스토리 홈

인터뷰

피드

뉴스

조회수 924

DevOps 문화 안에서의 APM의 역할 [2] (DevOps+JENNIFER)

전편에서는 개발 프로세스 내에서 모니터링 단계의 문제점과 이를 해결하기 위한 방법으로 APM의 역할이 DevOps 진영에서는 매우 중요한 이슈가 되고 있다고 정리했었다. 또한 모니터링 프로세스의 세부 단계와 모니터링 기준 값 설정에 대한 내용을 다뤘는데, 이를 기반으로 제니퍼를 활용하여 모니터링하는 방법에 대해 알아보려고 한다.장애 발견 및 알림제니퍼에서 이벤트 발생 조건은 컴파일 에러나 응답 시간 초과, OOM과 같은 애플리케이션 에러 유형이나 액티브서비스 개수, 응답 시간, CPU 사용률, 힙 메모리 사용률 등 서비스나 시스템의 상태 값으로 설정될 수 있다. 그리고 이벤트 설정시 외부연동 활성화 기능을 사용할 수 있으며, SMTP(Simple Mail Transfer Protocol) 모듈을 기본으로 제공한다. 또한 고객이 직접 이벤트 모듈을 구현할 수 있도록 인터페이스와 유틸리티를 제공한다. 참고로 제니퍼를 사용하는 고객사 중에서 자체적으로 구축한 관제 시스템에 제니퍼 이벤트를 연동하여, 별도의 WAS 경고 시스템을 만든 사례도 있다.   서비스 부하량 제어 (운영)제니퍼는 PLC(Peak Load Control)라는 서비스 부하량을 제어할 수 있는 기능을 제공한다. 트랜잭션 유입 차단의 기준이 되는 최소/최대 액티브서비스 개수를 설정하고, 해당 임계치 값 초과시 사용자에게 가이드해줄 수 있는 메시지나  리다이렉트 페이지를 설정할 수 있다.   만약에 대상 애플리케이션(서버 또는 WAS)이 처리 중인 액티브서비스 개수가 설정한 임계치 값을 초과하면 들어오는 사용자 요청은 거절되며 액티브서비스 이퀄라이저 차트의 요청 효과가 반사되고, 색상 또한 붉은색 계통으로 변하게 된다.사용자의 요청(Request)이 거절되면 PLC 관리 화면에서 설정한 메시지가 보이거나 아래와 같은 화면으로 리다이렉트 되며, 모니터링 대상 애플리케이션의 액티브서비스가 임계치보다 낮아지면 원래의 화면으로 돌아올 수 있다.  장애 원인 분석 (개발)개별 트랜잭션에 대한 프로파일 데이터를 분석하기 위해서는 대상이 되는 패키지나 클래스를 알아야 하는데, 적용 범위에 따라 프로파일 데이터 크기가 매우 커질 수 있으므로 실제로 운영되는 서비스에는 큰 부담이 될 수 있다. 하지만 제니퍼의 자동 프로파일링과 스택트레이스 기능은 설정한 응답시간을 초과한 트랜잭션에만 적용되기 때문에 실제 운영 단계에서 사용하기에 적합하다. 프로파일이란 트랜잭션의 시작점이 되는 메소드의 호출 구조를 상세하게 분석하는 기능을 말하며, 스택트레이스는 앞에서 설정한 기준 값을 초과하는 순간에 호출된 메소드 구조에 대한 로그를 남기는 것을 말한다. 만약에 설정한 응답시간을 초과하여 의심이 될만한 트랜잭션을 분포도 차트에서 찾았다면, 트랜잭션 분석 화면을 통해 문제 시점의 스택트레이스 정보를 참고하거나 응답이 지연되는 프로파일 데이터를 구간 별로 검색하여 콜-트리를 통해 문제가 되는 메소드 위치를 정확히 알아낼 수 있다.소스코드가 배포되었다면 트랜잭션 분포도 차트에서 배포 시점에 세로 축이 하나 그려진다. 해당 축을 선택하면 새로 추가되거나 수정된 리소스 목록을 조회할 수 있으며, 리소스의 배포 전/후의 내용을 분석하는 코드리뷰 기능은 개발 환경에서 반영된 소스코드를 분석해야하는 번거로움을 덜어준다.배포 이후에 액티브서비스가 빠르게 처리되지 못하고, 트랜잭션 분포도 차트가 기존의 패턴과 다르게 형성이 된다면 새로 반영된 소스코드에 문제가 있을 가능성이 매우 높다.결론인류 사회에서 자신이 속해 있는 환경과 전혀 다른 이질적인 문화나 새로운 생활 양식을 접할 때 받는 충격과 공포를 문화 충격(Culture Shock)라고 하는데, 이는 IT 분야에서도 크게 다르지 않다. 사실 DevOps는 몇년 전부터 계속 주목받고 있으며, 많은 소프트웨어 개발 조직에서 시도하고 있는 개발 방법론이다. 하지만 새로운 문화에 대한 거부감으로 인해 제대로 적용되지 못하고 있는 것이 현실이다.DevOps가 추구하는 가치인 존중과 신뢰를 바탕으로 개발과 운영의 원활한 의사소통과 협업 관계 형성은 말처럼 쉽지 않다. 어떻게 보면 이상적일 수 밖에 없는 추상적인 개념이지만 본문에서 다뤘듯이 APM을 상호 간의 의사소통 도구로써 잘 활용한다면 이상이 아닌 보다 현실에 가까워질 수 있다고 필자는 확신한다. APM은 소프트웨어 제품과 서비스를 빠른 시간에 개발 및 배포하는 것을 목표로 하는 DevOps를 개발 문화로 성공적으로 정착시키는데 가장 중요한 역할을 하는 도구라고 생각한다.
조회수 3235

Attention is all you need paper 뽀개기

이번 포스팅에서는 포자랩스에서 핵심적으로 쓰고 있는 모델인 transformer의 논문을 요약하면서 추가적인 기법들도 설명드리겠습니다.Why?Long-term dependency problemsequence data를 처리하기 위해 이전까지 많이 쓰이던 model은 recurrent model이었습니다. recurrent model은 t번째에 대한 output을 만들기 위해, t번째 input과 t-1번째 hidden state를 이용했습니다. 이렇게 한다면 자연스럽게 문장의 순차적인 특성이 유지됩니다. 문장을 쓸 때 뒤의 단어부터 쓰지 않고 처음부터 차례차례 쓰는 것과 마찬가지인것입니다.하지만 recurrent model의 경우 많은 개선점이 있었음에도 long-term dependency에 취약하다는 단점이 있었습니다. 예를 들어, “저는 언어학을 좋아하고, 인공지능중에서도 딥러닝을 배우고 있고 자연어 처리에 관심이 많습니다.”라는 문장을 만드는 게 model의 task라고 해봅시다. 이때 ‘자연어’라는 단어를 만드는데 ‘언어학’이라는 단어는 중요한 단서입니다.그러나, 두 단어 사이의 거리가 가깝지 않으므로 model은 앞의 ‘언어학’이라는 단어를 이용해 자연어’라는 단어를 만들지 못하고, 언어학 보다 가까운 단어인 ‘딥러닝’을 보고 ‘이미지’를 만들 수도 있는 거죠. 이처럼, 어떤 정보와 다른 정보 사이의 거리가 멀 때 해당 정보를 이용하지 못하는 것이 long-term dependency problem입니다.recurrent model은 순차적인 특성이 유지되는 뛰어난 장점이 있었음에도, long-term dependency problem이라는 단점을 가지고 있었습니다.이와 달리 transformer는 recurrence를 사용하지 않고 대신 attention mechanism만을 사용해 input과 output의 dependency를 포착해냈습니다.Parallelizationrecurrent model은 학습 시, t번째 hidden state를 얻기 위해서 t-1번째 hidden state가 필요했습니다. 즉, 순서대로 계산될 필요가 있었습니다. 그래서 병렬 처리를 할 수 없었고 계산 속도가 느렸습니다.하지만 transformer에서는 학습 시 encoder에서는 각각의 position에 대해, 즉 각각의 단어에 대해 attention을 해주기만 하고, decoder에서는 masking 기법을 이용해 병렬 처리가 가능하게 됩니다. (masking이 어떤 것인지는 이후에 설명해 드리겠습니다)Model ArchitectureEncoder and Decoder structureencoder는 input sequence (x1,...,xn)<math>(x1,...,xn)</math>에 대해 다른 representation인 z=(z1,...,zn)<math>z=(z1,...,zn)</math>으로 바꿔줍니다.decoder는 z를 받아, output sequence (y1,...,yn)<math>(y1,...,yn)</math>를 하나씩 만들어냅니다.각각의 step에서 다음 symbol을 만들 때 이전에 만들어진 output(symbol)을 이용합니다. 예를 들어, “저는 사람입니다.”라는 문장에서 ‘사람입니다’를 만들 때, ‘저는’이라는 symbol을 이용하는 거죠. 이런 특성을 auto-regressive 하다고 합니다.Encoder and Decoder stacksEncoderN개의 동일한 layer로 구성돼 있습니다. input $x$가 첫 번째 layer에 들어가게 되고, layer(x)<math>layer(x)</math>가 다시 layer에 들어가는 식입니다.그리고 각각의 layer는 두 개의 sub-layer, multi-head self-attention mechanism과 position-wise fully connected feed-forward network를 가지고 있습니다.이때 두 개의 sub-layer에 residual connection을 이용합니다. residual connection은 input을 output으로 그대로 전달하는 것을 말합니다. 이때 sub-layer의 output dimension을 embedding dimension과 맞춰줍니다. x+Sublayer(x)<math>x+Sublayer(x)</math>를 하기 위해서, 즉 residual connection을 하기 위해서는 두 값의 차원을 맞춰줄 필요가 있습니다. 그 후에 layer normalization을 적용합니다.Decoder역시 N개의 동일한 layer로 이루어져 있습니다.encoder와 달리 encoder의 결과에 multi-head attention을 수행할 sub-layer를 추가합니다.마찬가지로 sub-layer에 residual connection을 사용한 뒤, layer normalization을 해줍니다.decoder에서는 encoder와 달리 순차적으로 결과를 만들어내야 하기 때문에, self-attention을 변형합니다. 바로 masking을 해주는 것이죠. masking을 통해, position i<math>i</math> 보다 이후에 있는 position에 attention을 주지 못하게 합니다. 즉, position i<math>i</math>에 대한 예측은 미리 알고 있는 output들에만 의존을 하는 것입니다.위의 예시를 보면, a를 예측할 때는 a이후에 있는 b,c에는 attention이 주어지지 않는 것입니다. 그리고 b를 예측할 때는 b이전에 있는 a만 attention이 주어질 수 있고 이후에 있는 c는 attention이 주어지지 않는 것이죠.Embeddings and Softmaxembedding 값을 고정시키지 않고, 학습을 하면서 embedding값이 변경되는 learned embedding을 사용했습니다. 이때 input과 output은 같은 embedding layer를 사용합니다.또한 decoder output을 다음 token의 확률로 바꾸기 위해 learned linear transformation과 softmax function을 사용했습니다. learned linear transformation을 사용했다는 것은 decoder output에 weight matrix W<math>W</math>를 곱해주는데, 이때 W<math>W</math>가 학습된다는 것입니다.Attentionattention은 단어의 의미처럼 특정 정보에 좀 더 주의를 기울이는 것입니다.예를 들어 model이 수행해야 하는 task가 번역이라고 해봅시다. source는 영어이고 target은 한국어입니다. “Hi, my name is poza.”라는 문장과 대응되는 “안녕, 내 이름은 포자야.”라는 문장이 있습니다. model이 이름은이라는 token을 decode할 때, source에서 가장 중요한 것은 name입니다.그렇다면, source의 모든 token이 비슷한 중요도를 갖기 보다는 name이 더 큰 중요도를 가지면 되겠죠. 이때, 더 큰 중요도를 갖게 만드는 방법이 바로 attention입니다.Scaled Dot-Product Attention해당 논문의 attention을 Scaled Dot-Product Attention이라고 부릅니다. 수식을 살펴보면 이렇게 부르는 이유를 알 수 있습니다.Attention(Q,K,V)=softmax(QKT√dk)V<math>Attention(Q,K,V)=softmax(QKTdk)V</math>먼저 input은 dk<math>dk</math> dimension의 query와 key들, dv<math>dv</math> dimension의 value들로 이루어져 있습니다.이때 모든 query와 key에 대한 dot-product를 계산하고 각각을 √dk<math>dk</math>로 나누어줍니다. dot-product를 하고 √dk<math>dk</math>로 scaling을 해주기 때문에 Scaled Dot-Product Attention인 것입니다. 그리고 여기에 softmax를 적용해 value들에 대한 weights를 얻어냅니다.key와 value는 attention이 이루어지는 위치에 상관없이 같은 값을 갖게 됩니다. 이때 query와 key에 대한 dot-product를 계산하면 각각의 query와 key 사이의 유사도를 구할 수 있게 됩니다. 흔히 들어본 cosine similarity는 dot-product에서 vector의 magnitude로 나눈 것입니다. √dk<math>dk</math>로 scaling을 해주는 이유는 dot-products의 값이 커질수록 softmax 함수에서 기울기의 변화가 거의 없는 부분으로 가기 때문입니다.softmax를 거친 값을 value에 곱해준다면, query와 유사한 value일수록, 즉 중요한 value일수록 더 높은 값을 가지게 됩니다. 중요한 정보에 더 관심을 둔다는 attention의 원리에 알맞은 것입니다.Multi-Head Attention위의 그림을 수식으로 나타내면 다음과 같습니다.MultiHead(Q,K,V)=Concat(head1,...,headh)WO<math>MultiHead(Q,K,V)=Concat(head1,...,headh)WO</math>where headi=Attention(QWQi,KWKi,VWVi)dmodel<math>dmodel</math> dimension의 key, value, query들로 하나의 attention을 수행하는 대신 key, value, query들에 각각 다른 학습된 linear projection을 h번 수행하는 게 더 좋다고 합니다. 즉, 동일한 Q,K,V<math>Q,K,V</math>에 각각 다른 weight matrix W<math>W</math>를 곱해주는 것이죠. 이때 parameter matrix는 WQi∈Rdmodelxdk,WKi∈Rdmodelxdk,WVi∈Rdmodelxdv,WOi∈Rhdvxdmodel<math>WiQ∈Rdmodelxdk,WiK∈Rdmodelxdk,WiV∈Rdmodelxdv,WiO∈Rhdvxdmodel</math>입니다.순서대로 query, key, value, output에 대한 parameter matrix입니다. projection이라고 하는 이유는 각각의 값들이 parameter matrix와 곱해졌을 때 dk,dv,dmodel<math>dk,dv,dmodel</math>차원으로 project되기 때문입니다. 논문에서는 dk=dv=dmodel/h<math>dk=dv=dmodel/h</math>를 사용했는데 꼭 dk<math>dk</math>와 dv<math>dv</math>가 같을 필요는 없습니다.이렇게 project된 key, value, query들은 병렬적으로 attention function을 거쳐 dv<math>dv</math>dimension output 값으로 나오게 됩니다.그 다음 여러 개의 head<math>head</math>를 concatenate하고 다시 projection을 수행합니다. 그래서 최종적인 dmodel<math>dmodel</math> dimension output 값이 나오게 되는거죠.각각의 과정에서 dimension을 표현하면 아래와 같습니다.*dQ,dK,dV<math>dQ,dK,dV</math>는 각각 query, key, value 개수Self-Attentionencoder self-attention layerkey, value, query들은 모두 encoder의 이전 layer의 output에서 옵니다. 따라서 이전 layer의 모든 position에 attention을 줄 수 있습니다. 만약 첫번째 layer라면 positional encoding이 더해진 input embedding이 됩니다.decoder self-attention layerencoder와 비슷하게 decoder에서도 self-attention을 줄 수 있습니다. 하지만 i<math>i</math>번째 output을 다시 i+1<math>i+1</math>번째 input으로 사용하는 auto-regressive한 특성을 유지하기 위해 , masking out된 scaled dot-product attention을 적용했습니다.masking out이 됐다는 것은 i<math>i</math>번째 position에 대한 attention을 얻을 때, i<math>i</math>번째 이후에 있는 모든 position은 Attention(Q,K,V)=softmax(QKT√dk)V<math>Attention(Q,K,V)=softmax(QKTdk)V</math>에서 softmax의 input 값을 −∞<math>−∞</math>로 설정한 것입니다. 이렇게 한다면, i<math>i</math>번째 이후에 있는 position에 attention을 주는 경우가 없겠죠.Encoder-Decoder Attention Layerquery들은 이전 decoder layer에서 오고 key와 value들은 encoder의 output에서 오게 됩니다. 그래서 decoder의 모든 position에서 input sequence 즉, encoder output의 모든 position에 attention을 줄 수 있게 됩니다.query가 decoder layer의 output인 이유는 query라는 것이 조건에 해당하기 때문입니다. 좀 더 풀어서 설명하면, ‘지금 decoder에서 이런 값이 나왔는데 무엇이 output이 돼야 할까?’가 query인 것이죠.이때 query는 이미 이전 layer에서 masking out됐으므로, i번째 position까지만 attention을 얻게 됩니다.이 같은 과정은 sequence-to-sequence의 전형적인 encoder-decoder mechanisms를 따라한 것입니다.*모든 position에서 attention을 줄 수 있다는 게 이해가 안되면 링크를 참고하시기 바랍니다.Position-wise Feed-Forward Networksencoder와 decoder의 각각의 layer는 아래와 같은 fully connected feed-forward network를 포함하고 있습니다.position 마다, 즉 개별 단어마다 적용되기 때문에 position-wise입니다. network는 두 번의 linear transformation과 activation function ReLU로 이루어져 있습니다.FFN(x)=max(0,xW1+b1)W2+b2x<math>x</math>에 linear transformation을 적용한 뒤, ReLU(max(0,z))<math>ReLU(max(0,z))</math>를 거쳐 다시 한번 linear transformation을 적용합니다.이때 각각의 position마다 같은 parameter W,b<math>W,b</math>를 사용하지만, layer가 달라지면 다른 parameter를 사용합니다.kernel size가 1이고 channel이 layer인 convolution을 두 번 수행한 것으로도 위 과정을 이해할 수 있습니다.Positional Encodingtransfomer는 recurrence도 아니고 convolution도 아니기 때문에, 단어의sequence를 이용하기 위해서는 단어의 position에 대한 정보를 추가해줄 필요가 있었습니다.그래서 encoder와 decoder의 input embedding에 positional encoding을 더해줬습니다.positional encoding은 dmodel<math>dmodel</math>(embedding 차원)과 같은 차원을 갖기 때문에 positional encoding vector와 embedding vector는 더해질 수 있습니다.논문에서는 다른 *frequency를 가지는 sine과 cosine 함수를 이용했습니다.*주어진 구간내에서 완료되는 cycle의 개수PE(pos,2i)=sin(pos/100002i/dmodel)<math>PE(pos,2i)=sin(pos/100002i/dmodel)</math>PE(pos,2i+1)=cos(pos/100002i/dmodel)<math>PE(pos,2i+1)=cos(pos/100002i/dmodel)</math>pos<math>pos</math>는 position ,i<math>i</math>는 dimension 이고 주기가 100002i/dmodel⋅2π<math>100002i/dmodel⋅2π</math>인 삼각 함수입니다. 즉, pos<math>pos</math>는 sequence에서 단어의 위치이고 해당 단어는 i<math>i</math>에 0부터 dmodel2<math>dmodel2</math>까지를 대입해 dmodel<math>dmodel</math>차원의 positional encoding vector를 얻게 됩니다. k=2i+1<math>k=2i+1</math>일 때는 cosine 함수를, k=2i<math>k=2i</math>일 때는 sine 함수를 이용합니다. 이렇게 positional encoding vector를 pos<math>pos</math>마다 구한다면 비록 같은 column이라고 할지라도 pos<math>pos</math>가 다르다면 다른 값을 가지게 됩니다. 즉, pos<math>pos</math>마다 다른 pos<math>pos</math>와 구분되는 positional encoding 값을 얻게 되는 것입니다.PEpos=[cos(pos/1),sin(pos/100002/dmodel),cos(pos/10000)2/dmodel,...,sin(pos/10000)]<math>PEpos=[cos(pos/1),sin(pos/100002/dmodel),cos(pos/10000)2/dmodel,...,sin(pos/10000)]</math>이때 PEpos+k<math>PEpos+k</math>는 PEpos<math>PEpos</math>의 linear function으로 나타낼 수 있습니다. 표기를 간단히 하기 위해 c=100002idmodel<math>c=100002idmodel</math>라고 해봅시다. sin(a+b)=sin(a)cos(b)+cos(a)sin(b)<math>sin(a+b)=sin(a)cos(b)+cos(a)sin(b)</math>이고 cos(a+b)=cos(a)cos(b)−sin(a)sin(b)<math>cos(a+b)=cos(a)cos(b)−sin(a)sin(b)</math> 이므로 다음이 성립합니다.PE(pos,2i)=sin(posc)<math>PE(pos,2i)=sin(posc)</math>PE(pos,2i+1)=cos(posc)<math>PE(pos,2i+1)=cos(posc)</math>PE(pos+k,2i)=sin(pos+kc)=sin(posc)cos(kc)+cos(posc)sin(kc)=PE(pos,2i)cos(kc)+cos(posc)sin(kc)<math>PE(pos+k,2i)=sin(pos+kc)=sin(posc)cos(kc)+cos(posc)sin(kc)=PE(pos,2i)cos(kc)+cos(posc)sin(kc)</math>PE(pos+k,2i+1)=cos(pos+kc)=cos(posc)cos(kc)−sin(posc)sin(kc)=PE(pos,2i+1)cos(kc)−sin(posc)sin(kc)<math>PE(pos+k,2i+1)=cos(pos+kc)=cos(posc)cos(kc)−sin(posc)sin(kc)=PE(pos,2i+1)cos(kc)−sin(posc)sin(kc)</math>이런 성질 때문에 model이 relative position에 의해 attention하는 것을 더 쉽게 배울 수 있습니다.논문에서는 학습된 positional embedding 대신 sinusoidal version을 선택했습니다. 만약 학습된 positional embedding을 사용할 경우 training보다 더 긴 sequence가 inference시에 입력으로 들어온다면 문제가 되지만 sinusoidal의 경우 constant하기 때문에 문제가 되지 않습니다. 그냥 좀 더 많은 값을 계산하기만 하면 되는거죠.Trainingtraining에 사용된 기법들을 알아보겠습니다.Optimizer많이 쓰이는 Adam optimizer를 사용했습니다.특이한 점은 learning rate를 training동안 고정시키지 않고 다음 식에 따라 변화시켰다는 것입니다.lrate=d−0.5model⋅min(step_num−0.5,step_num⋅warmup_steps−1.5)warmup_step<math>warmup_step</math>까지는 linear하게 learning rate를 증가시키다가, warmup_step<math>warmup_step</math> 이후에는 step_num<math>step_num</math>의 inverse square root에 비례하도록 감소시킵니다.이렇게 하는 이유는 처음에는 학습이 잘 되지 않은 상태이므로 learning rate를 빠르게 증가시켜 변화를 크게 주다가, 학습이 꽤 됐을 시점에 learning rate를 천천히 감소시켜 변화를 작게 주기 위해서입니다.RegularizationResidual ConnectionIdentity Mappings in Deep Residual Networks라는 논문에서 제시된 방법이고, 아래의 수식이 residual connection을 나타낸 것입니다.yl=h(xl)+F(xl,Wl)<math>yl=h(xl)+F(xl,Wl)</math>xl+1=f(yl)<math>xl+1=f(yl)</math>이때 h(xl)=xl<math>h(xl)=xl</math>입니다. 논문 제목에서 나온 것처럼 identity mapping을 해주는 것이죠.특정한 위치에서의 xL<math>xL</math>을 다음과 같이 xl<math>xl</math>과 residual 함수의 합으로 표시할 수 있습니다.x2=x1+F(x1,W1)<math>x2=x1+F(x1,W1)</math>x3=x2+F(x2,W2)=x1+F(x1,W1)+F(x2,W2)<math>x3=x2+F(x2,W2)=x1+F(x1,W1)+F(x2,W2)</math>xL=xl+L−1∑i=1F(xi,Wi)<math>xL=xl+∑i=1L−1F(xi,Wi)</math>그리고 미분을 한다면 다음과 같이 됩니다.σϵσxl=σϵσxLσxLσxl=σϵσxL(1+σσxlL−1∑i=1F(xi,Wi))<math>σϵσxl=σϵσxLσxLσxl=σϵσxL(1+σσxl∑i=1L−1F(xi,Wi))</math>이때, σϵσxL<math>σϵσxL</math>은 상위 layer의 gradient 값이 변하지 않고 그대로 하위 layer에 전달되는 것을 보여줍니다. 즉, layer를 거칠수록 gradient가 사라지는 vanishing gradient 문제를 완화해주는 것입니다.또한 forward path나 backward path를 간단하게 표현할 수 있게 됩니다.Layer NormalizationLayer Normalization이라는 논문에서 제시된 방법입니다.μl=1HH∑i=1ali<math>μl=1H∑i=1Hail</math>σl= ⎷1HH∑i=1(ali−μl)2<math>σl=1H∑i=1H(ail−μl)2</math>같은 layer에 있는 모든 hidden unit은 동일한 μ<math>μ</math>와 σ<math>σ</math>를 공유합니다.그리고 현재 input xt<math>xt</math>, 이전의 hidden state ht−1<math>ht−1</math>, at=Whhht−1+Wxhxt<math>at=Whhht−1+Wxhxt</math>, parameter g,b<math>g,b</math>가 있을 때 다음과 같이 normalization을 해줍니다.ht=f[gσt⊙(at−μt)+b]<math>ht=f[gσt⊙(at−μt)+b]</math>이렇게 한다면, gradient가 exploding하거나 vanishing하는 문제를 완화시키고 gradient 값이 안정적인 값을 가짐로 더 빨리 학습을 시킬 수 있습니다.(논문에서 recurrent를 기준으로 설명했으므로 이에 따랐습니다.)DropoutDropout: a simple way to prevent neural networks from overfitting라는 논문에서 제시된 방법입니다.dropout이라는 용어는 neural network에서 unit들을 dropout하는 것을 가리킵니다. 즉, 해당 unit을 network에서 일시적으로 제거하는 것입니다. 그래서 다른 unit과의 모든 connection이 사라지게 됩니다. 어떤 unit을 dropout할지는 random하게 정합니다.dropout은 training data에 overfitting되는 문제를 어느정도 막아줍니다. dropout된 unit들은 training되지 않는 것이니 training data에 값이 조정되지 않기 때문입니다.Label SmoothingRethinking the inception architecture for computer vision라는 논문에서 제시된 방법입니다.training동안 실제 정답인 label의 logit은 다른 logit보다 훨씬 큰 값을 갖게 됩니다. 이렇게 해서 model이 주어진 input x<math>x</math>에 대한 label y<math>y</math>를 맞추는 것이죠.하지만 이렇게 된다면 문제가 발생합니다. overfitting될 수도 있고 가장 큰 logit을 가지는 것과 나머지 사이의 차이를 점점 크게 만들어버립니다. 결국 model이 다른 data에 적응하는 능력을 감소시킵니다.model이 덜 confident하게 만들기 위해, label distribution q(k∣x)=δk,y<math>q(k∣x)=δk,y</math>를 (k가 y일 경우 1, 나머지는 0) 다음과 같이 대체할 수 있습니다.q′(k|x)=(1−ϵ)δk,y+ϵu(k)<math>q′(k|x)=(1−ϵ)δk,y+ϵu(k)</math>각각 label에 대한 분포 u(k)<math>u(k)</math>, smooting parameter ϵ<math>ϵ</math>입니다. 위와 같다면, k=y인 경우에도 model은 p(y∣x)=1<math>p(y∣x)=1</math>이 아니라 p(y∣x)=(1−ϵ)<math>p(y∣x)=(1−ϵ)</math>이 되겠죠. 100%의 확신이 아닌 그보다 덜한 확신을 하게 되는 것입니다.Conclusiontransformer는 recurrence를 이용하지 않고도 빠르고 정확하게 sequential data를 처리할 수 있는 model로 제시되었습니다.여러가지 기법이 사용됐지만, 가장 핵심적인 것은 encoder와 decoder에서 attention을 통해 query와 가장 밀접한 연관성을 가지는 value를 강조할 수 있고 병렬화가 가능해진 것입니다.Referencehttp://www.whydsp.org/280http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/http://openresearch.ai/t/identity-mappings-in-deep-residual-networks/47https://m.blog.naver.com/PostView.nhn?blogId=laonple&logNo=220793640991&proxyReferer=https://www.google.co.kr/https://www.researchgate.net/figure/Sample-of-a-feed-forward-neural-network_fig1_234055177https://arxiv.org/abs/1603.05027https://arxiv.org/abs/1607.06450http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdfhttps://arxiv.org/pdf/1512.00567.pdf
조회수 2892

레코딩 플러그인 이야기

마음챙김명상앱 '마보'의 콘텐츠들은 모두 Waves 플러그인으로 프로세싱된다.(처음과 마지막을 제외하면) Waves에 대해 간단한 생각을 정리하자면 다음과 같다.머큐리 구입시 UAD와도 고민을 많이 했지만 소프트웨어로만 비교를 한다면 waves가 훨씬 편하게 사용이 가능하다. 그 중에서도 CPU로 돌릴 수 있다는 점이 제온 CPU 에서 강력하게 작용한다.(Waves 하드웨어가 필요하다면 영국콘솔회사 DiGiCo와의 합작품인 DiGiGrid라는것도 있다.)근데 문제는... 맥에서는 더이상 CPU파워가 따라주지 않는다는 것이다.이런 상황에서 밖에서 작업하기에 딱 좋은 솔루션이 있었다. Soundgrid라는 waves의 DSP솔루션이다.이 사운드그리드에 대해 요약하면 waves의 플러그인만 따로 모아서 랜케이블로 Soundgrid 연결을 하면 CPU의 부담을 주지 않고 Daw에서 똑같은 프로세싱이 가능하다.이번에 BLS에서 데모로 받은 Waves Soundgrid IMPACT SERVER를 까페에 들고 나왔다.문제는 예상했던 사이즈가 아닌 맥북보다 훨씬 커서 카페에 가지고 다니기 부담스러운 크기... 휴대성이라는 측면에서는 역시 좀 무리가 있지 않나 싶다.(사진참조)어쨌든 카페에서 작업이 가능하게 되었다는 점. 다만, 카페에 가는데 차가 필요하다는 점이 있겠다.앞서 말했듯 마보 콘텐츠는 waves외에 플러그인의 시작과 끝을 Izotope 플러그인을 쓴다.마지막에는 라우드니스를 위해 오존을 사용한다. 오존은 너무 유명한 플러그인이니 설명도 생략.녹음이 끝나면 바로 첫단에 오디오스위트로 걸어주는 RX5라는 플러그인이 있다.이 플러그인은 보이스를 녹음한다면, 혹은 볼륨이 크지 않은 클래식 악기를 녹음한다면 정말 요긴하다.첫째로 입에서 발생하는 립노이즈들을 효과적으로 빠르게 제거해 준다. 콘덴서 마이크에서 타는 쩝쩝거리는 소리들을 손으로 하나씩 잡을 필요가 없다. 그저 한번 클릭으로 모든 파형의 클릭소리들을 제거해준다.Waves Mercury에도 X-Click이있지만 Izotope의 RX5가 훨씬 퀄리티가 좋다.두번째로 De-noise의 강력한 기능이다. 녹음시에 발생되는 팬소음들은 사실 EQ를 통해 어느정도 제거가 가능한 험의 형태로 발생한다면, 전기적 접지의 부재로 인한 핑크노이즈는 쉽게 제거가 불가능하다.하지만. 이 De-noise의 노이즈 LEARN기능으로 노이즈를 분석한 후 노이즈를 획기적으로 제거할 수 있다.칭찬일색으로 보이지만 RX5는 유튜브 믹싱채널을 운영하는 Alan JS Han님도 추천을 하실 만큼 유명하다.(근데 Izotope는 품질은 정말 유명하나 CPU를 정말 힘들게 한다.)자세한 이야기는 각 사진 속에보다시피 크기가 생각보다 크고 3kg에 육박하는 mini-itx PC이다.. 공연장비가 베이스이기 때문에 랜케이블로 연결한다.프로툴 유저라면 한번쯤 겪어본 창프로툴 유저라면 한번쯤 겪어본 창보이스가 없는 부분을 선택해 기본으로 깔리는 노이즈를 분석한다.전 구간에 분석한 노이즈 커브를 적용한 모습.깔끔하게 정리되었다.(SSL프리에서 오는 하모닉스들도 제거)#마보 #콘텐츠 #프레임워크 #스택 #인사이트 #일지
조회수 1390

[어반베이스 피플] 홈디자이닝 AR앱 'Urbanbase AR' 개발자 인터뷰

어반베이스 AR을 사용하여 원하는 가구 및 가전제품을 미리 배치해볼 수 있다는 사실, 알고 계시죠? 최근 가구, 가전, 화장품, 의류 등 다양한 업계에서 AR을 활용해 고객들에게 새로운 경험을 제공하고 있으며 이러한 서비스들은 점점 증가하고 있습니다. 미래에는 AR을 활용한 쇼핑 플랫폼들이 점차 대중화 될 것이고, AR 쇼핑 플랫폼을 설계하는 전문가에 대한 수요도 늘어날 것으로 예상됩니다.서울산업진흥원은 미래 경쟁력 있는 신직업 40개를 선정했는데, 선정한 미래직업 중 'AR 쇼핑 플랫폼 설계자'가 포함되었고, '어반베이스 AR'의 담당 개발자 우석님이 인터뷰를 진행하게 되었습니다.홈디자이닝 AR앱 'Urbanbase AR'의 개발자Q. 일하면서 보람을 느끼는 순간은 언제인가요? 사람들은 작은 물건 하나를 구입할 때도 성능과 디자인 등을 꼼꼼히 살핍니다. 몇 번이나 구매를 망설이기도 하고요. 살아가는 집, 그 공간을 꾸미는 데는 얼 마나 많은 시간과 노력이 필요할까요? 가구와 인테리어 소품을 일일이 쇼핑하지 않고도 스마트폰 안에서 내가 원하는 상품들로 내 방을 미리 꾸며볼 수 있는 셀프인테리어 앱을 설계하는 것이 저의 일입니다. VR, AR 기술을 통해 가 구 배치, 벽지 교체, 인테리어 등을 미리 경험해보고 구매할 수 있기에, 시간과 비용은 줄어들고 만족도는 올라가게 됩니다. 제가 만든 가상의 공간이 누군가에게 편안하고 안락한 삶을 선사해주는 것을 볼 때 제 일에 보람을 느낍니다.Q. AR 쇼핑 플랫폼 설계자가 신직업으로서 가지는 경쟁력은 무엇일까요? 지금 이 순간에도 수많은 기업에서 무수히 많은 제품이 개발, 생산되고 있습 니다. 제품 정보나 장점을 소비자에게 보다 정확하게 전달해 반품율을 줄이 고 판매율을 높이는 것은 모든 기업이 바라는 점이죠. 그 대안이 될 수 있는 것이 AR 쇼핑인 만큼 AR 쇼핑 플랫폼 설계자에 대한 니즈는 빠르게 증가할 것입니다. AR은 커머스뿐 아니라 건설, 교통, 의료, 부동산, 인테리어 등 현대 산업 전체에 적용 가능한 기술이죠. 이는 AR 쇼핑 플랫폼 설계자로 쌓은 경험과 경력을 바탕으로 다양한 분야에 진출할 수 있다는 의미이기도 합니다. Q. AR 쇼핑 플랫폼 설계자에게 가장 필요한 자질은 무엇이라고 생각하시나요? AR 쇼핑 플랫폼 설계자는 크게 본다면 프로그래머 직군에 속합니다. 그렇기에 컴퓨터공학에 대한 소양이나 정보처리기사 자격증 등을 미리 준비해 두는 것이 좋습니다. 또한 AR 플랫폼은 주로 모바일 환경에서 제공되기 때문에 안드로이드 혹은 iOS 플랫폼에 대한 이해가 필수적입니다. 여기에 3D 그래픽에 대한 개념을 알고 있으면 업무를 수행하는 데 큰 도움이 됩니다. AR 쇼핑 플랫폼 설계자는 많은 가능성을 가진 유망 직종이지만, 이제 막 출 발한 분야이기에 상대적으로 참고할 수 있는 레퍼런스가 많지 않습니다. 그렇기 때문에 누군가가 만들어 놓은 길을 따라가기보다는 치열하게 연구하고 도전하는 자세가 필요합니다. Q. AR 쇼핑 플랫폼 설계자를 꿈꾸는 이들에게 조언 한마디 부탁드립니다.AR 기술을 습득하고 활용하기 위해서는 여러 가지 기본 지식들이 뒷받침돼야 합니다. AR 기술을 온라인에 접목하려면 쇼핑 플랫폼은 물론 관련 상품에 대한 지식도 필수적이고요. 이러한 지식들은 하루아침에 습득할 수 없는 것들입니다. 그렇기에 너무 조급해하지 말고 하나씩 내 것으로 만드는 자세 가 중요합니다. 시공간에 구애받지 않는 ‘가상의 세계’를 만들어내는 일은 분명 신나는 일입니다. 실패를 두려워하지 않는 개척자 마인드를 가진 사람이라면 충분히 즐기면서 일할 수 있으니, 꼭 도전해보세요.사진 출처 및 인터뷰 전문https://blog.naver.com/urbanbaseinc 
조회수 1885

Mac을 처음 쓰는 개발자에게

Overview애플(Apple) 제품을 한 번도 써본 적이 없습니다. 3주 전, 입사하고 받은 맥북(MacBook Pro)이 첫 애플 제품이었죠. 사실 개발 업무를 하면서 ‘한 번쯤은 애플 제품을 써 봐야겠다’는 생각을 하고 있었습니다. 단지 쉽사리 용기가 나지 않았을 뿐이었죠. 하지만 여러 개발 환경이 존재하는데도 개발자가 한 가지 환경만 고집하는 건 스스로의 잠재 능력을 좁히는 거라 생각했습니다. 그래서 이번 기회에 새로운 환경과 친해지려고 APM 웹서버 구성에 도전해봤습니다. (아자!) OS 설치 완료 후 환경Sierra 10.13apache 2.4php 5.6mysql 5.6 APM 설치 과정MAC 환경에서 APM 설치하려면 MAMP 방법도 있지만 기본적으로 apache, php가 설치되어 있으므로 패키지관리자 Homebrew를 이용하여 설치하겠습니다. 1.apache 설치 버전 확인$ httpd -v 명령어를 실행해서 아래와 같이 버전이 나오면 설치가 되어있는 상태입니다. $ httpd -v Server version: Apache/2.4.27 (Unix) Server built: Jul 15 2017 15:41:46 2.php 설치 버전 확인php -v 명령어를 실행해 아래와 같은 버전이 나오면 설치가 된 것입니다.$ php -v PHP 5.6.32 (cli) (built: Oct 27 2017 11:55:27)  Copyright (c) 1997-2016 The PHP Group  Zend Engine v2.6.0, Copyright (c) 1998-2016 Zend Technologies 참고: MAC Sierra 10.13 버전에는 php7 상위 버전으로 설치되어 있습니다. Homebrew로 php5.6 하위 버전을 추가적으로 설치해야 합니다.3.Homebrew 설치Homebrew 명령어1)패키지 검색하기 -> $ brew search 패키지명 2)패키지 설치하기 -> $ brew install 패키지명 3)패키지 삭제하기 -> $ brew uninstall 패키지명 4)설치된 패키지 목록확인 -> $ brew list 5)패키지 정보보기 -> $ brew info 패키지명 6)패키지 업그레이드 하기 -> $ brew upgrade 패키지명 7)패키지 저장소 추가하기 -> $ brew tap homebrew/패키지명 8)패키지 저장소 삭제하기 -> $ brew untap homebrew/패키지명 9)패키지 링크 삭제하기 -> $ brew unlink 패키지명 가.설치파일 다운$ /usr/bin/ruby -e “$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)” 나. Homebrew wget 설치 (Apple에서 제공하지 않는 패키지를 설치하기 위한 것이다.) $ brew install wget다. 심볼릭 링크 연결 $ ls -l /usr/local/bin/wget ../Cellar/wget/1.19.2_1/bin/wget bin/wget -> ../Cellar/wget/1.19.2_1/bin/wget 라. 패키지 저장소 추가 $ brew tap homebrew/dupes $ brew tap homebrew/php $ brew update 4.php56 설치가. Homebrew php56 설치 $ brew install php56 –with-apache 나. Apache에 PHP 설정 수정하기 아파치에 php7 모듈이 연결되어 있어 주석 처리 후 설치한 php5 경로로 연결한다. $ vi /etc/apache2/httpd.conf LoadModule php5_module /usr/local/php5-5.6.31-20170817-164511/libphp5.so #LoadModule php7_module libexec/apache2/libphp7.so 다. apache 재시작 apachectl restart라. phpinfo 확인 phpinfo 확인5.mysql56 설치가. Homebrew mysql56 설치$ brew install mysql56나. mysql 시작$ /usr/local/Cellar/[email protected]/5.6.38/bin/mysql.server start다. mysql 버전확인$ /usr/local/Cellar/[email protected]/5.6.38/bin/mysql –version명령어를 실행해서 아래와 같이 버전이 나오면 설치가 되어있는 상태입니다.$ sudo /usr/local/Cellar/mysql\@5.6/5.6.38/bin/mysql --version  /usr/local/Cellar/[email protected]/5.6.38/bin/mysql  Ver 14.14 Distrib 5.6.38, for osx10.13 (x86_64) using  EditLine wrapper 6.가상호스트 설정로컬에 다수의 프로젝트를 세팅하기 위한 것이다. 가. httpd.conf 파일 수정Include /private/etc/apache2/extra/httpd-vhosts.conf <- 주석제거 $ vi /etc/apache2/httpd.conf  # Virtual hosts Include /private/etc/apache2/extra/httpd-vhosts.conf 나. httpd-vhosts.conf 파일 수정NameVirtualHost : 아파치 2.4 이전 버전일 경우 80 포트에서 이름 기반 가상 호스트를 사용하겠다는 의미로 반드시 적어줘야 한다.DocumentRoot : 해당 프로젝트 소스 경로ServerName : 해당 프로젝트 접속 도메인주소 $ vi /etc/apache2/extra/httpd-vhosts.conf NameVirtualHost *:80       DocumentRoot "/Users/comkjs/Sites/ex1"     ServerName ex1.brandi.co.kr     ErrorLog "/private/var/log/apache2/error_log"     CustomLog "/private/var/log/apache2/access_log" common               Options FollowSymLinks         AllowOverride All         Order allow,deny         Allow from all         Require all granted         DocumentRoot "/Users/comkjs/Sites/ex2"     ServerName ex2.brandi.co.kr     ErrorLog "/private/var/log/apache2/error_log"     CustomLog "/private/var/log/apache2/access_log" common               Options FollowSymLinks         AllowOverride All         Order allow,deny         Allow from all         Require all granted     7. hosts 설정해당 도메인으로 접속시 DNS 서버를 사용하기 이전 로컬에 지정된 IP로 맵핑된다.$ vi /etc/hosts ## # Host Database # # localhost is used to configure the loopback interface # when the system is booting. Do not change this entry. ## 127.0.0.1 localhost 255.255.255.255 broadcasthost  ::1             localhost   127.0.0.1 ex1.brandi.co.kr 127.0.0.1 ex2.brandi.co.kr Conclusion물론 오랫동안 맥북을 사용했던 개발자에겐 쉬운 내용일 수 있지만 MS와 리눅스에 익숙했던 저에겐 ‘두려움’이었습니다. 리눅스 구조와 명령어가 비슷해서 리눅스를 이용했던 이용자에겐 어렵지 않을 것입니다. 한 번 세팅해두면 환경이 바뀌지 않는 이상 잘 건드리지 않기 때문에 나중에 세팅을 바꾸는 일이 있으면 또 다시 볼 수 있도록 기술 블로그에 남겨둡니다. 분명 언젠가는 도움이 되지 않을까요. 글곽정섭 과장 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #기업문화 #조직문화 #업무환경 #인사이트 #경험공유 #Mac #개발자 #신입개발자 #조언
조회수 1049

DevOps 문화 안에서의 APM의 역할 [1] (DevOps+JENNIFER)

 DevOps의 시작언제나 그랬듯이 소프트웨어 개발 트렌드는 계속 변화하고 있다. A부터 Z까지 모든 것을 새롭게 개발했던 것과 달리 아키텍처나 사용하는 용도에 따라 개방형 플랫폼이나 오픈소스 등을 활용하여 원하는 소프트웨어를 쉽게 개발할 수 있게 되었다. 또한 클라우드로 인해 애플리케이션과 서비스 개발에 대한 새로운 패러다임이 나타나고 있다. 기존의 온-프레미스 환경에서는 물리적 서버 준비, 운영체제 설치, 서비스 배포 등에 수많은 시간이 걸렸지만, 클라우드를 활용하면서 단시간에 원하는 자원을 준비하고 배포할 수 있게 되었다.이러한 변화로 개발자의 영역이 좀 더 넓어지는 계기가 되었다. 이는 전통적인 비즈니스 환경에서 개발, 빌드, 테스트, 배포, 운영에 이르는 프로세스를 효율적으로 운용할 수 있게 되어 고객의 요구사항을 빠르게 반영할 수 있게 되었다. 이것이 바로 DevOps의 시작이다. 하지만 다양한 오픈소스의 탄생과 클라우드 환경의 확산 등으로 인해 정말로 새로운 기능에 대한 개발이 빨라졌을까? 그렇다면 이에 따른 문제는 없을까? 개발 프로세스의 병목 구간DevOps의 필수 조건인 테스트 및 배포의 자동화가 이뤄지면 운영 단계에서는 반영된 사항들에 대해 주기적으로 모니터링을 해야 한다. 만약에 반영된 소스코드에 장애를 발생시킬 수 있는 잠재적 버그가 존재한다면 이를 어떻게 운영 단계에서 찾을 수 있을까? 예를 들어 특정 서비스의 피크타임에 부하가 급증한다면 앞서 말한 상황에 대한 버그가 발생할 확률이 상대적으로 높아진다. 하지만 장애의 원인이 될 수 있는 요소는 매우 다양하기 때문에 단순히 트래픽 문제로 속단할 수는 없다.직접 개발한 소프트웨어만의 문제가 아닐 수도 있으며, 제품 개발시 생산성 향상을 위해 도입된 다른 종류의 오픈소스에서 문제가 될 수도 있다. 실은 이런 류의 프로젝트들은 상용 제품이 아니므로 문제가 발생하면 상당히 곤란한 경우가 생기곤 한다. DevOps를 위한 환경이 구성되고, 고객의 요구사항을 빠르게 반영할 수 있는 시스템이 갖춰졌더라도 결국에는 앞서 말한 다양한 종류의 잠재적, 환경적인 문제들로 인해 병목이 발생할 수 있다.  모니터링 단계에서 APM의 역할개발 프로세스의 마지막 관문인 모니터링 단계는 DevOps에서 매우 중요한 역할을 한다. 하지만 안타깝게도 이미 반영된 실제 서비스에서 모니터링을 성공적으로 마치고 피드백 수집 단계로 넘어가기 위해서는 앞서 말했던 장애의 원인을 빠르게 진단해야 한다. 경우에 따라 많은 시간이 소모되기도 하기도 하며, 이는 바로 생산성 저하로 이어진다. 또한 새로운 프로세스 진행을 더욱더 보수적으로 만드는 원인이 된다.DevOps를 완벽하게 실현하기 위해서는 모니터링 단계에서 서비스 배포 이후의 서버에 들어오는 트랜잭션에 대한 상태를 배포 전과 비교할 수 있어야 하며, 응답을 지연시킬만한 요소들을 빠르게 인지할 수 있어야 한다. 그리고 배포된 소스코드로 인해 서비스 장애가 발생하는 상황이 온다면 이를 처리하기 전까지 어떻게든 서비스 장애를 지연시켜야만 한다. 이러한 이유로 DevOps 진영에서는 APM의 역할은 매우 중요한 이슈이다. 우리는 제니퍼를 통해 앞서 말한 기능들을 활용하는 방법에 대해 알아볼 것이다. 모니터링 프로세스모니터링 단계는 아래 그림과 같이 문제의 발견 및 조치, 문제해결시 재배포 단계로 나눌 수 있다.  제니퍼 대시보드를 통해 액티브서비스 상태와 트랜잭션 변화 추이를 모니터링 할 수 있는데, 만약에 새로 배포된 소스코드에 문제가 있다면 처리 중인 액티브서비스가 쌓이게 되고 , 트랜잭션 분포도 차트는 기존에 그려졌던 패턴과 다르게 보여지게 된다.이런 시점에 운영에서는 설정 여부에 따라 이벤트를 발생 시킬 수 있다. E-Mail이나 SMS, Slack과 같은 메신저 등으로 각각의 담당자들에게 서비스 상태를 알려줄 수 있으며, 담당자에게 이벤트 메시지가 전달되었다면 제니퍼를 통해 두가지 조치를 할 수 있게 된다. 먼저 개발자는 스마트 프로파일링 기능을 통해 원인분석을 하고, 운영에서는 서비스가 최악의 상태가 되기 전에 트랜잭션 유입을 차단하여 다른 화면으로 리다이렉트 시켜주는 PLC 기능을 사용할 수 있다.제니퍼에서는 서버에서 하나의 요청에 대한 처리가 끝나면 곧바로 수집되는 데이터를 트랜잭션이라하며, 현재 수행 중인 상태에 대한 실시간 데이터를 액티브서비스라고 정의한다.   모니터링 기준 값 설정서비스를 배포하기 전에 모니터링 단계를 원활하게 수행하기 위해서는 제니퍼 관리 화면에서 몇가지 설정을 해야한다. 먼저 서비스 장애 발생시 이벤트 알림 및 서비스 부하량 제어 설정의 기준이 되는 값인 전체 에이전트의 평균 액티브서비스 개수를 알아야 한다. 하지만 서비스가 운영되는 환경에 따라 기준 값이 너무 다르기 때문에 어느 정도 안정적으로 서비스가 운영되고 있다고 생각하는 시점에 대략적으로 기준 값을 정하면 된다.에이전트란 모니터링 대상 애플리케이션에 기생하여 성능 데이터를 수집하고, 이를 서버로 전송하는 역할을 하는 모듈을 말한다. 참고로 모니터링 대상 애플리케이션은 플랫폼 환경에 따라 차이가 있을 수 있는데, 일반적으로 WAS(Web Application Server)나 웹 서버를 말한다.  액티브서비스는 처리가 완료되지 않은 상태이므로 서비스 장애의 원인분석을 위한 데이터로는 적합하지 않다. 그렇기 때문에 액티브서비스 개수는 기준 값이 될 수 없으며, 개발자는 처리가 완료된 트랜잭션 데이터의 응답시간을 기준 값으로 제니퍼의 프로파일링 관련 설정을 해야 한다. 설정된 값을 기준으로 트랜잭션 분포도 차트에서 가상의 선을 긋고, 그 선 위에 있는 트랜잭션을 대상으로 스마트 프로파일링 기능을 수행할 수 있다.  본문에서는 모니터링 단계에서 직면하게 되는 문제점과 이를 해결하기 위한 APM의 역할과 필요성 대한 이야기를 했다. 다음 편에서는 본격적으로 제니퍼를 활용하여 모니터링 프로세스를 어떻게 수행하는지에 대해 알아볼 것이다.2편에서 계속...
조회수 5550

Next.js 튜토리얼 1편: 시작하기

* 이 글은 Next.js의 공식 튜토리얼을 번역한 글입니다.** 오역 및 오탈자가 있을 수 있습니다. 발견하시면 제보해주세요!목차1편: 시작하기  - 현재 글2편: 페이지 이동3편: 공유 컴포넌트4편: 동적 페이지5편: 라우트 마스킹6편: 서버 사이드7편: 데이터 가져오기8편: 컴포넌트 스타일링9편: 배포하기개요요즘은 싱글 페이지 JavaScript 애플리케이션을 구현하는게 꽤 어려운 작업이라는 것을 대부분 알고 있습니다. 다행히도 간단하고 빠르게 애플리케이션들을 구현할 수 있도록 도와주는 몇 가지 프로젝트들이 있습니다.Create React App이 아주 좋은 예시입니다.그렇지만 여전히 적당한 애플리케이션을 구현하기까지의 러닝 커브는 높습니다. 클라이언트 사이드 라우팅과 페이지 레이아웃 등을 배워야하기 때문입니다. 만약 더 빠른 페이지 로드를 하기위해 서버 사이드 렌더링을 수행하고 싶다면 더 어려워집니다.그래서 우리는 간단하지만 자유롭게 설정할 수 있는 무언가가 필요합니다.어떻게 PHP로 웹 애플리케이션을 만드는지 떠올려봅시다. 몇 개의 파일들을 만들고, PHP 코드를 작성한 다음 간단히 배포합니다. 라우팅에 대해 걱정하지 않아도 됩니다. 그리고 이 애플리케이션은 기본적으로 서버에서 렌더링됩니다.이것이 바로 우리가 Next.js에서 수행해주는 일입니다. PHP 대신에 JavaScript와 React를 사용하여 애플리케이션을 구현합니다. Next.js가 제공하는 유용한 기능들은 다음과 같습니다:기본적으로 서버 사이드에서 렌더링을 해줍니다.더 빠르게 페이지를 불러오기 위해 자동으로 코드 스플릿을 해줍니다.페이지 기반의 간단한 클라이언트 사이드 라우팅을 제공합니다.Hot Module Replacement(HMR)을 지원하는 Webpack 기반의 개발 환경을 제공합니다.Express나 다른 Node.js HTTP 서버를 구현할 수 있습니다.사용하고 있는 Babel과 Webpack 설정을 원하는 대로 설정할 수 있습니다.설치하기Next.js는 Windows, Mac, Linux와 같은 환경에서 동작합니다. Next.js 애플리케이션을 빌드하기 위해서는 Node.js가 설치되어 있어야 합니다.그 외에도 코드를 작성하기 위한 텍스트 에디터와 몇 개의 명령어들을 호출하기 위한 터미널 애플리케이션이 필요합니다.Windows 환경이라면 PowerShell을 사용해보세요.Next.js는 모든 셀과 터미널에서 동작하지만 튜토리얼에서는 몇 개의 특정한 UNIX 명령어를 사용합니다.더 쉽게 튜토리얼을 따르기 위해서는 PowerShell 사용을 추천합니다.맨 먼저 다음 명령어를 실행시켜 간단한 프로젝트를 생성하세요:$ mkdir hello-next$ cd hello-next$ npm init -y$ npm install --save react react-dom next$ mkdir pages그런 다음 hello-next 디렉토리에 있는 "package.json" 파일을 열고 다음과 같은 NPM 스크립트를 추가해주세요.이제 모든 준비가 끝났습니다. 개발 서버를 실행시키기 위해 다음 명령어를 실행시키세요:$ npm run dev명령어가 실행되었다면 브라우저에서 http://localhost:3000 페이지를 여세요.스크린에 보이는 출력값은 무엇인가요?- Error No Page Found- 404 - This page could not be found- Hello Next.js- Hello World404 Page다음과 같은 404 페이지가 보일 것입니다.첫 번째 페이지 생성하기첫 번째 페이지를 생성해봅시다.pages/index.js 파일을 생성하고 다음의 내용을 추가해주세요:이제 http://localhost:3000 페이지를 다시 열면 "Hello Next.js" 글자가 있는 페이지가 보일 것입니다.pages/index.js 모듈에서 간단한 React 컴포넌트를 export 했습니다. 여러분도 React 컴포넌트를 작성하고 export 할 수 있습니다.React 컴포넌트가 default export 인지 확인하세요.이번에는 인덱스 페이지에서 문법 에러를 발생시켜봅시다. 다음은 그 예입니다: (간단하게HTML 태그를 삭제하였습니다.)http://localhost:3000 페이지에 로드된 애플리케이션은 어떻게 되었나요?- 아무일도 일어나지 않는다- 페이지를 찾을 수 없다는 에러가 발생한다- 문법 에러가 발생한다- 500 - Internal Error가 발생한다에러 다루기기본적으로 Next.js는 이런 에러들을 추적하고 브라우저에 표시해주므로 에러들을 빨리 발견하고 고칠 수 있습니다.문제를 해결하면 전체 페이지를 다시 로드하지 않고 그 페이지가 즉시 표시됩니다. Next.js에서 기본적으로 지원되는 웹팩의 hot module replacement 기능을 사용하여 이 작업을 수행합니다.You are Awesome첫 번째 Next.js 애플리케이션을 구현하였습니다! 어떠신가요? 마음에 드신다면 더 많이 배워봅시다.마음에 들지 않는다면 우리에게 알려주세요. Github 저장소의 issue나 Slack의 #next 채널에서 이야기 할 수 있습니다.#트레바리 #개발자 #안드로이드 #앱개발 #Next.js #백엔드 #인사이트 #경험공유
조회수 1253

깃발 올려, Git Effect!

안녕하세요, 개발 2팀에서 단아함을 맡고 있는 오연주입니다. 평소에 관심이 많았던 깃(Git)을 공부하면서 알게 된 내용들을 글로 쓰려고 합니다. ‘어떤 닝겐이 만들었나’ 궁금할 정도로 천재적인 깃은 도대체 누가 만든 것일까요? 바로 리누스 토발즈(Linus Torvalds)입니다. 이름에서부터 OS의 느낌이 가득합니다. 네, 맞습니다. 그는 리눅스(Linux)의 창시자이기도 합니다. 리누스는 말했죠. “My name is Linus, and I am your God.” 리누스 토발즈 (Linus Torvalds)그가 깃을 만들기 전에는 보통 중앙집중식 VCS(Version Control System)를 사용했었습니다. 예를 들면 다음과 같은 도구들로요. CVSSVN(Subversion)…반면에 깃은 분산 버전 관리 시스템(DVCS, Distributed Version Control System)입니다. 그렇다면 중앙집중식의 대표주자인 Subversion(VCS)에 비해 무엇이 더 좋을까요? 속도가 빠르다. snv log svn diff -rN svn commit 등 대부분의 명령어가 네트워크 연결이 되어야 실행 가능한 명령어입니다. 그러나 git push git clone 등 몇몇 명령어를 제외하고는 네트워크에 연결되어 있지 않아도 로컬에서 실행할 수 있습니다. 용량이 적다. Mozilla의 SVN Repository는 126GB인데 반해 Git Repository은 420MB입니다. 왜냐하면 해쉬, 스냅샷을 이용한 효율적인 파일 변화 관리가 가능하기 때문입니다. 브랜치를 만드는 작업이 수월하다. SVN은 diff를 전부 적용해서 파일을 생성한 뒤 네트워크에서 내려받는 반면, 깃은 스냅샷을 가리키는 링크(Commit Object)만 만들면 됩니다.어떠한 특징을 가지고 있길래 이런 차이점이 생기는 걸까요?분산 저장소로, 로컬에서도 중앙 저장소와 연결되지 않은 상태에서 지지고 볶기가 가능하다니! 여러 개의 다른 저장소를 생성할 수 있고 서로서로 연결되어 독립적으로 개발 프로젝트를 진행할 수 있고 유기적인 업데이트가 가능합니다. 델타 기법이 아닌 스냅샷 방식을 사용합니다. SVN의 경우 파일 변화를 diff로서 추적한 반면, Git은 각 시점의 파일 상태를 모두 스냅샷을 찍어 관리합니다.변화를 기억했던 기존 방식변화된 소스를 커밋할 때 스냅샷을 찍는 방식두 가지 특징을 살리려면 깃이 여타 다른 VCS와는 다른 방식으로 정보를 관리할 필요가 있습니다. 예를 들어 Revision number로 히스토리를 관리했던 Subversion으로 분산된 저장소의 히스토리를 관리하려고 하면 ‘시점 충돌’ 문제가 발생합니다.그..그려봤습니다..금융 프로젝트에 참여했을 때의 일입니다. VCS 중 H사 툴을 사용하였는데 한 소스의 버전을 받고 개발하는 과정에서 커밋의 횟수가 많아지니 중앙 저장소 입장에서는 ver 1 → ver 9로 갑자기 타임워프하는 일이 생겼습니다. 그래서 개발자 스스로 본인의 버전을 모두 삭제한 후 ver 9였던 파일을 수동으로 ver 2로 바꿔주는 것이 관례였습니다. 소스가 모두 날아가는 경우가 있어 소스 commit 과정이 공포스러웠죠. 깃은 해쉬(hash)를 이용한 정보 관리를 통해 이런 문제를 말끔하게 해결합니다.Git의 핵심, 정보 Hashing! git reset --hard 3269aecad9ffea81763a42b9fff34c76a0aa4cf0 브랜디 소스 코드를 pull 했는데 특정 시점으로 돌아가 할 일이 생겨 위의 명령어를 입력했던 적이 있습니다. 명령어로 깔끔하게 원하는 시점으로 되돌아올 수 있었죠. 뒤에 붙는 40자리의 기괴한 문자열은 바로 깃이 정보를 관리하는 데에 사용하는 해쉬값입니다. 해쉬값이 제일 많이 보이는 곳은 git log 가 아닐까 싶은데요. commit 옆에 나열된 일련번호같은 문자열이 궁금하진 않으셨나요?깃은 소스 코드를 포함해서 히스토리를 관리하는데 필요한 모든 정보를 이런 해쉬로 저장 및 관리합니다. 이 해쉬값은 40자리 16진수 숫자이며 SHA-1 알고리즘으로 생성됩니다. SHA-1 알고리즘은 보안 표준 해쉬 알고리즘 중 하나입니다. 충돌할 확률은 1 / 10^45로, 매우 매우 낮기 때문에 수많은 정보를 저장 및 관리하기에 안전하고 적합합니다. 4GHz CPU로 SHA-1 해쉬 중복값을 찾아내려면 4000년이 걸린다.앞서 SHA-1 해쉬값으로 모든 정보를 저장한다고 말씀드렸는데, 과연 어떤 정보를 어디에, 어떻게 저장하고 있는 것일까요? 각 해쉬 값은 깃이 내부적으로 저장하는 파일 이름이 되기도 하는데, 이 파일들은 .git/objects 경로에서 전부 찾아볼 수 있습니다. 해쉬값 40자리 중 앞 2자리를 디렉토리 이름으로 따고, 뒤 38자리를 파일 이름으로 지정합니다. 각 파일 안에는 서로 다른 정보가 담겨 있습니다. 해쉬값으로 표현되는 이 파일들은 정보의 종류에 따라 3가지 객체로 분류됩니다. Blob ObjectTree ObjectCommit Object폴더나 파일명이 어떤 오브젝트인지 힌트를 주지 않기 때문에 세 가지의 오브젝트 파일 내용의 캡처를 위해 복불복으로 열어봤는데요, 하나의 파일을 열 때마다 포춘쿠키를 까듯 심장이 쫄깃쫄깃했습니다. Blob Object란 실제 파일을 뜻하며, 실제 소스파일을 가지고 있는 실세 오브젝트같은 느낌입니다. Blob Object - 열어보면 내가 작성한 소스 코드가 들어있다.Tree Object 내부에는 프로젝트 구조의 각 디렉토리에 대한 정보가 담겨 있습니다. 하위에 어떤 폴더와 파일을 가지고 있는지 알려주고, 객체 해쉬 값을 저장하고 있습니다. 이 Tree Object의 제일 상위 객체는 root이며, 프로젝트의 최상위 폴더에 대한 정보를 담게 됩니다.앞서 깃은 각 시점별 스냅샷을 찍어 관리한다고 했습니다. 스냅샷을 찍는 행위는 새로운 Root Tree Object를 만들고, 각 시점에 가지고 있는 Tree Object와 Blob Object로 새로운 트리 구조를 만드는 과정입니다. Tree Object - 하위에 php라는 폴더와 README.md라는 파일이 들어있는 것을 볼 수 있다.Commit Object는 커밋 시점의 Repository Root Directory의 해쉬 값을 가지고 있는 녀석입니다. Parent는 내 커밋 전에 커밋이 누구인지를 뜻하는데요. 또한, 커밋할 때의 committer(user), commit message등의 정보도 가지고 있습니다.Commit Object - 해당 commit 시점의 root tree object와 이전 커밋, 작성자 등에 대한 정보를 담고 있다.세 종류의 객체는 깃이 분산된 Repository 간의 소스 히스토리를 쉽게 관리하도록 도와줍니다. 해쉬값으로 관리되기 때문에 특정 스냅샷에 이동하거나, 히스토리를 변경 또는 추가하는 데에 적은 리소스만 필요합니다. 또 분산된 저장소 사이에 상호 시간 순서에 대한 모호함도 해결할 수 있었습니다. 이 정도면 갓누스….깃을 공부하기 시작한 이유는 Git UI Tool을 쓰면서 습관적으로 commit, push 버튼을 눌렀기 때문입니다. 깃에 대한 이해도가 있는 상태에서 사용한다면 실수가 줄어들 거라 생각합니다. 다음 글은 Git branching Model을 다루겠습니다. ps. Git, 협업과 원활한 커뮤니케이션을 위해 알고 씁시다! 우리 함께 깃빨 받읍시다!! 참고 Scott Chacon and Ben Straub, ⌈Pro Git, 2nd Edition⌋, Apress(2014)Schneier on SecurityProbability of SHA1 collisions, stack overflowSVN 능력자를 위한 git 개념 가이드, Insub Lee, Slide Share글오연주 사원 | R&D 개발2팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 1416

린더를 만들고 있는 이유 2.0

본문은 2017년 8월 작성한 린더를 만들고 있는 이유 1.0 의 후속편입니다.히든트랙이 해결하고자 한 문제히든트랙팀은 '린더'라는 일정을 받아보는 경험을 만들어가고 있습니다. 2018년 4월 기준 약 16만명의 사용자가 린더를 통해 일정을 받아보고 있으며, 린더가 존재하기 전 사람들을 일일히 자신들이 필요로 하거나 궁금한 일정들을 검색하여 확인해야만 했습니다. 우리가 문제를 해결한 방식은 매우 간단합니다. 매번 필요할 때마다 검색해봐야 했던 일정을 우리가 대신 기록하여 그것을 받아볼수 있도록 제공 하는것, 다시 말해 다수가 공통적으로 안고 있던 귀찮음을 소수의 노력으로 해결하고자였으며 이와 같은 문제 해결 방식은 명함 수기 입력 앱 - 리멤버 또는 전단지 모음 앱 - 배달의 민족이 접근한 방식과 유사합니다.첫 번째 선택, 캘린더 기반 일정 구독 ( https://linder.kr/ )일정을 받아보는 경험은 모바일앱, 챗봇, AI 스피커 등 다양한 방식으로 구현될 수 있습니다. 그중에서도 히든트랙팀이 선택한 첫 번째 방식은 이미 다수가 활용중인 캘린더 앱의 구독 기능을 활용한 것입니다. 스마트폰 기본앱인 캘린더를 하나의 정보 전달 채널로 활용함으로써 거부감 없이, 낮은 진입장벽으로 출시 반년 만에 15만명이 넘는 사용자를 확보할수 있었습니다.캘린더 기반 일정 구독의 한계하지만 캘린더를 기반으로 한 일정 구독에는 명확한 한계가 몇 가지 있었습니다. 1) 구독 캘린더의 특성상 리마인더 기능이 매우 제한적이었으며  2) 각 플랫폼 별 다른 동기화 시간으로 인해 실시간 업데이트가 불가했습니다. 3) 또한 기존 캘린더에 입력되어있던 개인 일정과 받아보는 일정이 혼재되어 분류가 어려웠으며 4) 일정을 삭제하거나 메모를 입력할 수 없었습니다.캘린더의 한계를 극복할 수 있는 자체 앱 제작 ( http://bit.ly/2EB41TW )이에 히든트랙팀은 지난 2017년 말 진행한 다수의 유저 인터뷰를 바탕으로 2018년 1월부터 약 3개월 간 일정을 받아보는 경험에 최적화된 모바일 앱을 개발하였습니다. 모바일의 핵심은 필요한 일정을 정확한 시점에, 검색 없이도 쉽게 받아 볼 수 있는데 초점을 두고 있습니다.린더 : 받아보는 캘린더 - Google Play 앱play.google.com 일정을 받아보는 경험에 대한 사용자와 이해 관계자히든트랙팀이 캘린더 기반의 일정 구독자와 모바일앱 사용자 모두에게 공통적으로 제공하고자 하는 것은 사용자가 자신에게 필요한 일정을 보다 쉽고 확실하게 소비할 수 있도록 돕는 것입니다. 사람들에게 필요한 일정은 아이돌 스케줄부터 화장품 세일, 학사일정에서부터 마트 휴무일까지 다양한 분야에 존재합니다. 일정을 받아보는 경험을 만들어가는 과정에서 우리가 일반 사용자 외에도 고려해야 할 나머지 두 종류의 이해 관계자는 일정을 공급하는 공급 파트너와 유통을 돕는 유통 파트너가 있습니다.망하기 딱 좋은 일정 데이터 생산 비즈니스일정을 받아보는 경험을 만들어가는 과정은 여느 타 서비스에 비해 매우 소모적입니다. 일정 데이터는 리뷰(왓챠)나 댓글(크리마), 연락처(리멤버) 등 과는 다르게 데이터의 휘발성이 매우 강하며 변동성 또한 매우 크기 때문에 다수의 기업들이 기피하는 데이터 형태라고 볼 수 있습니다. 일례로 2016년부터 2017년 중순까지 운영되었던 SKT의 Someday(썸데이)는 내부 조직장 교체와 비효율적인 ROI로 서비스가 종료된 바 있습니다.같은 실수를 저지르지 않기 위한 일정 데이터 서비스 전략 로드맵히든트랙팀은 2017년 1월부터 다수의 일정 관련 서비스 개발을 진행해왔으며 이 과정에서 습득한 노하우를 바탕으로 일정 데이터 생산 및 공급망을 구축할 수 있는 3단계 계획을 세우게 되었습니다.STEP.1 린더 파트너스 - 데이터 공급 파트너 확보캘린더 기반 일정 마케팅 솔루션 '린더 파트너스'는 해외 eCal, CalendarX, Eventable 등 다수의 캘린더 마케팅 업체를 벤치마킹하여 국내 인터넷 환경에 맞추어 최적화시킨 아시아 유일의 캘린더 마케팅 솔루션 입니다. 2018년 3월 기준 롯데자이언츠, 두산베어스, 수원삼성FC, 아디다스 코리아 등 20여 개의 데이터 공급 파트너를 확보한 린더 파트너스를 기반으로 히든트랙팀은 공식적인 데이터 공급 파트너를 확보함과 동시에 데이터 생산을 위한 초기 자본을 조달할 수 있게 되었습니다. 파트너스 영업은 현재 영업팀을 주축으로 이루어지고 있으며 2018년 말까지 현 20여 개의 파트너를 50여 개 수준으로 늘리는 것을 목표로 하고 있습니다.STEP.2 린더 모바일앱 - 일반 사용자 확보린더 파트너스를 통해 확보한 자금과 일정 생산력을 바탕으로 모바일앱 데이터의 정확도와 품질을 향상하고 사용자 중심의 서비스를 구축합니다. 기업 친화적인 린더 파트너스와는 다르게 린더 모바일앱은 오로지 일반 사용자를 위한 서비스로서 사용자 친화적인 인터페이스와 일정 콘텐츠 소비 경험을 핵심으로 합니다. 다수의 일반 사용자를 확보함으로써 제보 기능(크라우드소싱)을 활용하여 데이터의 정확도와 유저별 선호 캘린더 데이터를 파악할 수 있게 됩니다.  2018년 4월 안드로이드/iOS 앱 출시가 예정되어 있으며 2018년 연말까지 5만 이상의 MAU 확보를 목표로 하고 있습니다.STEP.3 린더 데이터헙 - 데이터 유통 파트너 확보글의 서두에서 언급한 바와 같이 일정을 받아보는 경험은 단순히 캘린더나 모바일앱 외에도 다양한 방식으로 제공될 수 있습니다. 확보한 데이터 공급 파트너와 일반 사용자 제보를 바탕으로 일정 데이터량과 품질을 향상하고, 더 나아가서는 보유한 유저 Pool을 바탕으로 사용자들의 선호도를 사전에 파악할 수 있게 됩니다. 이러한 다양한 종류의 데이터를 기반으로 현재 스피커 및 기타 AI 서비스를 제공 중인 네이버, 카카오, 삼성, SKT, KT 등의 유통 파트너를 대상으로 영업을 진행, 협력을 통해 다양한 방식으로 사용자들에게 일정 정보를 전달할 수 있게 됩니다.히든트랙의 3가지 비즈니스 모델위 언급한 3단계의 전략 로드맵을 통해 히든트랙은 3가지 수익창출 기회를 확보할 수 있습니다. 1) 캘린더 마케팅 솔루션 - 린더 파트너스의 Enterprise SaaS 형태 공급 및 데이터 관리 용역을 통한 수익2) 린더 앱 내 확보한 사용자 선호도를 바탕으로 일정 기반의 마케팅 광고주들에게 제공하여 창출하는 수익 3) 그리고 유통 파트너들에게 일정 데이터를 제공하는 대가로 받는 데이터 판매 및 용역에 대한 수익 이 바로 그 3가지 입니다.'린더' 하다 = 일정을 받아보다다각적인 비즈니스 모델과 단계가 존재하지만 결과적으로 이를 통해 확보한 매출의 재투자와 회사의 방향성은 하나로 일원화 될 수 있습니다. 그것은 바로 사람들의 소중한 일정을 놓치지 않도록 도와주는것. 자동차 네비게이션과 같이 서비스가 삶에 완벽히 녹아들어 그것이 부재하던 시절의 삶을 상상할 수 없게 되는 것이야 말로 가장 높은 수준의 서비스 구현이라 할 수 있습니다. 과거에 지도에만 의존하여 길을 찾던 시절 소수의 사람들이 네비게이션의 가능성을 보고 그것을 만들어왔던 것처럼, 사람들이 린더를 통해 그들의 소중한 일정을 놓치지 않도록 도와주는 것이 우리의 최종 목표입니다.#히든트랙 #챗봇 #기술기업 #개발자 #개발팀 #인사이트 #경험공유
조회수 1282

[인공지능 in IT] 맥락인식, 말하지 않아도 알아요

오전 6시 30분. 휴대전화 알람이 울리기 시작한다. 부랴부랴 샤워를 끝내고, 나갈 채비를 하고 있으니, 5분 후 집 앞 버스 정류장에 회사로 향하는 100번 시내버스가 도착한다는 메세지가 나타났다. 버스에 몸을 싣고 사무실 근처 정류장에 내려서 걸어가는 도중, 필자가 즐겨 마시는 커피를 맛있게 내린다는 동네 카페에 대한 정보를 받았다. 어느새 다가온 점심시간에는 어제 이태원에서 과음한 것을 어떻게 알았는지, 휴대폰 잠금화면에 주변 해장국집 추천이 뜬다.그저 영화 속 이야기가 아니다. 실제 사용자의 취향과 행동 등을 분석하고, 시간, 날씨, 교통 등과 같은 외부적 환경요소를 정교하게 더한 시나리오다. 각 개인에게 필요하고, 일상을 윤택하게 만들 수 있는 유의미한 정보를 제공하는 것. ‘맥락인식’ 혹은 ‘상황인지 기술’이라고 불리는 ‘Context Recognition’의 궁극적인 목표 중 하나다.맥락인식 기술은 여러 센서로부터 수집한 데이터를 통해 사용자의 상황을 인지하고, 실시간으로 맥락을 이해하는 데 초점을 맞춘다. GPS, 와이파이, RFID, 모션 센서, 소리 등 여러 시그널을 수집해 분석하며, 사용자의 일정, 문자 메시지나 행동 정보 등을 가져와 ‘사용자가 어떤 사람인지’, 그리고 ‘현재 어떤 상황인지’ 등을 추론한다. 이와 같은 맥락인식 기술을 구현하기 위해 필요한 몇 가지 주요기술은 다음과 같다.1. 상황정보 수집사용자 인터페이스 또는 센서, 센서 네트워크 등를 통해 사용자의 위치, 활동, 생활 패턴 등 다양하고 복잡한 정보를 수집하는 기술.2. 상황정보 모델링상황정보를 가공, 저장 및 공유하는 모델링 기술.3. 상황정보 융합 및 추론사용자의 상황정보를 다른 기술과 융합해 높은 수준의 추론 기능을 제공하는 기술.4. 상황정보 교환센서, 장치 및 객체와의 상호작용을 지원하기 위해 이벤트 기반의 통신 메커니즘을 제공하는 기술.5. 지능형 에이전트사용자의 단순한 의도뿐만 아니라 감정이나 감성을 고려해 전체 상황을 자율적으로 판단, 사용자에게 적합한 서비스를 제공하는 기술.기업 입장에서 생각했을 때, 맥락인식 기술은 소비자 개인에게 특화된 서비스를 제공할 수 있는 날카로운 검이다. 간단한 예로 맥락인식을 활용한 맞춤형 광고에 대해 알아보자. 소비자 A와 소비자 B는 서울에 사는 30대 남성이고 스포츠를 좋아한다. 일반적인 검색이나 구매 히스토리에 기반한 광고와 달리 맥락인식 기술을 활용하면, 이들의 라이프스타일이나 행동패턴을 바탕으로 더 깊은 디멘션까지 분석해 세분화된 광고를 제공할 수 있다. 두 소비자 모두 스포츠를 좋아한다고 가정했을 때, A는 한강 근처에서 매일 저녁 7시 정도에 조깅하는 것을 좋아할 수 있고, B는 남산에서 새벽 6시부터 등산하는 것을 좋아할 수 있다. 미묘한 차이겠지만, 분명 다른 카테고리의 소비자로 정의할 수 있는 것이다.스켈터랩스에서 진행하고 있는 맥락인식 기술 프로젝트를 예로 들어보자. 앞서 언급한 것처럼 다양한 기기로부터 측정하는 저레벨 데이터를 수집하는 것으로 맥락인식 프로세스는 시작된다. 측정 데이터는 서버에 전송되어 시간 순으로 변경 및 취합되고, 기계학습을 통해 필터링 후 수집되며, 고레벨의 맥락으로 추상화된다. 시간, GPS, 와이파이, 모션센서, 소리, 문자메시지, 일정 등 여러 데이터를 처리해 사용자의 맥락을 이해한다. 이러한 일련의 과정 역시 맥락인식 기술의 한 부분인지라 메시지 스트림 프로세서를 기반으로 확장할 수 있는 인프라를 설계, 구축했다.실시간으로 데이터를 처리할 수 있는 파이프라인이다. 처리한 데이터는 좀 더 상위 레벨의 이벤트와 행동으로 인식되어 ‘의미‘를 지니는 데이터로 표현되는데, 예를 들어 GPS 정보를 와이파이 및 시간 등과 같은 다른 데이터와 결합하고, 방문 장소와 행동반경 등을 포함해 사용자의 장소를 식별하는 방식이다. 이러한 사용자의 행동 히스토리는 패턴인식 기술을 활용해 사용자 특정 행동을 학습하고, 이를 기반으로 ‘언제 집으로 돌아갈지‘, 혹은 ‘언제 식사를 하는지’ 등 행동을 예측할 수 있다. 결국, 맥락인식을 통해 사용자의 다음 활동을 예측할 수 있는 기술을 개발, 사용자에게 필요하고 유용한 정보와 서비스를 제공하는 것이 목표다.< 맥락인식 기술을 적용한 큐 앱 화면, 출처: 스켈터랩스 한지예, 이해연 디자이너 >얼마 전, 스켈터랩스의 맥락인식 기술 프로젝트 팀은 해당 기술을 활용해 사용자들이 일상 속에서 가볍게 사용할 수 있는 서비스가 무엇일까 고민하고, ‘큐(Cue)’라는 앱을 개발했다. 큐는 사용자가 직접 명령할 필요가 없다. 큐가 먼저 사용자의 생활을 돕기 때문이다. 날씨를 예를 들면, 사용자가 날씨를 알아보기 전에 비가 올 것 같으면 우산을 챙기라 알려주고, 덥거나 미세먼지가 많을 경우 도움 되는 정보를 알려준다. 사용자에게 전달하는 정보는 카드 메시지를 통해 잠금화면으로 표시된다.큐 프로젝트의 이민학 시니어 프로덕트 매니저는 큐를 통해 사용자가 ‘내'가 누구인지 파악할 수 있을 것이라고 말한다. 예를 들어, 나는 내가 운동을 좋아하는 액티브한 라이프스타일을 살고 있는 줄 알았는데, 실제로는 집에 누워서 영화보는 것을 더 좋아하는 사람에 가깝다는 것. 개인의 삶이 매우 중요해지는 시대이지만, 정작 내가 누구인지 확인하기 어렵기 때문에 맥락인식 기술은 다양한 용도로 사용될 수 있다.< 사용자 패턴을 분석한 유형 결과 예시, 출처: 스켈터랩스 한지예, 이해연 디자이너 >이민학 매니저는 맥락인식 기술에 대해 이렇게 말한다. 그는 “누가, 언제, 어디서, 무엇을, 어떻게, 왜로 구성된 사용자의 육하원칙을 파악하고, 더 나아가 ‘Next-육하원칙’을 파악하는 것이 진정한 맥락인식 기술입니다. 앞으로 기업 특히, 마케터들은 타겟 고객을 잡는데 굉장히 유용하게 사용할 것이라고 생각합니다”라며, “소비자 입장에서는 일상, 문화, 생활 등 세분화된 영역에서 자신의 삶을 더 윤택하게 영위할 수 있습니다. 맥락인식 기술이야말로 인간에게 정말 도움될 수 있는, ‘피부에 와닿는' 인공지능 기술이 아닐까 생각합니다”라고 설명했다.이호진, 스켈터랩스 마케팅 매니저조원규 전 구글코리아 R&D총괄 사장을 주축으로 구글, 삼성, 카이스트 AI 랩 출신들로 구성된 인공지능 기술 기업 스켈터랩스에서 마케팅을 담당하고 있다#스켈터랩스 #기업문화 #인사이트 #경험공유 #조직문화 #인공지능기업 #기술기업
조회수 2224

평균 응답시간의 의미

어플리케이션 성능 분야에서 평균 응답 시간은 어플리케이션 서버가 사용자에게 요청 결과를 반환하는 데 걸리는 시간을 말합니다. 어플리케이션 서버의 응답시간은 일반적으로 밀리세컨드에 가깝지만 부하량에 따라 많은 시간이 걸리기도 합니다. 고객이 기다리는 시간 3초인터넷 초창기인 1999년 전자 상거래 사이트의 최적로드 시간은 8초 였습니다. 2006년도에 들어서는 4초까지 줄어들었습니다. 그리고 지금은 3초를 고객을 떠나게 만드는 시간으로 이야기 합니다. 구글 이 운영하는 더블클릭(https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/)은 모바일 페이지가 로드되는데 3초가 지나면 사용자의 절반 이상이 서비스를 포기한다고 조사결과를 발표했습니다. 3초라는 시간 속에는 웹페이지의 렌더링 시간과 네트웍이 사용하는 시간등이 포함되어 있기 때문에 웹 어플리케이션이 소모해야 하는 시간은 실제로 밀리세컨드에 가깝습니다. 하지만 실제 서비스의 장애가 발생하면서 웹 어플리케이션의 평균 응답시간은 점점 길어지게 됩니다. 성능분석에서 평균 응답시간부하가 늘어나면서 임계치가 넘어가면 초당 처리량은 더이상 증가하지 않게 됩니다. 논리적으로 생각 해보면 초당 처리량이 더이상 증가하지 않은 상태에서 사용자만 늘어나면 TPS와 인지시간이 상수처럼 동작하므로 응답시간이 사용자에 비례하여 늘어나게 됩니다. [응답시간(Respons Time) = [동시사용자수 / 초당 요청수(TPS)] - 인지시간(Think Time)하지만 일반적인 상황에서 응답시간은 밀리세컨드 단위의 값이데 비해 인지시간은 3초에서 10초 이상의 값을 가지고 됩니다. 그럼 이번에는 성능을 분석하는 스토리를 만들어 보겠습니다. 우리가 영어 문장을 한글로 번역하는 웹 서비스를 만든다고 해 보겠습니다. 우리는 동시 사용자 100명을 예상하고 서비스를 만들고 있습니다. 여기서 서비스 특성상 사용자가 한번 번역을 요청하고 다음번 요청을 보내는데 평균 30초의 시간이 걸립니다. 마지막으로 최대 응답시간은 0.5초를 넘지 않도록 설계하려고 합니다. 이런 경우 우리가 목표로 하는 초당 요청수는 서비스를 동시에 사용하는 사람들의 요청을 시간으로 나누므로 계산식은 동시사용자수(100명)/(응답시간(0.5초) + 인지시간(30초)) 이고 결과값은 약 3.27이 됩니다.     초당 요청수(TPS) = 동시사용자수 / [응답시간(Respons Time) + 인지시간(Think Time)]이렇게 성능을 계산하는 과정에서 서비스의 처리시간 즉 응답시간은 인지시간에 비해 매우 적기 때문에 인지시간이 커지면 커질수록 TPS에 관여하는 비율이 0에 수렴하게 됩니다. 결론적으로 성능을 설계하는 시점에서 응답시간은 별로 중요한 이슈가 아니게 됩니다. 대신 인지시간이 중요해 집니다.인지시간(Think Time)이란?웹 서비스를 사용하는 사용자는 자신의 요청을 확인하는 시간이 필요합니다. 이렇게 이전 요청과 다음 요청 사이의 시간을 인지 시간이라고 합니다. 인지 시간은 사용자나 서비스 유형에 따라 다릅니다. 예를 들어 시스템 간 상호 작용은 사람이 관여하는 웹 서비스 상호작용에 비해 매우 낮은 인지 시간을 포함합니다. 또는 블로그 서비스에 비해 사전검색 서비스의 인지시간은 매우 짧을 것입니다. 서비스의 도메인을 분석하여 인지 시간을 결정하는 것은 매우 중요합니다. 인지시간을 사용하여 분당 완료해야 하는 요청 수는 물론 시스템에서 지원할 수 있는 동시 사용자 수를 계산할 수 있습니다. 튜닝 지표로서의 평균 응답시간현실에서 웹 서비스의 응답시간은 수식과 다르게 나타나게 됩니다. 그래서 많은 성능 분석 도구가 평균 응답시간을 보여주고 있습니다. 실제 성능 분석 도구들이 알려 주는 평균 응답시간은 수집 주기 동안에 수집된 트랜잭션의 응답 시간을 합산하여 평균한 값입니다.와탭의 서비스는 5초 간격으로 트랜잭션의 평균 응답시간을 계산합니다. 응답시간이 성능 지표보다 튜닝지표로서의 의미를 가집니다. 예를 들어 사용자가 적은 밤 시간에 배치잡과 같은 일부 응답시간이 길어짐으로써 사용자가 많은 낮보다 평균 응답시간이 더 길수도 있습니다. 하지만 실제 성능을 올리기 지표로써 응답시간은 매우 직접적입니다. TPS와 상관없이 평균 응답시간이 길어지는 요소가 있다면 주변 요소와 함께 평균 응답시간을 살펴봐야 합니다. #와탭랩스 #개발자 #개발팀 #인사이트 #경험공유 #일지

기업문화 엿볼 때, 더팀스

로그인

/