스토리 홈

인터뷰

피드

뉴스

조회수 1068

Node.js - Event

Event(이후 '이벤트'로 통칭)Node.js(이후 '노드'로 통칭)는 이벤트 기반 비동기 방식으로 작동한다. 그러므로 노드를 잘 다루기 위해서는 이벤트에 대해 이해하여야 한다.노드에서 이벤트를 호출하고 여러 처리를 하기 위해서는 EventEmitter 객체를 상속받아 구현해야 한다.아래 예제 코드를 통해 EventEditter를 상속받은 객체를 가지고 이벤트를 생성하고 호출하는 등 여러 처리하는 법을 살펴보자.* 코드 복사붙여넣기가 필요한 경우 http://madeitwantit.tistory.com/32 에서 가능하다.EventEmitterEventEmitter 클래스는 events 모듈에 의해 정의되고 제공된다.EventEmitter = require('events');위와 같이 EventEmitter를 정의할 수 있다.EventEmitter의 메서드EventEmiter.on('이벤트 이름', '리스너 함수') - 지정한 '이벤트 이름' 이벤트에 '리스너 함수'를 리스너 배열 가장 끝에 추가한다. EventEmiter.once('이벤트 이름', '리스너 함수') - on() 메서드와 기능이 비슷하다. 다만 이 메서드로 등록된 리스너는 일회성으로 한 번 실행된 후 제거된다. EventEmiter.addListener('이벤트 이름', '리스너 함수') - on() 메서드와 같다.EventEmiter.emit('이벤트 이름'[, arg]...) - '이벤트 이름'  이벤트에 등록된 리스너 함수를 등록된 순서에 따라 호출한다. 이벤트가 존재한다면 true, 그 외에는 false를 반환한다.EventEmiter.setMaxListeners(n) - EventEmitter는 디폴트로 최대 리스너 수가 10으로 지정되어 있다. 10보다 더 많은 리스너를 등록할 때 사용한다. Infinity나 0을 지정하면 제한 없이 리스너를 등록할 수 있다.EventEmiter.getMaxListeners() - 현재 EventEmitter에 지정된 최대 리스너 수를 반환한다.EventEmiter.listenerCount('이벤트 이름') - '이벤트 이름'에 등록되어 있는 리스너의 수를 반환한다.EventEmiter.listeners('이벤트 이름') - '이벤트 이름'에 등록되어 있는 리스너 배열의 사본을 반환한다.EventEmiter.removeAllListeners(['이벤트 이름']) - 모든 리스너나 파라미터에 지정한 '이벤트 이름'의 리스너를 제거한다.EventEmiter.removeListeners('이벤트 이름', '리스너 함수') - '이벤트 이름'에 등록되어 있는 특정 '리스너 함수'를 제거한다. 같은 리스너가 여러 개 등록되어 있으면 이 메서드를 여러 번 호출해야 한다.EventEmitter의 이벤트'newListener' - 새로운 이벤트를 등록할 때, 추가될 리스너를 리스너 배열에 추가하기 전에 호출된다. 이벤트에 리스너가 전달되기 위해 이벤트 이름과 추가될 리스너가 전달된다.'removeListener' - 리스너가 제거된 후 호출된다.하단의 예제를 통해 newListener가 호출되는 시점에 대해 살펴보자.                                                              * 코드 복사붙여넣기가 필요한 경우 http://madeitwantit.tistory.com/32 에서 가능하다.참고문헌:모던 웹을 위한 Node.js 프로그래밍 - 윤인성Haruair (http://haruair.com/blog/3396)Node.js Documentation (https://nodejs.org/api)조대협의 블로그 (http://bcho.tistory.com/885)#트레바리 #개발자 #안드로이드 #앱개발 #Node.js #백엔드 #인사이트 #경험공유
조회수 3225

ReactorKit 시작하기

ReactorKit 시작하기오늘은 StyleShare에서 ReactorKit을 사용한지 딱 1년이 되는 날입니다. ReactorKit은 반응형 단방향 앱을 위한 프레임워크로, StyleShare와 Kakao를 비롯한 여러 기업에서 사용하고 있는 기술입니다.StyleShare의 iOS 프로젝트 첫 커밋은 2011년 8월 23일입니다. 그 뒤로 약 7년간 크고 작은 기능을 추가하며 굉장히 큰 코드베이스를 가지게 되었습니다. 특히 2015년에는 스토어 기능을 런칭하면서 기존 서비스 만큼이나 많은 코드를 작성했습니다. 서비스 복잡도는 점점 높아졌고, 지속 가능한 코드베이스를 위해 많은 개선이 필요했습니다.ReactorKit은 많은 부분에 있어서 StyleShare가 가진 고민을 해결해주었습니다. Flux와 Reactive Programming의 개념을 결합하여 만들어진 ReactorKit에서는 사용자 인터랙션과 뷰 상태가 관찰 가능한 스트림을 통해 단방향으로 전달됩니다. 뷰와 비즈니스 로직을 분리할 수 있게 되면서 모듈간 결합도가 낮아지고 테스트하기 쉬워졌습니다. 또한, 자칫 복잡해질 수 있는 비동기 코드를 일관되게 작성할 수 있게 되었습니다.이 글에서는 ReactorKit의 기본 개념과 테스트를 위한 기법을 소개 합니다.데이터 흐름ReactorKit에는 뷰(View)와 리액터(Reactor)라는 개념이 존재합니다. 뷰는 상태를 표현합니다. 뷰 컨트롤러나 셀도 모두 뷰에 해당합니다. 뷰는 사용자 인터랙션을 추상화하여 리액터에 전달하고, 리액터에서 전달받은 상태를 각각의 뷰 컴포넌트에 바인드합니다. 뷰는 비즈니스 로직을 수행하지 않습니다.반대로, 리액터는 뷰의 상태를 관리합니다. 뷰에서 액션을 전달받으면 비즈니스 로직을 수행한 뒤 상태를 변경하여 다시 뷰에 전달합니다. 리액터는 UI 레이어에서 독립적이기 때문에 비교적 테스트하기 쉽습니다.ViewView 프로토콜을 적용하면 뷰를 정의할 수 있습니다. DisposeBag 속성과 bind(reactor:) 메서드를 필수로 정의해야 합니다.import ReactorKit import RxSwift class UserViewController: UIViewController, View { var disposeBag = DisposeBag() func bind(reactor: UserViewReactor) { } }<iframe width="700" height="250" data-src="/media/78a16e327ba4eb073cc5bdbb703c81f9?postId=c7b52fbb131a" data-media-id="78a16e327ba4eb073cc5bdbb703c81f9" data-thumbnail="https://i.embed.ly/1/image?url=https://avatars2.githubusercontent.com/u/931655?s=400&v=4&key=a19fcc184b9711e1b4764040d3dc5c07" class="progressiveMedia-iframe js-progressiveMedia-iframe" allowfullscreen="" frameborder="0" src="https://medium.com/media/78a16e327ba4eb073cc5bdbb703c81f9?postId=c7b52fbb131a" style="display: block; position: absolute; margin: auto; max-width: 100%; box-sizing: border-box; transform: translateZ(0px); top: 0px; left: 0px; width: 700px; height: 236.984px;">이 프로토콜을 정의하면 reactor 속성이 자동으로 생성됩니다. 이 속성에 새로운 값이 지정되면 bind(reactor:) 메서드가 자동으로 호출됩니다. 이곳에는 사용자 인터랙션을 리액터에 바인드하거나, 리액터의 상태를 각각의 뷰 컴포넌트에 바인드하는 코드를 작성합니다.func bind(reactor: UserViewReactor) { // Action self.followButton.rx.tap .map { Reactor.Action.follow } .bind(to: reactor.action) .disposed(by: self.disposeBag) // State reactor.state.map { $0.isFollowing } .distinctUntilChanged() .bind(to: self.followButton.rx.isSelected) .disposed(by: self.disposeBag) }<iframe width="700" height="250" data-src="/media/6a6d5aa66b156cae7d4475f6ed13efb0?postId=c7b52fbb131a" data-media-id="6a6d5aa66b156cae7d4475f6ed13efb0" data-thumbnail="https://i.embed.ly/1/image?url=https://avatars2.githubusercontent.com/u/931655?s=400&v=4&key=a19fcc184b9711e1b4764040d3dc5c07" class="progressiveMedia-iframe js-progressiveMedia-iframe" allowfullscreen="" frameborder="0" src="https://medium.com/media/6a6d5aa66b156cae7d4475f6ed13efb0?postId=c7b52fbb131a" style="display: block; position: absolute; margin: auto; max-width: 100%; box-sizing: border-box; transform: translateZ(0px); top: 0px; left: 0px; width: 700px; height: 325px;">Reactor리액터를 정의하기 위해서는 Reactor 프로토콜을 사용합니다. 사용자 인터랙션을 표현하는 Action과 뷰의 상태를 표현하는 State, 그리고 상태를 변경하는 가장 작은 단위인 Mutation을 클래스 내부에 필수로 정의해야 합니다. 또한 가장 첫 상태를 나타내는 initialState가 필요합니다.import ReactorKit import RxSwift final class UserViewReactor: Reactor { enum Action { case follow } enum Mutation { case setFollowing(Bool) } enum State { var isFollowing: Bool } let initialState: State = State(isFollowing: false) }<iframe width="700" height="250" data-src="/media/572f53fb442c67060d2a69f90a42a07b?postId=c7b52fbb131a" data-media-id="572f53fb442c67060d2a69f90a42a07b" data-thumbnail="https://i.embed.ly/1/image?url=https://avatars2.githubusercontent.com/u/931655?s=400&v=4&key=a19fcc184b9711e1b4764040d3dc5c07" class="progressiveMedia-iframe js-progressiveMedia-iframe" allowfullscreen="" frameborder="0" src="https://medium.com/media/572f53fb442c67060d2a69f90a42a07b?postId=c7b52fbb131a" style="display: block; position: absolute; margin: auto; max-width: 100%; box-sizing: border-box; transform: translateZ(0px); top: 0px; left: 0px; width: 700px; height: 435px;">Action이나 State와 달리 Mutation은 리액터 클래스 밖으로 노출되지 않습니다. 대신, 클래스 내부에서 Action과 State를 연결하는 역할을 수행합니다. Action이 리액터에 전달되면 두 단계를 거쳐서 뷰의 상태를 변경합니다.mutate() 함수에서는 Action 스트림을 Mutation 스트림으로 변환하는 역할을 합니다. 이곳에서 네트워킹이나 비동기로직 등의 사이드 이펙트를 처리합니다. 그 결과로 Mutation을 방출하면 그 값이 reduce() 함수로 전달됩니다. reduce() 함수는 이전 상태와 Mutation을 받아서 다음 상태를 반환합니다.func mutate(action: Action) -> Observable { switch action { case .follow: return UserService.follow() .map { Mutation.setFollowing(true) } .catchErrorJustReturn(Mutation.setFollowing(false)) case .unfollow: return UserService.unfollow() .map { Mutation.setFollowing(false) } .catchErrorJustReturn(Mutation.setFollowing(true)) } } func reduce(state: State, mutation: Mutation) -> State { var newState = state switch mutation { case let setFollowing(isFollowing): newState.isFollowing = isFollowing } return newState }<iframe width="700" height="250" data-src="/media/dc8fbdce8314a7eba99be944241c5432?postId=c7b52fbb131a" data-media-id="dc8fbdce8314a7eba99be944241c5432" data-thumbnail="https://i.embed.ly/1/image?url=https://avatars2.githubusercontent.com/u/931655?s=400&v=4&key=a19fcc184b9711e1b4764040d3dc5c07" class="progressiveMedia-iframe js-progressiveMedia-iframe" allowfullscreen="" frameborder="0" src="https://medium.com/media/dc8fbdce8314a7eba99be944241c5432?postId=c7b52fbb131a" style="display: block; position: absolute; margin: auto; max-width: 100%; box-sizing: border-box; transform: translateZ(0px); top: 0px; left: 0px; width: 700px; height: 522.984px;">테스팅테스트를 위해 가장 먼저 고민하게 되는 것은 ‘무엇을 테스트할 것인가’에 대한 것입니다. ReactorKit을 사용하면 뷰와 로직이 분리되어 상대적으로 쉽게 해답을 얻을 수 있습니다.View사용자 인터랙션이 발생했을 때 Action이 리액터로 잘 전달되는지리액터의 상태가 바뀌었을 때 뷰의 컴포넌트 속성이 잘 변경되는지ReactorAction을 받았을 때 원하는 State로 잘 변경되는지뷰 테스팅리액터의 stub 기능을 이용하면 뷰를 쉽게 테스트할 수 있습니다. stub 기능을 활성화하면 리액터가 받은 Action을 모두 기록하고, mutate()와 reduce()를 실행하는 대신 외부에서 상태를 설정할 수 있게 됩니다.func testAction_refresh() { // 1. Stub 리액터를 준비합니다. let reactor = MyReactor() reactor.stub.isEnabled = true // 2. Stub된 리액터를 주입한 뷰를 준비합니다. let view = MyView() view.reactor = reactor // 3. 사용자 인터랙션을 발생시킵니다. view.refreshControl.sendActions(for: .valueChanged) // 4. Reactor에 액션이 잘 전달되었는지를 검증합니다. XCTAssertEqual(reactor.stub.actions.last, .refresh) } func testState_isLoading() { // 1. Stub 리액터를 준비합니다. let reactor = MyReactor() reactor.stub.isEnabled = true // 2. Stub된 리액터를 주입한 뷰를 준비합니다. let view = MyView() view.reactor = reactor // 3. 리액터의 상태를 임의로 설정합니다. reactor.stub.state.value = MyReactor.State(isLoading: true) // 4. 그 때 뷰 컴포넌트의 속성이 잘 변하는지를 검증합니다. XCTAssertEqual(view.activityIndicator.isAnimating, true) }<iframe width="700" height="250" data-src="/media/9e5e0349766c69076a5081cbd680645b?postId=c7b52fbb131a" data-media-id="9e5e0349766c69076a5081cbd680645b" data-thumbnail="https://i.embed.ly/1/image?url=https://avatars2.githubusercontent.com/u/931655?s=400&v=4&key=a19fcc184b9711e1b4764040d3dc5c07" class="progressiveMedia-iframe js-progressiveMedia-iframe" allowfullscreen="" frameborder="0" src="https://medium.com/media/9e5e0349766c69076a5081cbd680645b?postId=c7b52fbb131a" style="display: block; position: absolute; margin: auto; max-width: 100%; box-sizing: border-box; transform: translateZ(0px); top: 0px; left: 0px; width: 700px; height: 721px;">리액터 테스팅리액터는 뷰에 비해서 상대적으로 테스트하기 쉽습니다. Action이 전달되었을 때 비즈니스 로직을 수행하여 State가 바뀌는지를 확인하면 됩니다.func testBookmark() { // 1. 리액터를 준비합니다. let reactor = MyReactor() // 2. 리액터에 액션을 전달합니다. reactor.action.onNext(.toggleBookmarked) // 3. 리액터의 상태가 변경되는지를 검증합니다. XCTAssertEqual(reactor.currentState.isBookmarked, true) } func testUnbookmark() { // 1. 리액터를 준비합니다. 액션을 미리 한 번 전달해서 테스트 환경을 만들어둡니다. let reactor = MyReactor() reactor.action.onNext(.toggleBookmarked) // 2. 리액터에 액션을 한 번 더 전달합니다. reactor.action.onNext(.toggleBookmarked) // 3. 리액터의 상태가 변경되는지를 검증합니다. XCTAssertEqual(reactor.currentState.isBookmarked, false) }<iframe width="700" height="250" data-src="/media/32af3eac8c1c9646bf95ea1442ad8ff4?postId=c7b52fbb131a" data-media-id="32af3eac8c1c9646bf95ea1442ad8ff4" data-thumbnail="https://i.embed.ly/1/image?url=https://avatars2.githubusercontent.com/u/931655?s=400&v=4&key=a19fcc184b9711e1b4764040d3dc5c07" class="progressiveMedia-iframe js-progressiveMedia-iframe" allowfullscreen="" frameborder="0" src="https://medium.com/media/32af3eac8c1c9646bf95ea1442ad8ff4?postId=c7b52fbb131a" style="display: block; position: absolute; margin: auto; max-width: 100%; box-sizing: border-box; transform: translateZ(0px); top: 0px; left: 0px; width: 700px; height: 522.984px;">마치며ReactorKit은 지금까지 CocoaPods에서 약 3만 7천회 다운로드 되었고, 약 730개 앱에서 사용되고 있습니다. 최근에는 Wantedly에서 사용하며 일본에서도 많은 호응을 얻고 있습니다. 공개된지 1년밖에 되지 않았지만 굉장히 좋은 평을 받으며 성장하고 있는 프레임워크입니다. 만약 새로운 프로젝트를 시작하거나, StyleShare와 비슷한 고민을 하고 계신다면 ReactorKit을 강력하게 추천합니다.ReactorKit GitHublet’Swift 2017 ReactorKit 발표 영상let’Swift 2017 ReactorKit 발표 자료#스타일쉐어 #개발팀 #개발자 #경험공유 #인사이트
조회수 1452

QA 끝! ADB 설치부터 사용까지

Overview안드로이드 개발자라면 모두 ADB(Android Debug Bridge)를 사용합니다. 안드로이드 SDK에 포함되어 있는 기능인데요. 쉽게 말하면 에뮬이나 안드로이드 단말과의 연결고리, 도구를 의미합니다. 특히나 QA(Quality Assurance)를 진행할 때 ADB를 사용하면 아주 유용하고, 있어 보입니다. 이번 글에서는 ADB를 잘 모르는 QA직군들을 위해 설치 방법과 간단한 사용법을 공유하려고 합니다. SDK, ADB 설치하기앞서 ADB는 SDK에 포함된 기능이라고 했죠? 우선 여기를 클릭해 SDK를 설치해주세요. 참, 안드로이드는 JAVA가 기본 언어! JAVA도 설치하고 환경 변수도 설정해주세요!SDK를 설치했다면 plalform-tools 폴더 안의 adb.exe파일을 찾아야 합니다. 저의 설치 경로는(C:\Users\brandi_171205_02\android-sdks\platform-tools) 네요.경로를 찾았다면 JAVA 환경 변수 설정하듯 ADB도 환경변수를 설정해야 합니다. ‘내 컴퓨터 마우스 오른쪽 > 속성 클릭’해주세요.고급 시스템 설정 클릭 (개인정보라 지웠습니다.)환경변수 클릭시스템변수 영역 path클릭 > 편집 클릭윈도우10은 앞뒤로 ;를 추가하지 않아도 됩니다. ADB 경로를 추가해주세요. (C:\Users\brandi_171205_02\android-sdks\platform-tools)cmd창을 열고 ADB를 입력하고, 엔터를 눌러주세요.아래와 같이 나오면 성공!잘 따라왔나요? 그 다음은 단말기입니다. 개발자 옵션 > usb디버깅 허용 후 단말을 pc와 연결해주세요. CRM창에서 adb devices 를 입력해주세요. 이 명령어는 에뮬이나 단말 연결을 확인하는 명령어 입니다.ADB 설치를 마쳤습니다. 참 쉽죠? 지금부턴 자주 쓰는 ADB 명령어를 알려드립니다. 한 번 사용해보세요. 한 번 써봤다는 사람은 봤어도, 한 번만 썼다는 사람은 못 봤습니다.자주 쓰는 ADB 명령어단말 재시작QA진행하시면 재시작 많이 하죠? 단말초기화..!adb rebootapk설치 내컴퓨터 > 단말 > 다운로드할 필요가 없어요. 바로 설치!!adb install -r [파일명].apkapk 삭제adb uninstall [패지지명]Android버전 확인adb shell getprop ro.build.version.releaseScreenshotadb shell /system/bin/screencap -p 장치내경로동영상 녹화 QA일하면서 필수입니다. 정말 유용해요.adb shell screenrecord /sdcard/[저장할파일명].mp4텍스트 입력 로그인, 텍스트 입력 테스트 진짜 좋습니다.adb shell input text “[입력할 텍스트]”마치며ADB엔 엄~청나게 많은 명령어가 있습니다. 더 많은 정보를 알고 싶다면 adb help를 입력해보세요. 명령어 도움말이 툭 나올 겁니다. ADB가 있다면 이슈 등록과 이슈 관리 정말 편해집니다. 우선 알려드린 7번까지만 사용해보세요. 당신의 QA가 편안해질 겁니다. 지금까지 브랜디 QA 문지기, 김치영이었습니다.글김치영 대리 | R&D PM팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발자 #개발팀 #인사이트 #경험공유
조회수 1096

주니어 개발자가 외칩니다, "Hello, System Architecture!"

Overview주니어 개발자는 시스템 아키텍처(System Architecture) 또는 시스템 디자인(System Design)이라는 단어에 덜컥 겁부터 먹습니다. 지금 진행하고 있는 개발에만 집중하다 보니 큰 그림을 놓치고 있는 게 아닐까 란 생각이 들었죠. 조금 더 큰 그림을 보고자 공부를 시작했습니다. 문득 같은 생각을 하는 주니어 개발자 분들도 많을 것 같다고 생각했어요. 그래서 이번 글은 시스템 아키텍처에 ㅇ_ㅇ? 뀨? 하는 표정을 짓는 주니어 개발자들을 위해 썼습니다.상상의 나래: 가상의 패션 e커머스상상의 나래를 펼쳐봅시다. 패션 e커머스 서비스를 이용하는 김유저 씨가 구매한 옷이 마음에 들어 상품 리뷰를 남기고 싶어한다고요.김유저 씨는 본인의 착용 사진과 텍스트 리뷰를 작성하고 ‘리뷰 등록하기’ 버튼에 엔터를 탁! 누를 겁니다. 그런데 말이죠. 김유저 씨는 요청하고 싶은 웹서버의 IP 주소를 모르기 때문에 요청을 보낼 수가 없습니다.내 정체를 알려줘: DNS (Domain Name System)그래서, DNS(Domain Name System)에게 물어봅니다. 서버의 도메인 이름으로부터 해당 서버의 IP 주소를 알려주는 것이 바로 DNS입니다. 도메인 이름에 대한 질의를 하고, 만일 해당 도메인 이름이 DNS에 ‘A Record’ 형태로 등록이 되어 있다면 도메인 이름에 해당하는 IP 주소를 응답으로 돌려줍니다.서비스에서 자체 DNS 시스템을 가지고 있을 수 있습니다. 예를 들어 Route 53, Cloud Flare같은 서비스가 있습니다. 그렇다면 또 한 가지 의문이 생깁니다. 왜 서비스는 시스템적 부담을 안고서 자체 DNS 서버를 구축하고 있는 걸까요? 그 이유로 두 가지를 꼽을 수 있습니다.첫 번째로는 신뢰도가 높습니다. 직접 DNS Record를 관리 및 운영하기 때문입니다. 두 번째로는 보안이 우수합니다. 만약 공개하고 싶지 않은 IP 주소, 예를 들어 Database IP 주소 같은 건 공개하지 않습니다. 1)작업장소: Web Server이제 웹서버의 IP 주소를 알았으니 통신을 시도합니다. 웹서버는 웹서비스에서 필요로 하는 다양한 요청과 그에 대한 응답을 제공합니다. 클라이언트가 리뷰에 대한 사진과 텍스트를 등록하고 싶다면 웹서버에게 등록하라는 요청을 보내야 합니다.웹서버에서 요청을 받으면 사용자가 요구한 대로 사진과 텍스트를 등록하고, 그에 대한 결과 정보를 응답으로 보내줄 것입니다. 웹서버 내부에서는 그 과정에 필요한 연산을 수행합니다. 서버 개발자는 이 연산에 대한 코드를 작성하고요.센스가 없는 서버:API (Application Programing Interface)서버는 사람이 아닙니다. 센스나 재치가 없죠. 미리 정의되지 않은 요청은 대응하지 못합니다. (어버버버버 퉤! Error 404!) 그래서 약속한 요청을 보내면 약속한 방식으로 응답해줄게라고 명세를 제공합니다.약속한 요청으로 데이터를 보내면 원하는 요청에서 데이터를 정제해 잘 처리했는지, 또는 처리된 데이터를 약속한 방식(예를 들어, JSON 방식)으로 내보내죠. 웹서버는 정의된 API에 맞춰 요청과 응답을 합니다.그런데 웹서버가 수많은 요청을 받고 응답하면 과부하가 일어날 수도 있습니다. 사용자 수가 어마어마한 규모로 늘어나서 서버가 펑! 하고 터진다면, 김유저 씨는 서비스를 더 이상 이용할 수 없을 겁니다. 이용하고 싶지도 않을 겁니다!따라서, 서버가 감당하는 요청을 나누기 위해 같은 역할을 하는 서버 장비 수를 늘릴 수도 있습니다. 그러면 요청이 각기 다른 웹서버 장비에 분산되어 한 번에 감당할 수 있는 요청 수가 더욱 많아집니다.이 구역의 매니저는 나야: Load Balancer그림처럼 서버가 4대 존재하는 상황이라면, 서버 4대에 일을 적절히 분배해주는 역할이 필요합니다. 그것이 로드 밸런서(Load Balancer)입니다. 로드 밸런서가 서버에게 일을 나누는 방법론은 여러 가지가 있습니다.Random: 랜덤으로 분배하기Least loaded: 가장 적은 양의 작업을 처리하고 있는 서버에게 요청을 할당하기Round Robin: 순서를 정하여 돌아가며 작업 분배하기많이 쓰는 로드 밸런서의 종류는 Layer 4, Layer 7을 꼽을 수 있습니다.Layer 4 Load Balancer: 데이터의 내용을 보지 않고 IP주소 및 TCP/UDP 정보에 따라 단순히 분배를 해줍니다.Layer 7 Load Balancer: 서버가 하는 역할이 분리되어 있는 환경에서 데이터의 내용을 보고 각기 맞는 역할을 하는 서버에게 분배를 해줍니다.로드 밸런서는 클라이언트가 요청을 보내야 할 서버를 골라야 하는 부담을 덜어주며, 로드 밸런서에게 할당된 vIP (가상 IP)로 요청을 보내기만 하면 로드 밸런서에서 알아서 작업을 나눠줍니다. 서버에서는 적절한 로드 밸런서를 사용하면 들어오는 요청이 여러 장비에 분산되어 처리량이 늘어나고 응답 시간이 줄어드는 효과를 기대할 수 있습니다. 컨텐츠 저장소: CDN(Content Delivery Network)이제 웹서버가 클라이언트의 요청에 의해 웹페이지에 대한 응답 결과를 돌려줬습니다. 이때 클라이언트의 화면에 렌더링해야 하는 수많은 이미지가 필요합니다. 이 이미지들을 웹서버가 전부 주려면 데이터의 용량이 너무 크고, 무거워서 서버가 헥헥거리죠. (서버가 죽으면 어떻게 될까요? 클라이언트님이 경쟁사로 환승하겠죠.. 안 돼요..) 따라서 웹서버는 직접 이미지를 주는 대신 CDN(Content Delivery Network)에게 요청하라고 이야기합니다. CDN은 일반적으로 용량이 큰 컨텐츠 데이터(이미지, 비디오, 자바스크립트 라이브러리 등)를 빠른 속도로 제공하기 위해 사용자와 가까운 곳에 분산되어 있는 데이터 저장 서버입니다. 클라이언트는 용량이 큰 컨텐츠 데이터를 가까운 CDN에 요청해 멀리 있는 웹서버에서 직접 받는 것보다 빠르게 받을 수 있습니다. CDN이 동작하는 방식에는 크게 Push CDN, Pull CDN이 있습니다. Push CDN: 서버에서 컨텐츠가 업로드되거나, 변경되었을 때 모두 반영하는 방식 Pull CDN: 클라이언트가 요청할 때마다 컨텐츠가 CDN에 새로 저장되는 방식 두 방식 모두 장단점이 있습니다. Push CDN은 모든 컨텐츠를 갖고 있기에 웹서버에 요청할 일이 없지만 유지하는데 필요한 용량과 비용이 많이 필요하겠죠? Pull CDN은 클라이언트가 요청한 컨텐츠가 있으면 바로 응답하지만 그렇지 않을 땐 데이터를 웹서버로부터 가져와야 하기 때문에 서버에 요청하는 부담이 존재합니다. 컨텐츠명은 그대로인데 내용만 변경되었다면 인지하지 못하고 옛버전의 컨텐츠를 제공하죠. 그래서 Pull CDN에 들어가는 컨텐츠는 TTL(Time To Live)이 적용됩니다. TTL이란 유통기한이라고 생각하면 쉽습니다. 일정시간이 지나면 해당 데이터가 삭제되는 것이죠. 이런 방식이 적용된다면 Pull CDN의 최대 단점을 보완할 수 있습니다. 이렇게 보완이 되면 수정된 데이터에 대해서도 대응이 가능하며 서버의 용량 즉, 비용적 부담이 해소될 겁니다.소중한 내 데이터: Database서비스를 제공하다 보면 클라이언트의 소중한 정보, 이력, 상품 가격, 상품 정보 등 다양한 데이터를 저장하고, 또 제공합니다. 하지만 수많은 데이터를 웹서버에 전부 저장하고 사용하기엔 데이터의 양이 너무 많아 저장 공간도 부족하고, 데이터를 원하는 모양에 맞게 정제하기가 어렵습니다. 그래서 데이터를 저장하는 데이터베이스 서버가 따로 존재합니다.민감한 정보를 다루는 데이터베이스는 ACID라는 성질을 만족해야 하는데요.Atomicity(원자성): 데이터베이스에 적용되는 명령이 중간만 실행되지 않고 완전히 성공하거나 완전히 실패해야 한다는 것을 의미합니다. 반만 적용된 명령이 있다면 헷갈리겠죠.Consistency(일관성): 데이터베이스가 수행한 명령이 일관적으로 반영되어 있어야 한다는 의미입니다. 예를 들어 계좌에 돈을 입금했는데 잔고에 반영되지 않는다면 당황스러울 겁니다.Isolation(고립성): 데이터베이스가 수행하는 명령 도중 다른 명령이 끼어들지 못한다는 것을 의미합니다.Durability(지속성): 성공적으로 수행한 명령은 영원히 그 이후 상태로 남아있어야 한다는 걸 의미합니다. 갑자기 하루 뒤에 명령이 취소되거나 이전 상태로 롤백되면 안 됩니다. Replication (복제 / 이중화)큰 시스템에서는 똑같은 데이터베이스가 여럿 존재한다고 하는데요. 그렇다면 왜 비용적인 부담을 안으면서까지 복제 데이터베이스를 구축해놓는 걸까요? 만약에 데이터베이스가 정상적으로 동작하지 않는다면 클라이언트의 데이터를 변경하지 못하며, 클라이언트가 원하는 정보를 제공하지 못하는 불상사가 일어나게 됩니다. 글로만 써도 벌써 땀이 납니다. 그러므로 복제해놓은 데이터베이스를 얼른 마스터로 등업해 데이터 흐름에 차질이 없도록 대비해야 합니다.만약 하나의 데이터베이스가 어떤 일을 수행할 때 다른 요청들은 계속 기다려야 합니다. 그렇다면 데이터를 변경하는 데이터베이스는 하나, 읽기만 하는 데이터베이스는 여러 대가 존재해도 되지 않을까요? 바로 여기서 Master-Slave의 개념이 탄생합니다.master-slave-replicaMaster-Slave Replica (a.k.a 주인-노예)요청을 분산하기 위해서 데이터베이스를 늘리다 보면 master-slave 토픽이 등장합니다.Mater: CRUD(Create, Read, Update, Delete)가 모두 가능Slave: R(Read)만 가능Master가 데이터를 변경할 동안 읽기에 대한 요청은 Slave에게 보내집니다. 그렇게 하면 읽기 요청은 분산되어 훨씬 더 수월하고 빠른 속도로 데이터 처리가 가능할 것입니다. 만약 Master가 변경된다면 아래 계급인 Slave, Replica 데이터베이스에게도 이 정보를 전해야 합니다. 다시 말해, 자신에게 들어온 요청(Query)을 동일하게 보내 빠른 시간 안에 동기화를 시켜주죠. 하지만 동기화도 시간이 걸리는 작업이므로 무한대로 Slave Replica를 늘려 확장하기는 어렵습니다.Master-Master Replica의문이 하나 생길 겁니다. “여러 대의 Master를 두어서 변경도 가능하고, 읽기도 가능하게 하면 되지 않을까?”앞서 언급했듯이 같은 데이터의 변경 가능한 데이터베이스는 하나여야 할 것입니다. 동시에 같은 데이터를 변경했을 때 갈등을 해소하기 위한 방법론은 존재하지만, 그 방식이 복잡하고 오래 걸립니다. 안정성도 낮아지고, 효율도 떨어집니다. 그래서 Master-Slave 아키텍처를 선호하는 것이죠.Sharding그러면 같은 데이터베이스 테이블을 동시에 변경하는 건 불가능한 걸까요? 그것을 해소하기 위해 샤딩(Sharding)이라는 방법론을 사용합니다. 샤딩된 테이블은 개념적으론 하나의 테이블처럼 보이지만 사실 그 내용물이 쪼개져 있습니다. 쪼개는 방법은 여러 가지 선택할 수 있습니다만, 분명한 건 겹치는 데이터 없이 쪼갠다는 것입니다. 그래서 같은 테이블이어도 쪼개져 있다면 그 테이블에 동시에 접근해 데이터를 변경할 수 있는 것이죠.이외에 서비스별, 기능별로 쪼개어 데이터베이스를 관리하는 Federation 등 많은 데이터베이스 디자인 방법론이 존재합니다.시스템 아키텍처가 가지고 있어야 할 최소본 아키텍처요점: 시스템 아키텍쳐에서 고려해야 할 성질이렇게 간단한 시스템 아키텍처의 면면을 살펴봤습니다. 시스템 개발자라면 시스템을 디자인하면서 반드시 고려해야 할 성질들을 만날 텐데요. 위에서 소개한 내용들 역시 아래의 성질들을 충족하기 위해 탄생했다고 볼 수 있습니다.Scalability (확장성): 10만 명의 요청을 처리할 수 있는 시스템과 1000만 명의 요청을 처리할 수 있는 시스템은 다릅니다. 확장성을 고려한 시스템은 앞으로 클라이언트 수가 늘어났을 때 무리 없이 모든 요청을 처리할 수 있을 겁니다.Performance (성능): 속도와 정확성을 말합니다. 요청한 내용을 정확하고 빠르게 돌려주어야 합니다.Latency (응답 시간): 모든 요청은 클라이언트가 불편해하지 않을 정도로 빠른 시간 안에 돌려주어야 합니다.Throughput (처리량): 같은 시간 안에 더욱 많은 요청을 처리한다면 좋은 시스템입니다.Availability (접근성): 사용자가 언제든지 시스템에 요청을 보내서 응답을 받을 수 있어야 합니다. 비록 서버 장비 한두 대가 문제가 생겨 제 기능을 하지 못하더라도 사용자는 그 사실을 몰라야 합니다.Consistency (일관성): 사용자가 서버에 보낸 요청이 올바르게 반영되어야 하고, 일정한 결과를 돌려주어야 합니다. 요청을 보낼 때마다 불규칙한 결과를 돌려준다면 믿을 수 없는 서비스가 될 것입니다.결론발로 그렸나 싶을 정도의 그림과 기나긴 글을 마무리 지으며주니어 개발자로서 시스템 아키텍처를 공부하면서 느낀 점이 있다면 시스템에 대한 완벽한 대응은 없으며, 모두 장단점이 존재한다는 것입니다. (이것을 보통 trade-off라고 표현합니다.)하지만 설계하는 서비스를 잘 알고 서비스에서 무게를 둬야 할 부분을 파악한다면, 그에 맞는 시스템을 설계하고 디자인할 수 있을 겁니다. 김유저 씨도 만족시킬 수 있을 거고요. 꼬박 이틀을 밤새워서 쓴 글이 아직 시스템 아키텍처를 두려워하는 다른 주니어 개발자분들에게 도움이 되었으면 합니다. 이번에는 시스템에서 아주 기초적인 부분을 공부했으니 다음 글에선 MSA(MicroService Architecture)를 씹어봅시다! 겁이 나고 무서워도 외쳐보세요. “Hello, System Architecture!”이 세상 모든 주니어 개발자분들, 퐈잇팅입니다.참고1) 추가적인 이점에 대하여: 웹서버에서 요청을 보낼 때 database 도메인 네임으로 보낼 경우, 멀리 있는 공인 DNS 서버 (예를 들면 google public DNS server: 8.8.8.8)에 물어오는 것보다 자체 DNS 서버에 물어오는 것이 훨씬 더 빠른 속도로 응답을 받아올 수 있습니다.출처GitHub - donnemartin/system-design-primer: Learn how to design large-scale systems. Prep for the system design interview. Includes Anki flashcards.글오연주 사원 | R&D 개발2팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발자 #개발팀 #인사이트 #경험공유 #주니어개발자
조회수 3199

Apache Spark에서 컬럼 기반 저장 포맷 Parquet(파케이) 제대로 활용하기 - VCNC Engineering Blog

VCNC에서는 데이터 분석을 위해 다양한 로그를 수집, 처리하는데 대부분은 JSON 형식의 로그 파일을 그대로 압축하여 저장해두고 Apache Spark으로 처리하고 있었습니다. 이렇게 Raw data를 바로 처리하는 방식은 ETL을 통해 데이터를 전처리하여 두는 방식과 비교하면 데이터 관리비용에서 큰 장점이 있지만, 매번 불필요하게 많은 양의 데이터를 읽어들여 처리해야 하는 아쉬움도 있었습니다.이러한 아쉬움을 해결하기 위해 여러 논의 중 데이터 저장 포맷을 Parquet로 바꿔보면 여러가지 장점이 있겠다는 의견이 나왔고, 마침 Spark에서 Parquet를 잘 지원하기 때문에 저장 포맷 변경 작업을 하게 되었습니다. 결론부터 말하자면 74%의 저장 용량 이득, 10~30배의 처리 성능 이득을 얻었고 성공적인 작업이라고 평가하지만 그 과정은 간단하지만은 않았습니다. 그 과정과 이를 통해 깨달은 점을 이 글을 통해 공유해 봅니다.Parquet(파케이)에 대해Parquet(파케이)는 나무조각을 붙여넣은 마룻바닥이라는 뜻을 가지고 있습니다. 데이터를 나무조각처럼 차곡차곡 정리해서 저장한다는 의도로 지은 이름이 아닐까 생각합니다.Parquet을 구글에서 검색하면 이와 같은 마룻바닥 사진들이 많이 나옵니다.빅데이터 처리는 보통 많은 시간과 비용이 들어가므로 압축률을 높이거나, 데이터를 효율적으로 정리해서 처리하는 데이터의 크기를 1/2 혹은 1/3로 줄일 수 있다면 이는 매우 큰 이득입니다. 데이터를 이렇게 극적으로 줄일 수 있는 아이디어 중 하나가 컬럼 기반 포맷입니다. 컬럼 기반 포맷은 같은 종류의 데이터가 모여있으므로 압축률이 더 높고, 일부 컬럼만 읽어 들일 수 있어 처리량을 줄일 수 있습니다.https://www.slideshare.net/larsgeorge/parquet-data-io-philadelphia-2013Parquet(파케이)는 하둡 생태계의 어느 프로젝트에서나 사용할 수 있는 효율적인 컬럼 기반 스토리지를 표방하고 있습니다. Twitter의 “Julien Le Dem” 와 Impala 프로젝트 Lead였던 Cloudera의 “Nong Li”가 힘을 합쳐 개발한 프로젝트로 현재는 많은 프로젝트에서 Parquet를 지원하고 컬럼 기반 포맷의 업계 표준에 가깝습니다.Parquet를 적용해보니 Apache Spark에서는, 그리고 수많은 하둡 생태계의 프로젝트들에서는 Parquet를 잘 지원합니다.val data = spark.read.parquet("PATH") data.write.parquet("PATH") Spark에서는 이런 식으로 손쉽게 parquet 파일을 읽고, 쓸 수가 있습니다. 데이터를 분석하기 전에 원본이라고 할 수 있는 gzipped text json을 읽어서 Parquet 로 저장해두고 (gzipped json은 S3에서 glacier로 이동시켜버리고), 이후에는 Parquet에서 데이터를 읽어서 처리하는 것 만으로도 저장용량과 I/O 면에서 어느 정도의 이득을 얻을 수 있었습니다. 하지만 테스트 결과 저장용량에서의 이득이 gz 23 GB 에서 Parquet 18GB 로 1/3 정도의 저장용량을 기대했던 만큼의 개선이 이루어지지는 않았습니다.Parquet Deep Dive상황을 파악하기 위해 조금 더 조사를 해보기로 하였습니다. Parquet의 포맷 스팩은 Parquet 프로젝트에서 관리되고 있고, 이의 구체적인 구현체로 parquet-mr 이나 parquet-cpp 프로젝트 등에서 스펙을 구현하고 있습니다. 그리고 특별한 경우에는 Spark에서는 Spark 내부에 구현된 VectorizedParquetRecordReader 에서 Parquet 파일을 처리하기도 합니다.파일 포맷이 바뀌거나 기능이 추가되는 경우에는 쿼리엔진에서도 이를 잘 적용해주어야 합니다. 하지만 안타깝게도 Spark은 parquet-mr 1.10 버전이 나온 시점에도 1.8 버전의 오래된 버전의 parquet-mr 코드를 사용하고 있습니다. (아마 다음 릴리즈(2.4.0)에는 1.10 버전이 적용될 것으로 보이지만)Parquet 의 메인 개발자 중에는 Impala 프로젝트의 lead도 있기 때문에, Impala에는 비교적 빠르게 변경사항이 반영되는 것에 비하면 대조적입니다. 모든 프로젝트들이 실시간적으로 유기적으로 업데이트되는 것은 힘든 일이기 때문에 어느 정도는 받아들여야겠지만, 우리가 원하는 Parquet의 장점을 취하기 위해서는 여러 가지 옵션을 조정하거나 직접 수정을 해야 합니다.VCNC 데이터팀에서는 저장 용량과 I/O 성능을 최적화하기 위하여 Parquet의Dictionary encoding (String들을 압축할 때 dictionary를 만들어서 압축하는 방식, 길고 반복되는 String이 많다면 좋은 압축률을 기대할 수 있습니다)Column pruning (필요한 컬럼만을 읽어 들이는 기법)Predicate pushdown, row group skipping (predicate, 즉 필터를 데이터를 읽어 들인 후 적용하는 것이 아니라 저장소 레벨에서 적용하는 기법)과 같은 기능들을 사용하기를 원했고, 이를 위해 여러 조사를 진행하였습니다.저장용량 줄이기102GB의 JSON 포맷 로그를 text그대로 gzip으로 압축하면 23GB가 됩니다. dictionary encoding이 잘 적용되도록 적절한 옵션 설정을 통해 Parquet로 저장하면 6GB로, 기존 압축방식보다 저장 용량을 74%나 줄일 수 있었습니다.val ndjsonDF = spark.read.schema(_schema).json("s3a://ndjson-bucket/2018/04/05") ndjsonDF. sort("userId", "objectType", "action"). coalesce(20). write. options(Map( ("compression", "gzip"), ("parquet.enable.dictionary", "true"), ("parquet.block.size", s"${32 * 1024 * 1024}"), ("parquet.page.size", s"${2 * 1024 * 1024}"), ("parquet.dictionary.page.size", s"${8 * 1024 * 1024}"), )). parquet("s3a://parquet-bucket/2018/04/05") 비트윈의 로그 데이터는 ID가 노출되지 않도록 익명화하면서 8ptza2HqTs6ZSpvmcR7Jww 와 같이 길어지기에 이러한 항목들이 dictionary encoding을 통해 효과적으로 압축되리라 기대할 수 있었고, Parquet에서는 dictionary encoding이 기본이기에 압축률 개선에 상당히 기대하고 있었습니다.하지만 parquet-mr 의 구현에서는 dictionary의 크기가 어느 정도 커지면 그 순간부터 dictionary encoding을 쓰지 않고 plain encoding으로 fallback하게 되어 있었습니다. 비트윈에서 나온 로그들은 수많은 동시접속 사용자들의 ID 갯수가 많기 때문에 dictionary의 크기가 상당히 커지는 상태였고, 결국 dictionary encoding을 사용하지 못해 압축 효율이 좋지 못한 상태였습니다.이를 해결하기 위해, parquet.block.size를 default 값인 128MB에서 32MB로 줄이고 parquet.dictionary.page.size를 default 값 1MB에서 8MB 로 늘려서 ID가 dictionary encoding으로만 잘 저장될 수 있도록 만들었습니다.처리속도 올리기저장용량이 줄어든 것으로도 네트워크 I/O가 줄어들기 때문에 처리 속도가 상당히 올라갑니다. 하지만 컬럼 기반 저장소의 장점을 온전하게 활용하기 위해서 column pruning, predicate pushdown들이 제대로 작동하는지 점검하고 싶었습니다.소스코드를 확인하고 몇 가지 테스트를 해 본 결과, Spark에서는 Parquet의 top level field에서의 column pruning은 지원하지만 nested field들에 대해서는 column pruning을 지원하지 않았습니다. 비트윈 로그에서는 nested field들을 많이 사용하고 있었기에 약간 아쉬웠으나 top level field에서의 column pruning 만으로도 어느 정도 만족스러웠고 로그의 구조도 그대로 사용할 예정입니다.Predicate pushdown도 실행시간에 크게 영향을 줄 거라 예상했습니다. 그런데 Spark 2.2.1기준으로 column pruning의 경우와 비슷하게, top level field에 대해서만 predicate pushdown이 작동하는 것을 확인할 수 있었습니다. 이는 성능에 큰 영향을 미치기에, predicate 로 자주 사용하는 column들을 top level 로 끌어올려 저장하는 작업을 하게 되었습니다. 여기에 추가로 parquet.string.min-max-statistics 옵션을 손보고 나서야 드디어 10~30배 정도의 성능 향상을 볼 수 있었습니다.매일 15분 정도 걸리던 "의심스러운 로그인 사용자" 탐지 쿼리가 30여초만에 끝나고, cs처리를 위해 한 사람의 로그만 볼 때 5분 정도 걸리던 쿼리가 30여초만에 처리되게 되었습니다.못다 한 이야기parquet.string.min-max-statistics 옵션과 row group skipping에 관해.Parquet 같은 포맷 입장에서 string 혹은 binary 필드의 순서를 판단하기는 어렵습니다. 예를 들어 글자 á 와 e 가 있을 때 어느 쪽이 더 작다고 할까요? 사전 편찬자라면 á가 더 작다고 볼 것이고, byte 표현을 보면 á는 162이고 e는 101이라 e가 더 작습니다. Parquet 같은 저장 포맷 입장에서는 binary 필드가 있다는 사실만 알고 있고, 그 필드에 무엇이 저장될지, 예를 들어 á와 e가 저장되는지, 이미지의 blob가 저장되는지는 알 수 없습니다. 그러니 순서를 어떻게 정해야 할지는 더더구나 알 수 없습니다.그래서 Parquet 내부적으로 컬럼의 min-max 값을 저장해 둘 때, 1.x 버전에서는 임의로 byte sequence를 UNSINGED 숫자로 해석해 그 컬럼의 min-max 값을 정해 저장했습니다. 이후에 이를 개선하기 위해 Ryan Blue가 PARQUET-686에서 parquet-format에 SORT_ORDER를 저장할 수 있도록 했습니다.여기에서 문제는 이전 버전과의 호환성입니다. SORT_ORDER가 없던 시절의 Parquet 파일을 읽으려 할 때, min-max 값을 사용해 row group skipping이 일어나면 query 엔진에서 올바르지 않은 결과가 나올 수 있으니, binary 필드의 min-max 값을 parquet-mr 에서 아예 반환하지 않게 되어있습니다.하지만 이는 우리가 원하는 동작이 아닙니다. 여기에 parquet.string.min-max-statistics option을 true로 설정하면, 이전처럼 binary필드의 min-max값을 리턴하게 되고 rowgroup skipping이 작동하여 쿼리 성능을 크게 올릴 수 있습니다.마치며Spark과 Parquet 모두 많은 사람이 사랑하는 훌륭한 오픈소스 프로젝트입니다. 또한 별다른 설정이나 튜닝 없이 기본 설정만으로도 잘 돌아가는 편이기 때문에 더더욱 많은 사람이 애용하는 프로젝트이기도 합니다.하지만 오픈소스는 완전하지 않습니다. 좋은 엔지니어링 팀이라면 단지 남들이 많이 쓰는 오픈소스 프로젝트들을 조합해서 사용하는 것에서 그치지 않고 핵심 원리와 내부 구조를 연구해가며 올바르게 활용해야 한다고 생각합니다. 기술의 올바른 활용을 위해 비트윈 데이터팀은 오늘도 노력하고 있습니다.
조회수 1860

Genius? Jininus!

나는 인생을 살면서 많은 "천재"들을 만났다. 스타트업에 있다보면 더더욱 "영재""천재"로 불리는 수 많은 사람들을 보게 된다. 그들은 학문적으로 놀라운 성과와 스펙을 보유하고 있었다. 아마 당신이 한 회사를 운영하는 사람이거나 인사 담당자라면 분명 혹할 것이다. 하지만 정작 나는 같이 일하고 싶었던 사람이 단 한 명도 없었다. 주변에서는 천재들과 같이 일하면 성공할 것이라고 생각하지만, 사업적 결과물과 두뇌는 별개의 문제라고 나는 생각한다. 대단한 능력을 가지고도 빛 없이 사라진 사람들을 얼마나 많이 보았는가. 물론 나도 대단한 사람과 일하고 싶다. 그러나 그 기준을 "영특함"에 국한시키고 싶지는 않다. 사업적으로 혹은 사회적으로 더 나은 미래를 후손에 물려주기 위해서는 그 이상의 "무언가"가 필요하다. 지금부터 나에게 그 "무언가"를 가르쳐 준 "진짜 천재"에 대한 이야기를 하고자 한다. 그에 대한 이야기를 하기 전에 나에 대한 이야기를 가볍게 하고자 한다. 5년 전만 해도 나는 비전과 목표가 없었다. 어려서 부터 돈 욕심만 많았다. 대학교를 다니면서도 돈을 벌 수 있는 방법이면 수단과 방법을 가리지 않았다. 한 일화로 당시에 학원 강사 아르바이트를 하고 있었는데 도매시장에서 트렌디한 문구류를 사와 수업을 가르쳤던 중/고등학생에게 팔았다. 시간과 행동에 제약이 있는 학생들은 수업 시간에 벌어지는 소소한 쇼핑에 돈을 지불했다. 그러나 끝이 좋지 않았다. 학생의 부모님에게 알려져 결국 학원에서 해고 조치 되었다. 지금의 내가 돌이켜보면 엄청나게 창피한 일이다. 학생들에게 단순한 편리와 재미를 줄 순 있었지만, 돈 말고는 남는게 없었다.20대의 대부분은 가치 없는 돈벌이의 연속이었다. 혹자는 말한다. 우선 돈 벌고 가치 있는 곳에 쓰면 된다고. 그러나 이런 식의 무의미한 접근은 내가 가야할 길이 아니라고 느꼈다. 인생에서 가치 있는 일을 찾아야 했다. 그때 발견했다. 혁신, 도전, 열정이 정말 실천되고 있는 세계가 있다는 것을. 스타트업이라는 단어조차 생소했던 시기였다. 심지어 IT라는 분야를 그 전까지 제대로 공부해 본 적도 없었다. 스타트업의 "ㅅ"도 모르던 내가 이 세계에 적응할 수 있는 방법은 뛰어난 사람들과 함께 시작하는 것 뿐 이었다. 온갖 미사여구로 괜찮은 연봉과 복지를 내세우는 기업도 꽤 있었다. 그러나 나에게 가장 중요한 건 "내가 성장할 수 있는지"와 “구성원”이였다. 꽤나 당연한 조건으로 기업을 찾았음에도 불구하고 찾을 수가 없었다. 그러다가 첫 스타트업으로 선택한 게 라우드소싱 이라는 작은 팀이었다. (찾게 된 과정에 대해서는 다른 글을 통해 소개하겠다) 안정적인 연봉도 없고, 확실한 미래도 없었지만 내가 이 팀과 같이 해야겠다 결정한 건 "권진" 이라는 단 한 사람 때문이었다. 모든 기업이 그렇지만 누구나 회사에 합류하면 3개월간의 수습기간을 거친다. 스타트업이라고 예외는 아니다. 오히려 더 냉정하게 자신을 되돌아 보는 시간을 가져야 한다. 나는 내 스스로를 입증하고 싶었다. “제가 3달 안에 이 회사가 성장할 수 있는 계약들을 가져오겠습니다. 그 정도 능력도 발휘 못한다면 제 발로 나가겠습니다” 3달 동안 권진은 일에 대해서 전혀 간섭하지 않았다 . 팀워크에 있어서 가장 중요한 부분은 신뢰라고 생각한다. 하지만 신뢰라는 부분이 친하다고 해서 혹은 비전과 목표가 같다고 해서 생기는 것이 아니다. 각자의 위치에서 최고의 성과를 목표로 내고, 한계를 뛰어넘어 성장하는 모습을 보여줄 때 강력한 신뢰가 생긴다. 서로가 같이 일하고 싶은 마음을 만들어 주는 것.이게 팀워크의 핵심이다. 나는 나대로 권진은 권진대로 각자가 맡은 일들을 완벽하게 수행했고, 우리는 그 일들을 하나의 사업으로 만들어 갔다. 그는 나에게 따로 주저리 주저리 피드백을 하지 않았다. 하지만 행동으로 결과물의 중요성을 보여주었고, 나는 3달동안 7건의 B2B 계약을 성사시켰다.애초에 같이 할 사람을 정할 때는 모든 부분을 면밀히 살피고 고민해야 하지만, 내가 같이 하기로 결정 했다면 상대가 최고의 결과물을 낼 수 있도록 믿어주는 것. 내가 배운 첫번째 교훈이었다.실력을 보여주었다고 환상적인 Fit일까? 누구든 본인이 만들어 내는 결과물을 혼자만의 능력이라고 오판하기 쉽다. 내가 영업처를 설득하고, 계약서를 체결해 왔기 때문에 내가 없었으면 이 계약도 없었을 것이다. 감각적이고 환상적인 디자인을 뽑아냈는데 이건 순전히 나의 재능에 의한 것이다. 팀원들이 이런 생각들을 하기 시작한다면 그 팀은 단시간 내에 모래성처럼 무너질 것이다. 권진은 개인이 만들어 내는 결과물도 팀원들이 각자의 분야에서 해 온 노력들의 최종산출물이라고 생각한다.영업처를 설득할 수 있었던 건, 우리 팀이 환상적인 서비스를 만들어 주었기 때문이다.나의 디자인은 기획팀과 마케팅팀의 노력을 하나로 담은 것 뿐이다.톱니바퀴처럼 팀원들이 맞물려 돌아가며 서로의 존재에 대해 감사함을 느낄 때 놀라운 일이 벌어진다. 내가 배운 두번째 교훈이다.권진이 지켜온 2가지 요건이 계속 좋은 사람을 팀으로 영입할 수 있었던 강력한 요소였다고 생각한다. 나의 실력을 우리 팀에 입증하는 것. 나의 결과물은 우리 팀 노력의 산물 이라는 것.권진과 함께 일하며 느낀 그의 주요한 능력은 개발도 디자인도 아니었다. (물론 이 2가지도 잘한다)팀 내의 균형을 맞추고 팀원들이 끊임없이 성장하게 도와주는데 있다. 개성 넘치는 팀원들을 하나의 비전으로 묶어서 성장할 수 있게 하는 사람을 나는 살면서 권진 이외에는 아직 본 적이 없다. 장담컨데, 만약 현재 더팀스 대표가 권진이 아니라 다른 사람으로 바뀐다면 팀원들은 전부 팀을 나갈 것이다. (연봉이 대폭 인상된다 할지라도)그래서 나는 이걸 Jin in Us 라고 명칭했다. 권진이라는 확실한 구심점 안에 개성넘치는 팀원들이 한 몸처럼 목표로 향해가는. 나는 앞으로 대표라는 역할을 할 생각이 없다. 권진 이라는 사람보다 대표의 역할을 충실히 수행할 자신이 없어졌기 때문이다.리더십이라는 분야가 있다면 그는 천재가 아닐까?내가 우리 팀에 합류시키고 싶은 사람이 있을 때면 하는 단골멘트로 이 글의 마무리를 짓는다.“우리 팀의 권진을 만나보세요. 분명히 함께 하고 싶을 겁니다”#더팀스 #THETEAMS #천재디자이너 #풀스택개발자 #CEO #리더십 #경험공유 #팀원자랑 #팀원소개 #회사의자랑
조회수 1286

[인터뷰] Humans of MEME, 그 마지막 주인공을 만나다. - 긍정의 힘을 지닌 듀크의 이야기

여러분 안녕하세요.미미박서의 평범하지만 특별한 이야기를 담아왔던 모뜨입니당!오홍 벌써 프로젝트의 마지막 이야기가 다가왔네요.Humans of MEME 의 마지막 주인공은바로 Global SCM 팀의 듀크입니다 !듀크의 솔직하고 담백한 이야기를들어보실까요 ?Q. 듀크가 담당하시는 업무인 SAP는 사내에서도 어렵다고 소문이 났는데요(쥬륵). SAP를 간략하게 소개해주신다면, 무엇인가요?A. 미미박스라는 회사가 원활하게 운영될 수 있도록 도와주는 시스템이 ERP(Enterprise Resource Planning : 전사적 자원 관리)이고 그 ERP 안에 여러가지 툴 중의 하나가 SAP이에요. 또 SAP에는 많은 프로그램들이 있는데, 그 프로그램을 개발하는 것이 abap 개발을 담당하고 있어요. 저는 컴퓨터를 전공하여 대학교 때부터 계속 컴퓨터만 해왔어요. SAP는 거의 대학교 과정에 없는 내용이라, 우연찮게 첫 직장에 들어가면서 처음 접했어요. 실무를 접하게 되면서 여러가지 상황에 대응하는 능력을 배우면서 적성에도 맞고 차차 젖어든 것 같아요. 전공에 따라 직업이 선택되기도 하지만 둘 사이의 직접적인 관련보다는 직업을 선택하는 것에 있어서 여러가지 경험 중의 한 단계인 것 같아요. 저도 컴퓨터가 전공이었지만 기획하고 여러가지 활동적인 일들도 하고 싶어서 찾아보기도 했었어요. 2가지 사이의 직접적인 연관은 없지만, 전공은 직업을 선택하는 데에 있어서 토대를 마련해주는 경험의 일종이라고 생각해요.  Q. 미미박스를 어떻게 만나게 되셨나요?A. 이전 직장 동료의 추천으로 미미박스에 합류하게 되었어요. 이전 직장의 동료들이 현재 미미박스의 동료들이기도 합니다(웃음). 저는 물론 하고 있는 업무도 중요하지만 동료와의 관계가 회사 생활의 50%를 차지한다고 생각해요. 동료와의 관계가 좋아야지 같이 시너지 효과를 내면서 분명히 업무 또한 잘 할 수 있는 것 같아요. 일도 마음도 잘 맞는 동료들과 함께 일을 하다보면 즐거운 일도 같이 공유하고 속상한 일이 있어도 서로 그때그때 풀 수 있어요. Q. 삶에서 도전적인 경험을 하신 적이 있으세요?A. 저는 늘 여린 외모때문에 주변 분들에게 약해보인다, 여려보인다 등 이런 얘기를 들은 적이 많아요. 그래서 그런지 몰라도 자꾸 무모한 도전을 해보려고 했던 과거 시절이 있었어요. 그 중의 하나로 대학교를 휴학한 후 자전거로 전국 일주를 다녀왔어요. 남들이 해보지 않은 경험을 해보고 싶었고 스스로 강해지고 싶다는 욕구도 있었어요. 저를 포함해서 친구들 3명과 같이 일주를 했어요. 저는 3이라는 숫자를 좋아해요. 2명이라면 싸울 수도 있는데 3명이라면 싸워도 2:1 이 되기 때문에 늘 그 자리에서 결론이 나거든요(웃음).서울에서 출발해서 미시령을 넘고, 강원도에서 부산으로 내려와, 부산에서 배를 타고 제주도를 갔어요. 제주도 한바퀴를 돌고 다시 배를 타고 목포에 도착했어요. 그렇게 목포에서 서울로 다시 올라왔습니다. 그렇게 총 한달 정도 걸렸어요.자전거로 한달 동안 전국을 돌면서 많은 사람들도 만났고 위험한 일도 많이 겪었어요. 무모하게 시작했던 것이지만 지금 돌이켜보면 가장 기억에 남고 제 자신의 한계를 시험해볼 수 있었던 것 같아요.자전거 전국일주를 하던 2002년의 듀크(좌)! WOWOWQ. 요즘 느끼시는 소소한 행복이 있으신가요?A. 최근에 아내가 아이를 출산했어요. 태어난지 현재 4개월 째가 되었는데 아이를 보는 낙에 살아가고 있어요. 제가 눈썹만 움직여도 아이는 꺄르르 웃으며 자지러지는데, 아이가 웃으며 결국 저도 웃거든요!저는 예전에는 운동하는 것이 특기이자 취미였어요. 이전에는 다른 즐거움이 분명히 있었는데 세월이 흐르다 보면서 또다른 즐거움을 맞이하고 있어요. 아내와 아이를 보면서 살아가는 데서 행복을 느끼고 에너지를 받는 것 같아요. Q. 듀크는 스스로 어떤 사람이고 싶으세요?A. 저는 늘 마음에 품고 있는 말이 있어요. 바로 ‘긍정의 힘’ 이라는 말이에요. 상황을 부정하고 의심하기보다 어려운 상황 속에서도 긍정적인 요소를 찾아낼 수 있어야 해요.먼저 긍정적인 마인드는 스스로를 변화시킬 수 있어요. 또한 저의 긍정적인 마인드를 통해 주변 사람들 또한 변화시킬 수 있는 것 같아요. 제가 긍정적인 에너지를 줌으로써 옆에 계신분들에게도 웃음을 전달할 수 있고 기쁜 순간들을 같이 할 수 있을 때 뿌듯해요. 앞으로도 저는 스스로에게도 긍정적으로, 주변 사람들에게도 긍정의 힘을 전파할 수 있는 사람이고 싶어요.듀크가 말한 긍정적인 마인드가 자신을 변화시키고나아가 주변 사람들도 변화시킬 수 있다는 힘과짧은 시간이나마 인터뷰를 진행하며 듀크의 긍정적인 기운을 느낄 수 있었어요 :)매일 행복할 수는 없지만행복한 일은 매일 있다는 말이 있듯이 여러분도 긍정의 힘을 믿어보시는 것은 어떠세요 !?이렇게 7번째 주인공 듀크를 마지막으로Humans of MEME 프로젝트가 끝나게 되었습니다.실화인가요?실화입니다.흫 여러분들은 이야기를 보며 어떠셨나요?저 모뜨는 인터뷰를 통해개인적으로나 회사의 속한 구성원으로서나새로운 자극을 받기도 하고 많이 성장할 수 있었던 시간이였습니다!판교 미미박스 본사 10층 플레이미미Humans of MEME 프로젝트는블로그에 올라오는 이야기 뿐만 아니라 미미박스 사내의 카페테리아에 매주마다 주인공들의 포스터가 붙여졌었답니다! (매주 포스터 구경하는 재미가 쏠쏠했다구여)Humans of MEME 는미미박서분들이 가장 많이 찾는 공간인 10층 플레이미미에서서로서로를 알아갈 수 있었던좋은 커뮤니케이션의 채널로서도 자리잡았었는데요!아쉽게도 프로젝트가 끝이 나게 되지만,미미박서 FOREVER 얍얍얍 미미박스 FOREVER 얍얍얍앞으로도 더 멋진 미미박서와 미미박스의 이야기로꾸준히 찾아오도록 하겠습니다 !안녕히계세요 !
조회수 1838

스켈티인터뷰 / 스켈터랩스의 잡학다이너마이트 변규홍 님을 만나보세요:)

Editor. 스켈터랩스에서는 배경이 모두 다른 다양한 멤버들이 함께 모여 최고의 머신 인텔리전스 개발을 향해 힘껏 나아가고 있습니다. 스켈터랩스의 식구들, Skeltie를 소개하는 시간을 통해 우리의 일상과 혁신을 만들어가는 과정을 들어보세요! 스켈터랩스의 잡학다이너마이트 변규홍 님을 만나보세요:)PART1. About Skelter Labs사진1. 스켈터랩스의 소프트웨어 엔지니어, 변규홍 님Q. 간단한 자기소개를 부탁한다.A. 이름은 변규홍. 스켈터랩스에서 소프트웨어 엔지니어로 일하며, 컴퓨터에게 열심히 한국어를 가르치고 함께 배우고 있다. 대충 20년 전부터 컴퓨터 공부를 시작해서 컴퓨터 관련된 일이라면 사족을 못쓰는 덕후이기도 하다.Q. 현재 스켈터랩스에서 어떤 업무를 맡고있는가.A. 스켈터랩스의 인공지능 대화 엔진 개발 팀인 헤르메스(Hermes)에서 흔히 ‘챗봇’이라 부르는 인공지능 대화 엔진을 만들고 있다. 우리가 만드는 인공지능 대화 엔진은 ‘챗봇을 만들고자 하는 사람들이 누구나 쉽게 챗봇을 만들도록 돕는 편리한 사용'을 목표로 한다. 때문에 비개발자도 이해하기 쉽도록 효율적이고 간편한 UI와 구조로 개발하고 있다. 거기서 나는 어떻게 하면 컴퓨터가 사람이 하는 말을 더 잘 알아듣고 잘 대답할 수 있는지 연구하고 있다. 어떤 처리를 해야하는지, 언어의 어떤 패턴을 인식하는지 등 ‘자연어 처리(Natural Language Processing,NLP)’ 혹은 자연언어처리라고 불리는 기술 전반에 대한 연구를 진행하고 있다.Q. 자연어 처리라는 부분이 생소하다. 언어의 분석이나 처리에 대한 얘기를 더 해줄 수 있나.A. 챗봇 위주로 설명해 보자. 우리가 한국어 문장을 컴퓨터나 스마트폰에 입력할 때, 특히 채팅할 때는 문장의 변화가 심한 편이다. 띄어쓰기를 실수할 수도 있고 급식체같은 축약어를 사용하기도 한다. 같은 의도를 담은 문장이 아주 다르게 표현되는가 하면, 비슷한 문장이 어순이나 표현 한 두 가지만 바뀌어도 전혀 다른 뜻이 되기도 한다. 이러한 인간의 언어를 컴퓨터가 잘 알아들을 수 있도록 분석하고 처리하는 것이다. 입력된 문장에서 어떤 부분이 명사고 어떤 부분이 동사인지를 찾거나, 문장 속에서 어떤 형태소에 집중해야 하는지 분석한다. 그리고 은행 계좌나 전화번호처럼 규칙에 맞는 숫자가 다양하게 입력될 수 있는 경우를 찾아내기도 한다. 이런 과정을 거쳐 사람이 어떤 의도를 갖고 입력한 문장인지, 어떤 정보가 담겨있는지 식별해낼 수 있다.Q. 들어보니 기술에 대한 지식뿐만 아니라 언어학에 대한 조예가 필요한 분야로 보인다.A. 맞다. 이 분야를 전산학(컴퓨터공학)에서는 ‘자연언어처리’라고 하고 언어학에서는 ‘전산언어학(Computational Linguistics)’ 혹은 ‘계산언어학’이라고 한다. 학제 간 학문으로서의 성격이 강한 분야다. 초창기에는 언어학자들이 찾아낸 인간 언어의 구조, 규칙을 컴퓨터공학자 / 전산학자들이 프로그램으로 구현하는 연구가 많았다. 그러다가 애초의 예상보다 인간의 언어 구조가 훨씬 더 복잡하다는 것을 인식한 이후부터는 인간의 언어에서 규칙성을 찾는 과정도 통계적 방법 등을 통해 컴퓨터의 힘을 빌리게 되었다. 최근에는 요즘 화두인 머신러닝 기법을 적극적으로 적용하면서 연구 트렌드가 조금씩 바뀌고 있다. 다양한 규칙에 따라 문장을 분석하기보다, 빅데이터로 정리된 방대한 언어생활 자료를 컴퓨터 스스로 학습하여 문장 속에서 필요한 정보를 찾아내는 식으로의 전환이랄까. 하지만 여전히 좀 더 좋은 결과물을 내려면 언어학에 대한 지식과 규칙성에서 찾아낸 정보들이 필요한 것도 사실이다. 그래서 스켈터랩스에서는 규칙 기반 기법들과 머신러닝 기법 모두를 하이브리드 형태로 결합하여 대화 엔진을 개발하고 있다.Q. 아무리 다양한 형태로 기법을 결합하여 사용하더라도, 엔지니어가 언어학에 대해 연구하기는 쉽지 않아 보인다. 언어학을 별도로 공부하거나 혹은 언어학에 대한 관심을 이전부터 가지고 있었는지.A. 언어학이라기보다는 사실 나는 대학교에서 문학 동아리 활동을 오랫동안 했다. 자연스럽게 다양한 활동을 통해서 문학에 대한 얘기를 하다 보니 언어에 대한 관심도 꽤 높았던 것 같다. 무엇보다 구글코리아의 번역기 개발팀에서 인턴을 하며, 컴퓨터로 인간의 언어를 다루는 것이 굉장히 흥미롭다고 생각했고 꾸준히 관심을 이어왔다. Q. 구글 코리아 인턴 경험이 규홍님에게 여러모로 지대한 영향을 끼친 것으로 알고 있다. 그 얘기를 듣고 싶다.A. 대학에 처음 입학했을 때, 사실 실망감이 더 컸다. 합리적인 의사소통은 막혀있었고, 당시 학교의 학사제도 개편으로 인해 여러모로 시끄러운 상황이었다. 그러던 차에 마침 학교에 구글코리아에서 캠퍼스 리쿠르팅을 왔는데, 선배 중 한 명이 ‘왜 구글은 한국에서 인턴을 채용하지 않습니까' 라고 꽤나 당돌한 질문을 던졌다. 그렇게 구글 코리아 인턴 채용이 열려 면접 기회를 얻게 되었다. 당시 내 이력서에는 대학교 입학 후의 경력이라고는 연극동아리 공연 이력이 전부였기 때문에 일종의 두려움도 컸다. 하지만 일본어로 된 만화책을 컴퓨터에 넣으면 한국어로 번역된 만화책이 튀어나오게 하고, 컴파일(COMPILE) 사의 게임 중 미처 한국어로 번역되지 못한 게임들을 컴퓨터가 알아서 번역해 즐길 수 있게 하는, 그런 컴퓨터 프로그램을 직접 만들고 싶다는 꿈이 더 컸다. 마침 나의 면접관들도 구글 코리아 번역기 개발팀 분들이었다. 그렇게 구글 코리아 번역기 개발팀 인턴으로 입사하게 되었고, 그때의 경험이 나의 꿈의 실현 가능성에 대한 일종의 확신을 주었다.Q. 스켈터랩스에는 어떻게 입사하게 되었나A. 인턴 할 당시의 구글 코리아 사장이 지금 스켈터랩스 창업자, 조원규 대표님이다. 그리고 구글 코리아 면접관이었던 분이 우리 팀의 테크 리더(Tech Leader)를 맡고 있는 이충식 님이기도 하다. 작년 충식 님으로부터 어려운 문제를 풀어야 하는데 같이 한번 풀어보자는 연락을 받았다. 그 문제가 너무 어려울 것 같아서 답장을 망설이고 있었다. 그러다 이전 직장에 대한 염증과 새로운 일에 대한 호기심 등의 마음으로 충식님을 다시 만나 뵈니, 스켈터랩스에서 내가 어렸을 적 꿈꾸던 챗봇을 만들고 계셨다.Q.  스켈터랩스에서의 업무는 이전에 일했던 혹은 알고 있는 다른 개발자의 업무랑 어떻게 다른가. A. 사실 인공지능을 기반으로 한 스타트업에는 뛰어난 사람들이 많은 것 같다. 그러나 스켈터랩스가 다른 회사와 다른 점은 ‘내 동료가 누구인가'에 대한 인식의 범위가 조금 더 넓다는 점이다. 가령 디자이너는 디자이너끼리, 기획자들을 기획자끼리만 협력하고 부서에 따른 책임이나 업무 범위에 대해서 선을 긋는 문화가 흔히 있지 않나. 어떤 직장들은 수직적인 위계 구조를 강요하고 모든 걸 서류로 보고하게 만들기 때문에 일의 효율이 떨어지기도 한다. 그러나 스켈터랩스는 팀 간에, 직무 간에 서로의 업무 영역을 자로 재듯 규정하지 않고 넘나들며, 좀 더 활발한 소통을 추구한다. 덕분에 ‘하나의 공동체'라는 인식을 자연스럽게 가질 수 있다. 서로와 함께 일한다는 것에 대해 우리 스스로 가지는 자긍심도 대단하다. 사내에는 지인을 신규 입사자로 추천하는 채용 제도가 있는데, 그간 내가 일해왔던 회사 중 우리 회사만큼 열심히 지인들에게 추천하는 회사도 없었다. 사실 내가 일하는 회사가 별로면 친구에게 추천도 못 하지 않겠나. 그만큼 서로 만족하고, 자부심을 가지고 일한다는 것을 방증하는 면모인 것 같다.또한 스켈터랩스는 불필요한 서류 업무를 배제하는 대신, 아주 엄격한 코드 리뷰 시스템을 가지고 있다. 내가 과거에 근무했던 회사들은 많은 경우 상대적으로 지금 당장 작동하는 코드를 만들어 내는 것에 집중했다. 물론 이러한 방식이 때로는 실용적이다. 그러나 기능이 잘 작동되는지만 살피다 보니, 숨겨진 버그(Software Bug)가 남겨지고 이것이 뒤늦게 발견되어 더 큰 문제를 일으키기도 했다. 때로는 버그의 존재를 코드 작성자만이 알고 있기도 했다. 이렇듯 단기간 눈앞의 기능에만 집중하다가 코드의 품질이 저해되는 방식으로 개발이 진행되어 언젠가는 다시 수정해야 하는 일거리가 남겨지는 것을 ‘기술 부채(Technical Debt)’라고 부른다. 스켈터랩스의 코드 리뷰 문화는 사소한 영역까지 기술 부채를 남기지 않는다. 궁극적으로는 짧은 기간 완성도 높은 프로그램을 만들 수 있게 해주는 문화다. 엄격한 코드 리뷰가 가능한 것은 스켈터랩스의 개발자 역량이 높기 때문이기도 하다. 개발자들이 모두 기술에 대한 근본적인 이해와 최신 기술에 대한 섭렵을 두루 갖추었기에 타인이 작성한 코드도 바로 이해할 수 있다. 수준 높은 동료와 함께 일하며 피드백 받고 성장할 수 있다는 것은 회사의 굉장한 강점이라고 생각한다.사진2. 규홍 님과 다른 팀원 간의 코드 리뷰 모습.Q. 코드 리뷰 문화가 유익하기도 하지만, 일종의 압박감도 있을 것 같다. A. 압박감으로 여겨본 적은 없다. 한국 사회에서 개발자의 커리어에 대한 얘기를 나누다 보면 자연스럽게 ‘회사 일을 하다 보니 공부할 시간이 없어서 최신 기술을 알지 못해 뒤처진다.'라는 볼멘소리가 나온다. 그러나 스켈터랩스에서는 개발자 모두가 엄격한 코드리뷰를 거치는 과정에서 자연스럽게 더 나은 성능의 코드, 동료가 더 잘 이해할 수 있는 코드, 예상치 못한 예외 상황을 고려하는 코드를 작성하는 법을 실시간으로 배우게 되고, 때로는 그 과정에서 자연스럽게 코드 리뷰자가 제안하는 최신 기술에 대해 공부하고 습득하며 실력을 늘려나간다. 덕분에 코드 리뷰를 마치고 나면, 다음에 어떻게 해야 개선된 코드를 짤 수 있을지에 더 집중할 수 있고 실제로도 더 나은 코드를 작성할 수 있게 된다.물론 이런 문화가 신규 입사자로서는 다소 답답할 수 있을 것 같다. 나 또한 초반에는 ‘굳이 이런 디테일까지 다 잡아가며 이렇게 리뷰를 남겨야 할까'라는 생각을 해본 적도 있다. 그러나 스켈터랩스와 함께하는 시간이 점점 길어질수록, 꼼꼼한 리뷰로 기술 부채를 최소화하는 것이 팀 전체에도, 나의 성장에도 도움이 된다는 걸 느낀다.Q. 아무리 뛰어난 개발자가 있더라도 코드를 작성하는 사람은 한 명인데, 이를 함께 리뷰하다보면 작성된 코드를 이해하지 못하는 경우가 발생하지는 않나.A. 물론 그럴 수 있다. 때문에 스켈터랩스에서는 코드의 공동 소유, 공동 이해 개념을 깊이 이해하고, 잘 지킬 수 있게 만든다. 나만 이해할 수 있는 코드를 작성하면 장기적으로 다른 개발자들의 수정과 응용이 어려워진다. 그래서 스켈터랩스에서는 각 프로그래밍 언어별로 코딩 스타일 가이드를 준수할 것을 권장하고, 코드 리뷰 이전에도 가이드 준수 여부를 점검하는 도구를 활용하고 있다.Q. 스켈터랩스를 자랑한다면.A. 스켈터랩스는 아직 성장 중인, 그래서 ‘함께 만들어 갈 여지가 많은 회사'다. 나는 개인적으로 대기업부터 창업 초창기 단계의 스타트업까지 다양한 회사를 경험했는데, 이러한 과정에서 구성원 한 명 한 명이 회사의 문화와 기술적 원칙을 만들어가는데 얼마나 큰 영향을 주는지를 느꼈다. 스켈터랩스는 다양한 배경을 가진 개발자와 서로 영감을 주고받으며 함께 성장해가는 곳이다. 개발자 직군의 동료들과 비개발자 직군의 동료들이 끊임없이 소통하며 시행착오와 함께 점점 더 나은 기업문화를 만들어가고 있다. 그리고 실제로 이런 문화가 완성도 높은 프로그램을 만드는 데에 긍정적인 기여를 하고 있고, 현재는 성공 경험을 조금씩 안겨주고 있는 단계다. 역량 있는 인재들과 최신의 기술을 활용하여 새로운 결과물을 창출하는 것에 관심 있는 이들이라면 입사를 추천하고 싶다.#스켈터랩스 #사무실풍경 #업무환경 #사내복지 #기업문화 #개발팀 #팀원인터뷰 #팀원소개 #팀원자랑
조회수 2475

A/B Testing 도구인 Optimizely 사용법

웹 서비스를 운영하다 보면 준비하는 과정에서 정말 많은 고민이 오갑니다. 컨텐츠의 배치, 헤드 카피, 인터랙티브.. 하지만 어떤 요소가 조금 더 사용자의 반응을 이끌어내는지 정확히 알 수 없습니다. 이런 부분들을 ‘직감’이나 ‘경험’으로 막연하게 자기 자신과 타인에게 주장하고 있지는 않나요?그렇다면 두 가지 혹은 그 이상의 시안들을 직접 시험대에 올려 각각 더 좋은 것을 선택하는 것은 어떨까요?A/B 테스팅에 관련한 유명한 일화가 하나 있습니다. 1497년, Vasco da gama는 최초로 유럽에서 아프리카 남부를 거쳐 인도까지 항해한 인물입니다. 그가 인도를 발견하고 귀항했을 때 160명의 원정대원 중 100명이 괴혈병으로 사망하는 사건이 있었습니다. 그만큼 괴혈병은 항해하는 선원들의 공포 대상이었죠. 그로부터 약 300년 뒤, 영국의 의사인 James Lind는 괴혈병의 치료법을 알기 위해 실험군을 나누어 각각 다른 음식으로 실험을 진행했습니다.실험은 다음과 같습니다. 괴혈병에 걸린 12명의 선원을 선정하여 그 중 10명에게는 보통 음식을 주고, 두 사람에게는 매일 라임 과즙을 마시게 하였습니다. 6일 후 라임 과즙을 마신 선원 두 명만이 괴혈병에 완벽히 치료된 모습을 보였습니다. James Lind가 실험하기 전에는 단순히 ‘감귤류 과일이 괴혈병에 좋다.’, ‘괴혈병으로 죽어가는 찰나에 잡초를 먹고 다시 살아났다.’ 라는 이야기만이 난무했었고 직접적인 치료법을 제시한 사람은 James Lind가 최초였습니다. 비타민C가 발견된 것이 1928년임을 고려하면, 이 당시에는 비타민C 이라는 개념이 없었기 때문에 James Lind의 실험은 후에 많은 선원의 목숨을 괴혈병으로부터 지켜주는 사례가 됩니다.괴혈병이 해적보다 더 무서웠던 대항해시대에 보통 음식(A)과 라임(B)을 이용해 선원들을 모두 구했던 영국 해군의 현명한 대처법에서 우리의 웹 서비스를 더욱 더 활성화 시키는 지혜를 얻어야 합니다.Optimizely?Optimizely는 웹서비스를 운영하면서 A/B Testing 수행을 원하시는 분들에게 적합한 서비스입니다. Optimizely를 사용하기 전에 A/B 테스팅에 대한 정보가 필요하다면 A/B 테스팅에 관련한 JC Kim님의 글( A/B Testing에 대한 기초적인 정보들 )을 먼저 읽어보시는 것을 추천합니다.Optimizely는 단순히 A/B 테스트의 진행과 그 통계 결과만 제공하는 것이 아니라, 테스트를 진행하는 동안의 모든 준비 과정에서 사용자들에게 도움을 주고 있습니다. 오늘은 그 Optimizely의 핵심 기능 및 활용법에 대하여 알아보겠습니다. Optimizely는 유료 서비스이지만 30일 동안의 Free Trial을 제공해주므로 그 기간 동안 충분히 이 서비스의 모든 것을 체험할 수 있습니다.Optimizely는 세계적인 대형 기업들이 이용하는 서비스로, 이들은 이미 Optimizely를 통해 각각 컨텐츠들에 대한 사이트 접속자들의 반응을 체크하고 있습니다. 대표적인 회사로 Starbucks, Salesforce, MTV, The Walt Disney Company, ABC 등이 있습니다.그렇다면 왜 많은 기업들이 A/B Testing에 집중하고 있고, Optimizely를 이용하는 걸까요?더 정확한 데이터를 추출하려는 노력.메일링 리스트를 수집하는 등의 폼 입력/전송을 하는 비율을 구하는 경우, 혹은 메인 페이지에서 다른 세부페이지로 이동하는 이용자 비율을 나타내기 위해 목표(Goal)을 나타냅니다. 목표한 골에 A 버전(기존안/Original) 이용자가 더 많이 들어갔는지, B 버전(새로 작성한 안/Variation)이 효과적이었는지를 테스트 할 수 있습니다.이처럼 Goal에 도달하는 행위를 ‘Conversion’이라 표현합니다. 방문자 수 대비 Conversions 수치를 비교한 Conversion rate를 비교하면 A/B 시안 중에 더 효과적인 결과를 수치와 그래프, 특히 “기준을 이길 수 있는 확률”(Chance to beat baseline)을 철저하게 계산해 결과를 명확하게 진단할 수 있습니다. 말 그대로 Goal과 Conversion Rate 수치로 사용자가 승자를 판단하는 것이 아니라, 수치공식을 통해 B 버전이 기존안(A버전)을 확실하게 이겼는지 아닌지를 파악해줍니다.더 자세히 알고싶은 부분은 해당 값을 구하는 통계공식이 있는 링크를 참고해주세요.정말 쉬운 실험요소 변경.Optimizely를 이용하면 여러분이 복잡한 CSS나 Javascript 기술이 없어도 쉽게 A/B 테스팅을 진행할 수 있습니다. Optimizely에서는 실험군의 요소를 마우스 클릭 몇 번으로 손쉽게 바꿀 수 있습니다. 가령 B 버전에 A 버전과 다른 문서 배치를 하거나 배경화면, 이미지, 폰트, 버튼 속의 문구 등도 별도의 코딩 절차 없이 Optimizely 실험페이지 내에서 변경할 수 있다는 말이죠. 또한 실시간으로 CSS를 변경하여 적용하거나 Javascript도 적용할 수 있습니다. 마치 ‘나모 웹 에디터’ 나 ‘드림위버’ 같은 인터페이스로 파워포인트 내의 요소를 다루듯 쉽게 바꿀 수 있습니다.위치와 크기를 Drag & Drop 으로 쉽게 움직이게 할 수 있습니다.웹사이트에 적용된 이미지 또한 로컬에 있는 파일 혹은 웹에 있는 이미지로 대체할 수 있습니다.텍스트도 곧바로 변경할 수 있고 HTML을 직접 대체해서 끼워 넣을 수 있습니다.참 쉽죠?간단한 설치위처럼 변경했던 시험요소들을 저장하려면 복잡하고 긴 코드를 다시 원래 파일에 붙여 넣어야 할까요? 그렇지 않습니다. Optimizely는 변경한 컨텐츠 정보를 간단한 자바스크립트 코드로 ‘Optimize’ 해 주기 때문에 단 몇줄만 추가해주면 원하는 결과가 나옵니다.확장성유명한 아티스트 두 명이 콜라보레이션 하는 상상을 해보죠. 각자의 개성을 살려 새로운 결과물들을 창조해내지요. 물론 그들의 궁합이 잘 맞아야 한다는 전제가 있습니다. 하지만 다행히도 Optimizely와 연동되는 서비스들은 궁합이 잘 맞는 편입니다. Optimizely는 A/B 테스팅에 관한 자료에 집중하고 있기 때문에, 조금 더 디테일한 자료(Analytics, Heatmap)는 욕심내지 않고 기타 많은 서비스와 연동합니다.Optimizely와 연동되는 서비스는 다음과 같습니다.AnalyticsGoogle AnalyticsKISSmetricsMixpanelOmniture SiteCatalystHeatmapClickTaleCrazyegg위 서비스 중 하나라도 이용 중이시라면, Optimizely와 어떤 부분이 연동이 되는 지 살펴보세요.마치며페이지 두 개를 접속자들에게 무작위로 나누어 배포해서 반응을 트래킹하는 기술은 흔할지도 모릅니다. 하지만 Optimizely를, 그리고 연동되는 다양한 서비스들을 이용하면 조금 더 세밀하고 확실한 데이터를 얻을 수 있습니다. 정말로 나의 웹 서비스에 필요한 것이 ‘잡초’인지 ‘레몬’인지 알고 싶다면 지금 당장 시작해보세요.#스포카 #기획 #A/B테스트 #A/BTest #꿀팁 #인사이트 #조언
조회수 370

금요일의 해커톤

안녕하세요. 엘리스입니다!지난 8월 말, 엘리스의 야심 찬 첫 해커톤이 있었습니다. 이번 해커톤은 매주 금요일 찾아가는 문제 ‘금요일에 코딩하는 토끼’에 대한 수강생 여러분의 성원에 힘입어 개최되었습니다.주제는 ‘코딩 문제의 A에서부터 Z까지 직접 설계하고 제작한다.’ 해커톤에서는 아이데이션 단계에서부터 문제 기획과 코딩, 채점을 위한 그레이더 제작까지 코딩 문제의 모든 것을 다루었습니다. 물론 실제 문제 동작을 위해 실행과 채점을 반복하며 디버깅하여 완벽한 실습 문제를 만드는 것 역시 이번 경연의 핵심이었는데요.이를 통해 모든 참가자 여러분들은 일일 엘리스 아카데미 실습 문제의 출제자가 되었습니다. 어떤 과정을 거친 어떤 결과물들이 있었을까요?해커톤 현장 스케치해커톤의 소개를 경청 중이신 참가자 여러분.지금까지 프로그래밍 문제를 많이 풀어보셨을 여러분이, 반대로 문제의 출제자가 되어 문제를 구성하는 관점에서 생각해보고 채점 방식까지 고민해본다면 프로그래밍에 대한 이해도를 더 높일 수 있을 것이라는 기대로 이와 같은 해커톤이 기획되었습니다. 교육자로서 엘리스 플랫폼의 다양한 기능을 직접 이용해볼 수 있는 것은 일석이조의 이점이었죠!경직된 분위기를 깨고 뇌를 말랑말랑하게 만들기 위한 아이스 브레이킹 시간은 팀 대항전으로 진행되었습니다.간단한 코딩 문제를 가장 먼저 맞히는 팀이 점수를 얻는 스피드 코딩 게임을 통해서 순발력을 높이고, 잠시 후 해커톤에서 본격적으로 사용하게 될 엘리스 플랫폼과 친해질 시간도 가질 수 있었습니다.'그림 그리기 게임'에서는 각 팀 디자이너들의 창의력이 폭발! 개발과 관련된 온갖 단어들을 1초 만에 그림으로 표현해야 하는 설명자의 재치와 크로키 실력(?)이 강조되었던 순간이었는데요. 승자는 '오즈'팀! 모두 오즈 팀 디자이너의 그림 실력에 입을 다물지 못했다고 합니다.게임을 하는 동안 어느새 어색했던 처음의 분위기가 파괴되었습니다. ^^ 1시간 동안 문제의 초안을 기획하는 시간이 주어지고, 이어 각 팀의 아이디어 발표 시간이 있었습니다.해커톤의 룰은 아래와 같았는데요.실행 가능한 프로그래밍 문제 1개 출제.동화를 모티브로 한 문제 스토리를 기획.채점 가능한 그레이더 제작.모든 팀들이 알고리즘 문제를 기획해주셨습니다. 동화의 서사구조를 논리적으로 단순화하거나 변형하여 알고리즘 문제에 녹여낸 과정이 인상적이었습니다.아이데이션 단계에서는 문제의 완성된 모습이 전부 그려지지는 않았지만 많은 고민의 흔적과 창의적인 생각들을 엿볼 수 있어 이로부터 탄생될 프로그래밍 실습을 기대할 수 있었습니다.밤샘 코딩 중...우승 문제 소개기획하고 코딩하고 디자인을 하다 보니(!) 어느새 날이 밝아왔습니다. 이제 남은 것은 팀별 결과물 발표와 우승팀 시상 뿐!'금코토'를 패러디하여 팀 명을 지어주신 어린 왕자 팀. /* prince */로고까지 깨알 섬세!모든 팀이 각기 다방면에서 강점을 부각하는 문제를 출제해주셨기 때문에 우열을 가리기 어려웠는데요. ‘금코토’배 해커톤이라는 이름에 걸맞게 금코토 과목의 취지와 가장 부합하는 문제를 출제한 팀에게 가산점을 주어 우승팀을 선발하였습니다. 그 결과 대망의 우승 문제는...거울나라의 앨리스팀의 ‘케이크와 병’ 단순한 명료한 문제 구성과 초등학생도 이해할 수 있는 쉽고 친절한 프레젠테이션으로 인상 깊었던 문제였습니다. 완성도, 문제 활용도 면에서 금코토 문제를 능가하며 단순하면서도 재미있게 풀 수 있는 문제라는 심사위원들의 평가가 있었습니다. 우승팀인 거울나라의 앨리스 팀 전원에게는 엘리스 굿즈를 선물로 보내드립니다. :)이밖에 겁쟁이 사자를 동물의 왕으로 만들기 위해 용기의 성을 짓는 알고리즘 문제를 낸 오즈의 마법사 팀의 문제는 스토리에 착안하여 자칫 복잡해질 수 있는 내용을 세세한 문제 설계로 극복하려 했던 점이 우수하게 평가받았습니다. 술주정뱅이 별에 사는 만취한 아저씨를 옮기는 알고리즘 문제를 낸 ‘목요일에 코딩하는 어린 왕자’ 팀은 참신성과 '넓이 우선 탐색', '깊이 우선 탐색', '다익스트라 알고리즘'을 모두 공부해볼 수 있도록 한 문제 구성 면에서 높은 평을 받았습니다.큰 상품도 내걸지 않았던 첫 해커톤이었는데도 참가자분들 모두가 열과 성을 다해 밤을 새워 문제를 만들어 주셨습니다. 모든 참가자 여러분들께 감사의 말씀 전합니다. :) 해커톤 이후 진행한 설문 조사에서 100%의 확률로 모든 분들이 다음 해커톤에 재참가 의사를 밝히셨는데요. 모두 첫 해커톤을 즐겨주셨던 것 같네요. 엘리스에서는 앞으로도 해커톤을 지속적으로 개최할 예정입니다. 코끝 시려질 때쯤 더욱 풍성하고 유익한 기획의 해커톤으로 찾아뵐 예정이니 많은 관심 가져주세요!*금코토 — ‘금요일에 코딩하는 토끼’라는 엘리스 아카데미 과목의 줄임말. 매주 금요일 저녁때쯤 업로드되는 문제로, 특정 루트로 토끼가 움직이도록 코딩해야 하는 콘셉트와 귀여운 휴보 래빗이 특징입니다. >>문제 풀어보기(무료)
조회수 2322

JPassKit 적용중 오류 발생

서비스에서 ios wallet을 제공하려고 하니, 예전과는 다르게 서버단 통신을 통해 인증받는 절차가 추가로 생겼단다. 다만, 애플에서 제공하는 서버쪽 데모를 보면 ruby로 만들어져있다. 왜 하필 루비인가? swift도 아니고… 여튼 그걸 java로 porting하려니 이미 만들어 놓은 것이 있을 것 같아서 구글링했더니, jpasskit이 그나마 제일 fork도 많이 되고, 사용도 하는 것 같아서 lib dependency를 추가했다.<!-- PassKit --> de.brendamour jpasskit 0.0.8 개발을 완료했는데, Test Case에서 오류가 나타나기 시작했다.com.fasterxml.jackson.databind.JsonMappingException: Can not resolve PropertyFilter with id 'validateFilter'; no FilterProvider configured난 jackson filter를 바꾼 적이 없는데 왜 에러가 나는 것인가? 처음에는 jpasskit issue를 보고 jackson lib의 version 호환성 문제가 있는 것 같아서 아래처럼 dependency처리를 했다.<!-- PassKit --> de.brendamour jpasskit 0.0.8 com.fasterxml.jackson.core jackson-core 위의 오류가 해결된 것처럼 보여서 SNAPSHOT version을 만들었는데, 됐다안됐다한다. 예를 들어서 local profile에서 하면 되고, develop profile에서 하면 오류나고… 혹은 전체 junit을 모두 돌리면 에러가 발생하는데, 에러나는 class만 테스트 돌리면 성공하고 ㅠ.ㅠ그래서 해당 소스를 파보다가 문제점을 발견하였다.우리의 프로젝트에서는 pojo type인 jackson object mapper를 bean으로 등록해서 사용하고 있다. bean으로 등록하면 몇 가지 장점이 있는데, 자세한 설명은 이 글의 범위를 벗어나기 때문에 생략한다.@Primary @Bean public ObjectMapper objectMapper() { ObjectMapper objectMapper = new CustomObjectMapper(); initializeObjectMapper(objectMapper); return objectMapper; }그래서 Object Mapper는 singleton으로 재사용하고 있는데, jpasskit은 Object Mapper를 변조시키고 있다.public final class PKFileBasedSigningUtil extends PKAbstractSIgningUtil { private static final String FILE_SEPARATOR_UNIX = "/"; private static final String MANIFEST_JSON_FILE_NAME = "manifest.json"; private static final String PASS_JSON_FILE_NAME = "pass.json"; private ObjectWriter objectWriter; @Inject public PKFileBasedSigningUtil(ObjectMapper objectMapper) { this.addBCProvider(); this.objectWriter = this.configureObjectMapper(objectMapper); } ...protected ObjectWriter configureObjectMapper(ObjectMapper jsonObjectMapper) { jsonObjectMapper.configure(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS, false); jsonObjectMapper.setDateFormat(new ISO8601DateFormat()); SimpleFilterProvider filters = new SimpleFilterProvider(); filters.addFilter("validateFilter", SimpleBeanPropertyFilter.serializeAllExcept(new String[]{"valid", "validationErrors"})); filters.addFilter("pkPassFilter", SimpleBeanPropertyFilter.serializeAllExcept(new String[]{"valid", "validationErrors", "foregroundColorAsObject", "backgroundColorAsObject", "labelColorAsObject", "passThatWasSet"})); filters.addFilter("barcodeFilter", SimpleBeanPropertyFilter.serializeAllExcept(new String[]{"valid", "validationErrors", "messageEncodingAsString"})); filters.addFilter("charsetFilter", SimpleBeanPropertyFilter.filterOutAllExcept(new String[]{"name"})); jsonObjectMapper.setSerializationInclusion(Include.NON_NULL); jsonObjectMapper.addMixIn(Object.class, PKAbstractSIgningUtil.ValidateFilterMixIn.class); jsonObjectMapper.addMixIn(PKPass.class, PKAbstractSIgningUtil.PkPassFilterMixIn.class); jsonObjectMapper.addMixIn(PKBarcode.class, PKAbstractSIgningUtil.BarcodeFilterMixIn.class); jsonObjectMapper.addMixIn(Charset.class, PKAbstractSIgningUtil.CharsetFilterMixIn.class); return jsonObjectMapper.writer(filters); }확실해졌다. 위에서 상황마다 오류가 간헐적으로 발생하는 이유는 이와 같은 것이었다. jpasskit이 실행되기 전까지는 정상적으로 동작한다. 그러다가 jpasskit을 한 번 거치면 이미 등록되어 있는 object mapper bean의 설정이 바뀌게 된다. 즉, 우리가 설정한 custom configuration들이 무시되어버려서, 전혀 엉뚱한 곳에서 에러를 일으킨다.jpasskit에서 사용하는 object mapper는 특별한 설정이 필요한 것은 아니라, bean을 사용하지 않고 기본 object mapper를 생성해서 넘기는 식으로 수정하였다.private static final ObjectMapper OBJECT_MAPPER = new ObjectMapper(); ... private byte[] createPKPassBinaries(PKPass pass, PKSigningInformation pkSigningInformation, InputStream thumbnail, InputStream thumbnail2x) throws Exception { return new PKFileBasedSigningUtil(OBJECT_MAPPER).createSignedAndZippedPkPassArchive(pass, createPKPassTemplate(thumbnail, thumbnail2x), pkSigningInformation); }All Clear.해당 내용은 jpasskit에 issue reporting하여 신규 release(0.0.9)가 예정중이다.#데일리 #데일리호텔 #기술스택 #스택도입 #후기 #일지 #JPasskit
조회수 2093

외부 서비스 이용을 장려해서 개발력을 아끼자.

2017년 목표 중 하나인 Product Management에 관한 weekly 포스팅의 네번째 포스팅입니다. 원래는 weekly 포스팅이었는데..어느덧 biweekly 포스팅이 되고 있습니다. 이번에는 제가 Product Manager로서 “팀 내부 직접 개발 vs 외부 서비스 이용”에 대해서 어떻게 생각하는지에 대해서 정리할까 합니다. 이번에도 confidential한 내용은 생략했습니다.이거 한 달이면 만들어요.제품 개발을 하다보면 Core feature는 아니지만 더 나은 사용자 경험을 위해 필요한 기능을 추가해야 하는 경우가 있습니다. 그리고 이 feature가 개발하기에 쉽지 않다고 예상되는 경우가 있습니다. 이런 상황이 오면 PM, 제품 담당자(혹은 기획자, 대표)은 내부에서 개발할지 아니면 외주를 줄 지, 아니면 외부 서비스를 이용할 지 등을 고민합니다. 그리고 판단을 돕기 위해 기획자/개발자가 모여서 이런 대화를 나눕니다.이거 다 만드는데 얼마나 걸릴 것 같아요?이거 한 달이면 만들어요.그렇습니다. 저 대화가 바로 나중에 개발자가 “내가 이걸 왜 하고 있죠?”라고 얘기하는 그 순간의 시초입니다.하지만 기간은 두 배가 걸린다.하지만 직접 개발에 들어가면 기간(UX, UI디자인 포함해서)은 점점 늘어집니다. 십중팔구 안 됩니다. 되는게 더 이상한 법이에요.헛된 꿈을 꾸었다기간이 두 배가 되는 이유는 딱 하나입니다.  우리에겐 그 분야의 전문성이 없기 때문입니다. 물론 그런 일을 한 경험이 있는 사람들은 좀 더 낫습니다. 하지만 이 사람이 파편적인 경험(혹은 기억)만 가진 경우에는 똑같습니다. 별 차이가 안 나요.-_-;일단 제품의 개발 범위 결정이 안 됩니다. 이게 가장 크리티컬한 이유입니다. 처음에는 앞단에 보이는 것만 생각하고 시작하면서 역기획으로 풀어냅니다. 하지만 기획 단계에서 고려해야 할 요소들은 점점 추가되고 이 중에서 뭘 버리고, 뭘 해야 하는지 정확한 판단이 안 됩니다. 그럴 수 있는 데이터도 적고요.  거기에 디테일하게 개발하는 과정에서 고려해야 할 요소들이 빠지는 경우도 비일비재 합니다. 추가로 각종 정책 결정 이슈도 존재합니다. 이런저런 일들이 계속 추가되고, 해보지 않은 일을 하면서 업무 효율도 떨어집니다. 그러면서 기간은 계속 늘어납니다.결국 사람은 지치고, 일은 계속 늘고, 시간을 쓰게 됩니다. 그리고 그 과정에서 진짜로 에너지를 써야 할 일에 집중을 못 하게 됩니다.그냥 외부 서비스 쓰자!푸른밤의 PM으로서 저 스스로 가지고 있는 원칙이 있습니다.(사실 이건 예전에 프라이베리 때도 지키려고 했던 노력입니다.)기회를 놓치지 않는다.팀의 시간을 헛되이 쓰지 않는다.사람들의 에너지가 낭비되게 하지 않는다.좋은 역량을 가진 사람들은 제품의 core feature에만 집중한다.기회, 시간, 사람, 돈 중에서 가장 가치 없는 것은 돈이다.위 5가지 원칙을 준수하고자 하면, 대부분의 경우 그냥 외부 서비스를 이용하게 됩니다. 예를 들어서 서버 쪽에서 약간 낭비되는 코드가 있더라도 어떤 순간에는 그냥 돈을 더 써서 서버를 늘리는 것을 선택합니다. 메일 서버를 직접 구축해서 각종 마케팅용 메일을 직접 하는 것도 좋지만 그냥 메일침프를 씁니다. 요근래 저와 대표가 함께 부산에 미팅을 다녀왔는데..이것도 비슷한 맥락입니다. 제품 내에 꽤 중요하지만 서비스의 Major급 feature라고 하긴 좀 애매한 기능을 붙여야 하는 상황이었습니다. 개발팀에서는 1개월 정도면 될 것 같다고 했지만 그것보다는 전문적으로 이 일만 하는 곳의 제품을 이용하는 것이 좋다고 판단해서 부산에서 관련 사업을 하는 팀을 찾아갔습니다.“어설프게 우리가 하는 것보다, 인생을 건 사람들의 제품을 쓰는 것이 훨씬 좋다.”는 생각을 가지고 있습니다. 특히 제가 관리하는 제품들도 이런 생각을 가진 사람들이 돈을 쓰기 때문에 운영될 수 있는 제품이라서 다른 사람들보다 거부감이 낮을 수도 있습니다.외부 서비스 선택의 기준추가로 외부 서비스를 선택할 때는 이런 기준을 가지고 판단합니다.우리가 원하는 것이 어느 수준 정도로 충족되는가: 이게 제일 중요합니다. 원하는 것이 안 채워지는데도 돈을 쓸 필요는 없습니다.ㅠ어느 정도 커스텀이 가능하고, API가 제공 범위는 어떻게 되는가: 기존 시스템과 붙이기 얼마나 편하고, 우리 개발팀이 에너지를 어느 정도로 써야 하는지를 판단하기 위해 필요합니다. 덕분에 요즘은 API 문서 읽는 것이 일입니다.-_-;;(마케터, 운영팀 등이 쓰는 경우)개발자/디자이너가 꼭 붙지 않아도 사용할 수 있는가: 전 푸른밤의 모든 사람들이 코딩을 기초적인 수준으로는 했으면 합니다만 (진짜 잘하면 SQL까지도.) 그렇지 못 한 경우가 더 많고 그 과정에 역시 에너지/기회/시간 낭비가 좀 있다고도 생각합니다. 그래서 위 조건도 꽤 중요하게 봅니다.우리가 지금 쓰고 있는 다른 외부 서비스들과 연동이 어느 정도 되는가? 직접 연동이 안 되더라도 다른 방식으로 연동할 수 있는가: 가장 중요합니다. 세상 제일 중요합니다. 저희 같이 외부 서비스 연동을 하나씩 하나씩 하다보면 어느 순간부터 매월 SaaS 툴에만 $1000 넘게 쓰게 됩니다.(정말이에요.) 일단 가장 중요한 데이터 분석 툴과 연동되는지를 봅니다. 그리고 각 부분에서 core한 툴과 연결되는지 봅니다. 예를 들어서 마케팅 오토메이션 단계에서는 유입 관련 데이터 분석 툴과 연결되는 것이 핵심입니다. 제품 관련해서 외부 서비스 쓸 때도 메인 분석툴인 GA와 어떻게 붙는지가 핵심입니다.유기적인 연결이런 복잡한 기준을 잡으면서 외부 서비스 선택을 합니다.우리가 새로 만들자.하지만 이런 힘든 과정 거쳐서 외부 서비스 선택해서 잘 사용하다가 다시 직접 개발하게 될 때도 있습니다. 커스텀의 한계가 오거나, 외부 서비스 회사가 망하거나(ㅠㅠ), 서비스의 오픈 API 범위나 정책이 바뀌거나, 의외로 이 feature의 중요도가 크거나 하면 이런 의사결정을 할 수 있지 않을까 싶습니다. 하지만 아직 제가 이런 경험을 한 적은 없어서..향후에 이런 일이 발생하면 꼭 공유하겠습니다.정리하며스타트업에서 가장 부족한 것이 뭐냐는 질문을 하면 대체로 돈과 사람이라고 답할 것 같은데요. 여기에 기회, 시간이라는 것도 변수로 추가하길 권합니다. 그러면 어떤 경우에도 내 사업의 core가 되는 일들, 내 사업의 core랑 직결되는 제품 관련 과업들, 디자인/개발 관련 과업들만 생각하게 되고 여기에만 집중하게 됩니다.물론 돈이 부족한 것도 알고 있습니다만..정말 인생을 걸고 하는 사업에서 가장 아쉬운 것은 기회와 시간이라고 생각해서 외부 서비스 주구장창 이용하는 PM 안창영이었습니다.푸른밤 안창영#푸른밤 #알밤 #개발 #운영 #개발자 #PM #업무프로세스 #인사이트 #일지 #경험공유

기업문화 엿볼 때, 더팀스

로그인

/