과 같이 결과가 나와서 인덱스 이름이 어떻게 해석됐는지 확인할 수 있다.{ "logstash-2017.02.23t01": { "aliases": {}, "mappings": { /* 중략 */ } }여기까지는 전적으로 검색 쿼리 작성 경험이 부족해서 발생한 삽질이다. 하지만 애플리케이션 로그 분석을 패턴화하지 않고 이렇게 검색 쿼리를 복잡하게 짜야 한다니 아직 갈 길이 멀다는 생각이 든다. DataDog 또는 NewRelic 같은 상용 서비스를 참고해서 개선하면 좋겠다.이제 결과를 알람으로 보내면 된다. 이래저래 고생하다 대충 아래와 같은 형태로 완성했다.PUT _xpack/watcher/watch/outofmemoryerror { "trigger" : { "schedule" : { "cron" : "0 0/4 * * * ?" } }, "input" : { "search" : { "request" : { "indices" : [ "", "" ], "body" : { "query" : { "bool" : { "must" : { "multi_match": { "query": "OutOfMemoryError", "fields": ["message", "log"] } }, "filter" : { "range": { "@timestamp": { "from": "{{ctx.trigger.scheduled_time}}||-5m", "to": "{{ctx.trigger.triggered_time}}" } } } } }, "sort" : [ { "@timestamp" : {"order" : "desc"}}, "_score" ] } } } }, "condition" : { "compare" : { "ctx.payload.hits.total" : { "gt" : 0 }} }, "actions" : { "notify-slack" : { "throttle_period" : "5m", "slack" : { "message" : { "to" : [ "#ops", "@dev" ], "text" : "로그 모니터링 알람", "attachments" : [ { "title" : "OutOfMemoryError", "text" : "지난 5분 동안 해당 오류가 {{ctx.payload.hits.total}}회 발생했습니다. 가장 최근의 오류는 다음과 같습니다.", "color" : "warning" }, { "fields": [ { "title": "환경", "value": "Prod", "short": true }, { "title": "발생시각", "value": "{{ctx.payload.hits.hits.0._source.@timestamp}}", "short": true }, { "title": "메시지", "value": "{{ctx.payload.hits.hits.0._source.message}}", "short": false }, { "title": "확인명령어", "value": "`GET /{{ctx.payload.hits.hits.0._index}}/{{ctx.payload.hits.hits.0._type}}/{{ctx.payload.hits.hits.0._id}}`", "short": false } ], "color" : "warning" } ] } } } } }4분마다 검색 쿼리를 실행해서 최근 5분 간의 레코드를 감시하기 때문에 동일한 오류에 대해 2회 연속으로 알람을 받을 가능성이 있다. X-Pack은 이를 우회할 방법을 제공하지 않는 것 같다. 그래서 쿼리가 발견한 레코드의 인덱스 ID를 Slack 메시지 중 확인명령어 필드에 넣었다. 알람이 두 번 왔지만 인덱스 아이디가 동일하다면 오류가 한번 발생한 것으로 간주하면 된다.참고 문서위의 Alert를 작성하며 도움을 받은 문서는 다음과 같다.Multi Search Template은 검색 쿼리를 짤 때 도움이 됐다.Search Input 문서는 검색 쿼리 또는 검색 결과를 작성할 때 어떤 변수를 사용할 수 있는지 설명한다. 예) {{ctx.payload.hits.hits.0._source.message}}Watcher APIsSlack ActionDate math support in index names 문서는 인덱스 이름을 동적으로 바꾸는 법을 설명한다.기타Elasticsearch Cloud는 기본적으로 이메일 발송을 지원하기 때문에elasticsearch.yml 설정에 xpack.notification.email를 추가하지 않아도 된다. 아니, 추가하면 잘못된 설정이라며 거부한다. Illegal이라고만 하지 이유를 자세히 알려주지 않기 때문에 삽질하기 쉽니다. Invalid addresses라고 오류 로그가 찍히면 이것은 설정 문제가 아니다. 이메일 설정 메뉴로 가서 Watcher Whitelist에 수신 이메일 주소를 등록하면 문제가 해결된다.테스트용 로그 메시지를 Fluentd로 보내고 싶다면 fluent-cat 명령을 이용한다.echo '{"message":"Dummy OutOfMemoryError"}' | fluent-cat kubernetes.logOriginally published at Andromeda Rabbit.#데일리 #데일리호텔 #개발 #개발자 #개발팀 #인사이트
조회수 3539

워크로그 개발기

저는 야놀자 CX 서비스실의 API 파트에서 백엔드(90%)와 웹 프론트엔드(10%) 프로그래머로 일하는 송요창입니다.개정된 근로기준법에 따라 2018년 7월 1일부터 300인 이상 규모 기업인 경우주 40시간(최대 52시간) 근로합니다. 이에 따라 야놀자에서도 업무 집중도 향상과 함께 업무 시간을 명시하는 방안이 논의되었습니다. 이런 배경 속에서 만들어진워크로그개발 경험을 이야기하겠습니다.개인의 업무 시간 작성근로 시간이 기존 대비 단축되면서 각 개인의 업무 시간을 기록하고 기준 근로 시간을 초과하였을 때 이를 소진하도록 하는 방향이 결정되었지만 어떤 도구를 사용할지가 문제였습니다. Timing, TMetric, 출퇴근 기록기 알밤 등 다양한 도구를 사용해서 각자 기록을 시작했습니다.1차 시도 - Workflow + Alfred 활용그러던 중에 캘린더를 이용해서 출/퇴근 기록을 남기고 슬랙(Slack)으로 메시지를 발송하는 방법을 CX 서비스실 강미경 님이 공유합니다.캘린더와 - 유료인 경우 - 슬랙 모두에 기록이 남는 장점이 있습니다. 사용하기 쉽습니다.iOS 앱인 Workflow를 이용해서 캘린더에 이벤트를 등록하고 슬랙으로 메시지를 전송.데스크톱이나 노트북은 Alfred의 Workflows 기능으로 해결할 수 있었습니다.Workflow + Alfred로 워크로그를 기록하는 단점개인적으로 편리했지만 CX 서비스실 내부로 전파하여 사용하기에는 문제가 있었습니다.안드로이드 휴대전화를 사용하는 경우 Workflow를 사용할 수 없습니다.아이폰을 쓰더라도 유료로 판매되는 Workflow를 사지 않으면 쓸 수 없습니다.Alfred를 쓰더라도 Power Pack을 구매한 사용자만 Workflows를 적용할 수 있습니다.2차 시도 - 슬랙봇 활용위에서 언급된 문제를 해결하고 구성원 누구나 추가 앱 설치 없이 손쉽게 접근할 수 있는 슬랙봇에 주목합니다. 캘린더가 아니라 데이터베이스를 활용해서 개발하면 어떨지 논의했습니다.늦은 저녁(대략 23시부터 03시)에 Firebase 실시간 데이터베이스(Realtime Database)와 Firebase 클라우드 함수(Functions)를 활용해서 단순한 슬랙봇을 만들었습니다.슬랙을 실행한 뒤 슬래시 커맨드(slash command)로 /wl 출근을 입력하면 출근 로그가 추가되고 완료 메시지를 수신합니다.슬랙의 3초 이내 응답 요구단순한 기능이었지만 슬랙봇을 활용해서 워크로그를 작성하는 동료가 조금 늘었을 때 치명적인 문제가 발생했습니다.슬랙의 슬래시 커맨드는 3초 이내로 응답할 때 완료 메시지를 노출합니다. 3초를 초과하면 아래 메시지를 노출합니다.Firebase 클라우드 함수로 작성한 코드에 문제가 있었습니다. 단순한 로그 데이터와 사용자 요청에 대한 기록을 모두 완수한 후에 응답을 보내도록 했습니다. 이 부분에서 응답 지연이 발생합니다.기록은 된다고 변명해봤지만, 사용자가 기록 여부를 알 수 없으니 재시도하는 횟수가 늘어났습니다. 중복된 데이터를 삭제 요청하는 사용자가 늘었습니다. 이런 불편을 겪고 초기 사용자가 이탈했습니다.위 문제를 제외하고도 다수 사용자의 특정 기간 내 로그를 모두 살펴보기에 슬랙봇은 그다지 좋은 도구가 아니었습니다.제가 잘 못 쓴 것이지 슬랙봇에게는 죄가 없습니다.3차 시도 - 웹페이지 도입앞서 말한 문제가 대두하기 전 다수의 로그를 살펴보기 위해 웹페이지를 제작 중에 있었습니다. 프로그래밍에는 야놀자 앱 하이브리드에서 다뤄본 React.js 외에 최근 소개받은 razzle, After.js를 사용했습니다(이에 관한 회고는 아래서 짧게 다룹니다).Firebase 실시간데이터 베이스에 쌓인 로그를 Firebase 클라우드 함수로 제작된 API로 사용자별, 일자별로 불러서 표시하는 정도로 개발 착수.웹페이지로 조회 기능을 만든 시점과 맞물려 슬랙봇이 무용지물이 되었습니다. 로그인 기능을 제작하고 웹페이지에서 워크로그를 추가할 수 있도록 했습니다. 기록과 조회가 웹페이지로 대체 된 것입니다????????.Firebase 인증은 정말 편리합니다.대형 이벤트이렇게 만들었지만 떠나버린 사용자를 돌아오게 만드는 일은 불가능했습니다. 저를 제외하고 몇몇 분들만 사용하는 소소한 서비스로 사라질 예정이었습니다. 그런데 CX 서비스실 실장이신 하희진 님이 전격적으로 CX 서비스실 전 구성원이 워크로그를 통해 기록을 남겨달라고 요청하셨습니다. DAU가 10배는 급상승했습니다(1~2명에서 20명 이상으로). 많은 트래픽????이 들어오니 부족한 기능과 어설픈 기록 시스템 등이 문제가 되기 시작합니다.엎친 데 덮친 격으로 초과 근무 차감이란 주 기능 오픈에 대한 관리자(희진 님)와 사용자의 요구가 커졌습니다.할 일이 넘쳐난다.DAU 20의 공포요구사항을 분석하고 구현하면서 미비한 규칙을 관리자와 자주 논의했습니다. 논의 결과에 따라 메뉴가 생겼다가 사라졌다가를 반복해서 사용자의 혼란이 가중되었습니다. 아직 제작되지 않은 관리자 기능 때문에 데이터베이스를 직접 수정하는 일도 빈번했습니다.무엇보다 갑자기 새로운 도구를 사용하는 사용자의 질문이 쏟아졌습니다. 주 40시간을 어떻게 측정할지, 초과근무시간의 근거나 법정 휴식시간 발생 요건 등 대부분은 규칙에 관한 질문이었습니다. 30분 안에 같은 질문을 5번 듣고 동일하게 답변하는 헤프닝도 있었습니다.???? 어디서 많이 본 모습인데? 바로 IT산업 전체에서 자주 일어나는 일입니다.점진적 개선우선 비슷한 질문을 모아 FAQ 페이지를 개설했습니다(우리 PO가 자주 하는 업무라서 배운 풍월이 도움이 되었습니다). 지나치게 사용자 기능을 제한하여 CS가 늘어난 측면이 있어서 규칙이 확정된 부분만 사용자 기능 제한을 풀었습니다.금주 내의 로그는 언제든 추가 및 수정할 수 있도록 변경했습니다.누적된 초과시간은 금주 중 언제라도 사용할 수 있도록 변경했습니다.한 주가 끝나면 잘못된 로그가 있는지 검사한 뒤 로그 수정 후 초과시간 확정하는 일은 하고 있습니다.배포되는 버전마다 변경사항을 문서에 남기고 전체 사용자에게 공지했습니다.차감 기능은 자투리 시간과 CX 서비스실 구성원의 배려로 개발하였습니다.다행히 6월에 태어난 둘째가 새벽 4~5시면 한 번씩 울어서 알람 없이 기상할 수 있었습니다????.개인 회고워크로그를 제작하면서 크게 2가지를 느꼈습니다.미비한 요구사항 분석은 개발 비용을 상승시킨다하나의 요구사항은 여러 기능을 필요로 합니다. 자세한 분석 없이 뇌내 망상으로만 개발에 착수했더니 구조를 변경하느라 시간을 많이 소모했습니다.초과 시간을 예로 들면 우선 차감 메뉴를 만들고 있었습니다. 그런데 차감에 근거가 되는 누적 시간이 없습니다. 그럼 누적을 기록할 수 있는 모델을 제작합니다. 1일 8시간 기준으로 기록하도록 개발합니다. 주 40시간이 넘을 때 초과 시간이 발생하는 규칙이라서 1주일 단위로 마감하는 방식으로 변경합니다.이렇게 우왕좌왕하며 개발하니 밀고 나가는 힘이 약했습니다. 프로덕트 개발 시 PO가 이 부분을 많이 돌봐줘서 기본 없는 프로그래머가 되었습니다(????).개발은 50%. 운영이 나머지 50%다마이너 버전이라도 개발을 완료하고 배포할 때마다 한고비 넘었다고 생각했습니다. 그렇지만 진짜 서비스가 단단해지는 것은 사용자를 만날 때부터였습니다.사용자는 관리자보다 인내심이 없습니다. 개선 사항을 슬랙을 통해서 말해주고, 잘못된 기록이 있으면 수정을 요구했습니다. 이상한 규칙이 발견될 때마다 피드백이 왔습니다. 정당한 요구와 피드백이지만 1인 개발자가 감당하기는 벅찬 부분이 있었습니다.피드백을 정리해서 수정할 부분을 JIRA에 정리하고 작업하기를 반복했습니다. 이 과정을 통해 초기보다 더 다듬을 수 있었습니다.저는 근무시간 중에만 CS 대응을 했음에도 피곤했습니다. 이런 일을 매일 매시간 겪고 있는 야놀자 PO와 IT 업계 동료들은 정말 대단한 사람입니다. 이 자리를 빌려 다시 한번 존경합니다.개발 관련 회고(신약???? 임상 결과)토이 프로젝트이기 때문에 회사에서 사용하는 기술 외에 새로운 기술을 다뤄봤습니다. React.js와 함께 엄청나게 사랑받고 있는 vue.js가 아닌 이유는 개발 시간이 촉박해서 공부할 시간이 없었다고 핑계 대봅니다.razzle + After.js = ????React.js를 사용할 때 주로 Next.js를 사용해왔지만 이번에는 razzle과 After.js를 사용했습니다.razzle은 create-react-app처럼 React.js 애플리케이션을 제작할 수 있도록 초기 구성을 도와줍니다. React.js 외에도 Vue, Angular, Preact, Elm 등을 지원합니다.After.js는 Next.js처럼 서버사이드 렌더링을 지원합니다. Next.js와 다르게 React Route 4를 이용해서 라우팅을 지원합니다.사용해본 소감은 razzle이 아무런 설정도 하지 않도록 도와주고 있어서 편리했습니다. TypeScript 도입도 예시가 있어서 쉽게 적용할 수 있었습니다. 코드 수정 후 웹페이지를 다시 로딩하는 핫 리로드(hot reload)도 잘 작동합니다. After.js는 서버사이드 렌더링 시 getInitialProps 를 사용할 수 있어서 Next.js에 익숙한 저에게 편리했습니다. 무엇보다 Next.js처럼 route를 변경하기 위해서 next-route에 의존하지 않아서 편리했습니다(대신 React Route를 의존합니다).저처럼 프로젝트 셋업을 어려워하는 초심자에게 유용합니다(검색할 때 사례를 더 많이 찾으려면 Next.js가 더 유리합니다).배포는 초기에 Aws의 beanstalk을 활용하다가 Zeit가 운영하는 now로 변경했습니다. Node.js나 docker에 익숙하고 커맨드 라인 인터페이스(cli)를 사용하는 데 어려움이 없다면 사용할만 합니다. 리전이 모두 해외라서 응답속도가 빠르진 않습니다.Zeit는 Next.js 프레임워크를 제작한 회사입니다.도움 주신 분???? 아이디어와 기획에 도움을 주고 사용자가 돼주신 R&D CX 서비스실 강미경 님???? 제보에 적극적인 R&D CX 서비스실 노현석 님DAU를 비약적으로 높여주신 R&D CX 서비스실 하희진 님미약한 사용성과 구린 UI임에도 잘 사용해주고 계신 R&D CX 서비스실 모든 구성원!!공감의 ????????! 눈물 흘리는 역할로 열연해주신 R&D UX/UI팀 김하연 님이 글을 리뷰해주신 유관종 님, 노현석 님, 구본한 님무엇보다 이런 프로젝트가 가능하도록 도와준 R&D CX 서비스실 내 API파트 전원에게 ????‍ 감사합니다.참고한 자료https://medium.com/evenbit/building-a-slack-app-with-firebase-as-a-backend-151c1c98641dhttps://api.slack.com/slash-commandshttps://firebase.google.com/docs/database/web/start#야놀자 #개발자 #개발팀 #문제해결 #버그수정 #백엔드 #인사이트 #경험공유
조회수 1007

Team Profile: Meet Yonghyun

Read In KoreanAs a yet minuscule startup, each member holds a significant power over the overall atmosphere of the team. And in our ultimate quest to make big waves in the data world, we need to make sure that the people at the helm are at least kind of cool. We think we’ve done a pretty good job so far in assembling a society of unique but equally driven members.So we bring you this seven-part series, one of each devoted to interviewing each of our members in detail, to give you an in-depth glimpse into the people responsible for bringing you the future of machine learning with Daria. Plus, we peppered the interviews with questions from Dr. Aron’s “The 36 Questions that Lead to Love”*, cherry picked to make work appropriate and concise, but interesting.(*actually falling in love with our members highly discouraged)Yonghyun joined the XBrain team in August as a software engineer, and has worked closely with other members in constructing the software that Daria runs on. But his interests run beyond just making sure that Daria become the future star of machine learning and data science — Yonghyun is also an avid soccer player, and an enthusiastic dabbler of virtual and artificial reality. Learn more about him here!Yonghyun saves a few minutes of his day for some introspection/staring broodily out the windowHi Yonghyun! Start by telling us about your role.YH: I work with JM as a software engineer at XBrain, developing and testing our software infrastructure.How do you usually spend a work day?YH: I usually come to work around lunchtime, and devote my time to whatever needs to be done for the day. Today we worked on tests involving transferring data from MS SQL. I enjoy afternoon walks sometimes, and usually head home after working a little post-dinner.Tell us about the parts of your job that you most enjoy.YH: I enjoy transforming machine learning modules into Spark to fit with the cloud system, and looking at the code Suzin’s written in order to understand the process.What about the aspects that you least enjoy or find challenging?YH: Setting up the environment to test our systems is something I least enjoy. It’s frustrating, because you can follow all the steps and still go the wrong way.Pick one item on your desk that tells us something about you.YH: I don’t have a whole lot on my desk…so I would probably have to say my laptop. The very very big laptop provided to me by the company.Laptop in photo is larger than it appearsWhat made you want to become a software engineer?YH: I was originally majoring in History in college, but I was struck by how computer science could help you create something tangible. Programming helps turn your ideas into reality on the screen, which is something I was really drawn to.So why XBrain?YH: As an incoming programmer, you don’t really come across the opportunity to participate in the making of a product that’s still under development. It’s a good learning experience for me to watch Daria’s progress. Furthermore, because I started programming at a relatively later stage, I still need help with my mathematical background, which working here allows me to do.As the one of the newest additions to the team, tell us about your vision for XBrain.YH: I think my vision is one of becoming a household name for a machine learning tool that a lot of people use on the daily — Daria doing useful things in every facet of the world, big or small.What is your go-to work playlist?YH: When I’m coding, I usually prefer EDM, so stations like Hardwell On Air, and hip-hop as well.Recommend a movie for our next Cinema Society, please.YH: Watchmen (2009). Its protagonist Rorschach is an anti-hero, and the plot line is complex and interesting to follow.Where do you see yourself 10 years from now?YH: Career-wise, honestly I wouldn’t mind what I have right now — working a job that I love without getting too swamped with deadlines, with plenty of time for exercise and socializing, playing soccer with my friends.Given the choice of anyone in the world, whom would you want as a dinner guest?YH: Mark Zuckerberg, maybe? I’d like to hear about his ideas for the future.If you had to have dinner with one XBrain member, who would it be and why?YH: JP, our new machine learning engineer. I’d like to get to know him better, and he seems like an interesting person.Would you like to be famous? In what way?Nope.What would constitute a “perfect” day for you?YH: A day productive enough that I could go to bed without worrying about the next day.If you were able to live to the age of 90 and retain either the mind or body of a 30-year-old for the last 60 years of your life, which would you want?YH: The body of a 30 year old… I don’t think that youth isn’t everything when it comes to minds.For what in your life do you feel most grateful?YH: The privilege to have been able to learn and achieve everything I’ve wanted is something I’ll always be thankful for, and also the flexibility to be able to change directions I’m headed in.If you could wake up tomorrow having gained any one quality or ability, what would it be?YH: I’ve always wanted more drive to carry out the projects I’ve devised in my head, the ability to see things through no matter what.Is there something that you’ve dreamed of doing for a long time? Why haven’t you done it?YH: I’ve always wanted to learn how to cook. I lived in a dorm in college so I didn’t have the opportunity then, but now would be a good time as any.What is the greatest accomplishment of your life?YH: I would say my greatest accomplishment is putting my best efforts into learning and improving my mind, inside and outside of school.What is your most memorable XBrain moment?YH: My fondest memories are usually of events we held outside — the hike we went on in September, or the soccer game we had. I like that we got to bond as a team and get some exercise.If you knew that in one year you would die suddenly, would you change anything about the way you are now living? Why?YH: I haven’t been able to get decent sleep recently, so I’d probably give myself some time to rest.If you were going to become close friends with someone, please share what would be important for him or her to know.YH: I don’t have very strong likes or dislikes, so I usually get along with most people.What, if anything, should never be joked about?YH: You should never joke about the disadvantaged, or others’ insecurities.If you could sum up XBrain in three words or less?YH: Freedom. Consideration. Learning…. Is that too serious?#엑스브레인 #팀원소개 #팀원인터뷰 #기업문화 #조직문화 #팀원자랑
조회수 1715

Docker Hub 이벤트를 Slack으로 받기

Docker Hub은 Docker Registry 중에 가장 돋보이지 않나 생각하는데는 다음과 같은 이유가 있다.써드파티 도구와 서비스 대부분이 Docker Hub를 우선적으로 지원한다.이미지 이름이 매우 짧다.AWS ECR: 319270577709.dkr.ecr.us-east-1.amazonaws.com/dailyhotel/myweb:1.0.1Docker Hub: dailyhotel/myweb:1.0.1단순하지만 강력한 도커 빌드 서비스를 제공한다.이 외에도 도커 허브는 장점이 많은데 도커 이미지를 도커 허브에서 빌드하거나 외부에서 docker push를 해서 도커 이미지를 레지스트리에 밀어넣으면 해당 이벤트를 Webhook로 외부에 전달해주는 기능도 그 중 하나이다. 이론적으로는 새 도커 이미지가 나올 때마다 Slack을 통해 알람을 받을 수 있다. 하지만 놀랍게도! 도커 허브는 Slack 등의 대중적인 써드 파티 서비스와의 통합 기능을 직접 지원하지 않는다. 기본적으로 도커 허브가 보내는 Webhook를 파싱해서 슬랙 등으로 보내는 서비스는 직접 구현하거나 누군가 만든 도구를 직접 설치해 사용해야 한다.구글링하면 구현체가 몇 개 나오는데 그 중 일부는 matsengrp/relay를 커스터마이징한 것이다. 다른 구현체도 있지만 matsengrp/relay가 제일 구성이 깔끔하고 커스터마이징하기 쉬웠기 때문에 이를 기반으로 더 쓸모있는 구현체를 만들기로 했다. 새로운 구현체는기존 프로젝트를 Dockerize하고소스 코드를 직접 수정하는 대신 환경변수로 설정을 제어하게 하고도커 이미지의 태그 등 중요 정보를 추가로 표시하며위트 넘치는 이미지를 추가하여 지나치게 사무적이지 않게 메시지를 구성하는데초점을 맞추었다. 그래서 나온 결과물은 다음과 같다.개인적으로는 매우 마음에 든다. Docker 이미지로 빌드했기 때문에 서비스를 띄우기도 매우 쉽다. README 문서에도 기술했듯docker run — env SLACK_URL=’https://hooks.slack.com/services/PUT/YOURS/HERE' — env RELAY_PORT=8080 — env=DEFAULT_CHANNEL=’#dev’ — env=IMAGE_URL=’https://i.giphy.com/LYDNZAzOqrez6.gif' -p 8080:8080 dailyhotel/relay이게 전부이다. IMAGE_URL 등 환경변수 대부분은 필수값도 아니어서 실제 설정은 더 간단명료하다. 도커 이미지가 간단한만큼 Kubernetes로 띄우기도 쉽다.apiVersion: v1 kind: Service metadata: name: slackrelay labels: app: slackrelay spec: ports: — name: http port: 80 targetPort: 8080 protocol: TCP selector: app: slackrelay type: LoadBalancer — - apiVersion: extensions/v1beta1 kind: Deployment metadata: name: slackrelay spec: replicas: 1 template: metadata: labels: app: slackrelay spec: containers: — name: slackrelay image: dailyhotel/relay:latest env: — name: SLACK_URL value: "https://hooks.slack.com/services/PUT/YOURS/HERE" — name: RELAY_PORT value: "8080" — name: DEFAULT_CHANNEL value: "#dev" ports: — name: slackrelay-port containerPort: 8080그래도 여전히 몇 가지 개선점이 있긴 하다. 예를 들어 슬랙의 Webhook URL 대신 API 토큰값을 설정으로 받으면 좀더 많은 기능에 접근할 수가 있다. 이러한 점은 향후 정말 필요할 때 개선해볼 생각이다.참고 자료Webhooks for automated builds는 Docker Hub가 보내는 Webhook 메시지를 기술한다. 제목만 읽으면 자동화된 빌드에만 해당하는 이야기 같지만 확인해보니 docker push로 이미지를 푸시했을 때도 동일한 메시지 포맷을 사용한다.RequestBin는 Webhooks for automated builds에서 언급한 웹 서비스인데 Webhook 개발 등에 매우 유용하다. 외부 서비스가 발송하는 HTTP 요청 메시지를 받아서 임시로 보관해준다. Webhooks for automated builds에서 기술한 메시지 포맷대로 실제로 발송되는지 확인하기에 매우 요긴했다.#데일리 #데일리호텔 #Docker #Slack #슬랙 #협업툴 #개발 #개발자 #인사이트 #꿀팁

기업문화 엿볼 때, 더팀스

로그인

/