스토리 홈

인터뷰

피드

뉴스

조회수 3910

[어반베이스 인턴일기] 전공의 벽을 뚫어낸 능력자들

                                                      ‘전공무관’. 많은 채용 사이트에서 볼 수 있는 이야기죠. 하지만 채용공고만 그렇지, 막상 개발이라면 컴퓨터 공학을 전공해야 할 것 같고, 마케팅이라면 경영을 전공해야 할 것만 같습니다. 하지만 어반베이스의 개발 인턴들은 컴퓨터공학을 전공하지 않았고, 마케팅 인턴도 경영학을 전공하지 않았다는 사실! 우리는 어떻게 어반베이스를 알게 되어 어반베이스를 선택하게 되었을까요? 이제 들어온 지 한 달, 타운홀 미팅을 통해 정식으로 인사도 드렸으니 진정한 어반베이스의 식구가 되었습니다. 한달 간 느낀 인턴들의 솔직한 이야기를 만나보세요!※ 타운홀이란 ? 매달 1회 전직원이 모여 자유로운 주제로 소통하고 네트워킹하는 어반베이스만의 토론 문화 Pt 0. 자기 소개 및 하는 일 왼쪽부터 민진, 수민, 윤아마케팅부문 인턴 _ 민진 (컨텐츠 제작)건축공학을 전공하고 마케팅 부문 인턴이 되었다.어반베이스의 SNS들을 관리하고, 그에 맞는 컨텐츠를 제작, 그리고 이번에 열리는 어반스니커즈 컨퍼런스의 진행을 돕고 있다.개발부문 인턴 _ 수민 (3D 도면변환)건축학을 전공하고 개발부문 인턴이 되었다. 지금은 3D로 변환된 도면을 산업에서 쓸 수 있도록 다양한 3D 포맷으로 바꾸는 일을 한다. 개발부문 인턴 _ 윤아 (머신러닝)생체의공학을 전공하고 개발부문 인턴이 되었다.공간을 찍으면 공간이 어느 곳인지 인식하여 분류해주는 작업이다. 머신러닝과 딥러닝을 사용해서, 연령, 성별, 취향 등으로 공간을 세분화하여 그 공간에 맞는 제품을 추천해주는 시스템까지 계획하고 있다Pt 1. 선택Q. 어반베이스의 인턴 셋은 모두 전공과 다른 길을 가고 있네요. 어떻게 선택하게 된 길 인가요?전공과 맞지 않음을 깨달은 인턴 3人수민 : 전공이 건축이잖아요. 그런데 설계에 대한 회의가 들었어요. 그리고 VR에 관심이 생겼고, 그래서 프로그래밍을 배우게 됐어요.윤아 : 생체의공학과는 주로 배우는 분야가 하드웨어 쪽에 가까워요. 근데 저는 하드웨어 쪽은 잘 안 맞는 것 같더라고요. 전자공학과를 복수 전공하면서 프로그래밍 수업을 듣다가 프로그래밍을 이용한 데이터 분석에 흥미를 갖게 됐어요. 민진 : 취직 준비를 하면서 느꼈는데, 건축업계 자체가 굉장히 폐쇄적이고 수직적이고 보수적인 문화를 가지고 있더라고요. 그런 곳에서 잘 적응하지 못할 것 같아 건축이라는 전공을 살려 할 수 있는 다양한 길을 찾아 봤고, 그런 과정 중에 어반베이스를 알게 됐어요.Q. 그렇다면 왜 어반베이스를 선택했나요? 윤아 : 데이터 사이언스 쪽으로 일자리를 찾다가 알게 됐어요. 수치나 텍스트 데이터를 사용해서 분석하는 공부를 많이 해서, 이미지 데이터를 사용하는 분야도 배우고 싶었는데, 어반베이스에서 그런 일을 하더라구요.수민 : VR에 관심이 있었고, 회사가 하는 일이 건축 전공이라면 잘 맞을 것 같아서 선택했고, 와서 겪어보니 실제로도 그런 것 같아요. 채용공고나 블로그에서 봤던 회사의 복지나 비전도 선택에 큰 영향을 미쳤죠. 민진 : 건축을 베이스로 하는, 4차 산업혁명의 흐름을 직접 느낄 수 있는 회사에서 일을 하고 싶었어요. 그래서 무모하지만 과감하게 마케팅 팀에 지원을 했습니다. 수민님에게 큰 영향을 주었다는 어반베이스의 꿀복지!Q. 대기업이 아닌 스타트업을 생각했던 이유가 있나요? 윤아 : 대기업의 획일화 된 채용 시스템이 싫었어요. 딱딱하고, 틀에 박혀있는 그런 형식들이요.민진 : 저두요. 그리고 저는 스타트업에서 일을 하면 바로 실무를 할 수 있다고 해서 욕심이 났어요. 바로 일을 해보고 싶었거든요.Q. 전에 일을 하신적이 있나요? 실제로 일을 해보니 어떤가요?수민 : 실무를 하는 것은 처음이에요. 저는 3D로 변환된 도면을 산업에서 쓸 수 있도록 다양한 3D 포맷으로 바꾸는 일을 해요. 설계할 때는 3D 툴을 직접 다루는 입장이었는데 지금은 파일만 다루니 생소하긴 하네요. 부담되기도 하지만, 사람들에게 많이 물어보거나 정보를 알아서 흡수하려고 해요. 3D 도면변환을 담당하고 계신 수민님윤아 : 마찬가지로 실무는 처음이에요. 저는 머신러닝 쪽인데, 쉽게 말해서 공간을 찍으면 공간이 어느 곳인지 인식하여 분류해주는 작업이에요. 일단 아직은 배우는 중이라 그런지 일이 재미있어요. 시간이 빨리 가는건 재밌다는 거 아닐까요? 사실 사수가 있을 줄 알았는데 없어서 되게 막막했어요. 가끔 일 하다가 막힐 때가 있는데, 모르는 것은 다른 분들에게 물어보기도 하고, 구글링하거나 다른 책을 찾아보기도 해요. 머신러닝 부분의 윤아님민진 : 타 회사에서 설계 관련 인턴을 했었어요. 마케팅 실무는 처음이라 모든 것이 새로워요. 채용공고와 면접에서 SNS 콘텐츠 기획 및 제작을 주로 맡게 될 거라고 했고, SNS나 블로그를 운영하고 있어서 자신이 있었어요. 그래도 확실히 실무는 다르더라고요. 사수분이 잘 가르쳐 주시는 덕에 잘 적응하고 있어요. 내 손으로 직접 무언가를 기획하고 컨텐츠를 제작한다는 것이 굉장히 재밌어요!SNS에 올라가는 컨텐츠를 만들고컨퍼런스 관련 컨텐츠를 제작하고 업무를 서포트 하고 있는 민진님Pt 2. 어반베이스의 첫 인상<인턴들이 뽑은 어반베이스의 좋은 점>1.윤아 : 사람들이 친절해요.민진 : 맞아, 뭐든 물어보면 되게 친절하게 알려주세요.2.민진 : 아, 그리고 유연 근무제 너무 좋아요. 아침에 지각하지 않으려 뛰지 않아도 되고, 사정이 있으면 빨리 퇴근할 수도 있고.수민 : 금요일에 2시에 퇴근하시는 분들도 많이 있어요. 짱이에요. 9시 13분, 사무실 풍경. 자율적으로 조절하는 업무 스케줄3. 수민 : 또, 식대 8000원! 선릉 맛집 점령! 이 정도면 굉장히 넉넉하지 않나요? 어반베이스 단체방에 올라오는 점심 사진들. 넉넉함 인정4.윤아 : 무제한 맥주가 있는 것, 그리고 근무시간에 먹어도 된다는 것! 민진 : 커피도 무제한이잖아요. 심지어 맥주, 커피 모두 밖에서 사먹는 것보다 맛있어요.사진 출처 : 스파크플러스Q. 반면, 당황했던 부분이나 힘들었던 점도 있나요?민진 : 저는 처음에 ‘ㅇㅇ님’ 이라고 부르는 것이 너무 어색했어요. 전에 하던 알바와 인턴, 모두 직급체계가 확실한 곳이었거든요. 근데 이젠 다 적응해서 아무렇지도 않아요.Pt. 3 채용 과정Q. 어반베이스를 어떻게 알게 됐어요? 수민 : 로켓펀치와 원티드에서 알게 됐어요. 그리고 유튜브나 관련기사들도 많이 검색해봤어요. 보도자료를 보니 어반베이스가 하고 있는 일이 미래를 널리 생각하고 있는 것 같아서 굉장히 좋은 영향을 줬어요.  윤아 : 저도 원티드에서 보고 알았어요. 블로그나 기사가 많아서 하나씩 다 살펴봤어요. 민진 : 저도요. 유튜브 계정에서 하나씩 다 살펴봤어요. 건축 AR에 관련된 영상이었는데, 굉장하더라고요. 그동안 제가 만들었던 허접한 모형들이 뇌리를 스쳐 지나가며.. 이런 신세계가 10년만 일찍 펼쳐졌다면 밤을 좀 덜 샜을 텐데.. 모형을 만드는 나도, 그걸 보는 교수님도, 서로 덜 괴롭지 않았을까.. 하는 생각이 들기도 했습니다 하하. 영상의 풀버전은 어반베이스 유튜브에 올라와 있습니다!Q. 자기소개서 및 포트폴리오 준비는 어떻게 했나요?수민 : 자기소개서는 다른 자기소개서들이랑 비슷했어요. 지원동기, 성장배경, 성격 등 기본적인 문항들로 채웠고 그동안 했던 프로젝트를 PPT에 정리해 제출했어요. 윤아 : 저도 거의 비슷해요. 민진 : 저는 자기소개서를 굉장히 짧게 적었어요. '왜 어반베이스에 지원했는지, 왜 나를 뽑아야 하는지' 딱 두 개만 적었어요. 포트폴리오는 건축 프로젝트, 공모전, 동아리 등 내가 했던 모든 활동을 정리해서 제출했어요. Q. 면접은 어땠나요?윤아 : CTO님이 이야기를 굉장히 잘 들어주시고 편한 분위기에서 면접이 진행되었어요. 면접을 진행하며 좋은 인상을 받았어요.수민 : 저는 조금 긴장했어요. CTO님께서 제 포트폴리오를 보고 질문을 하셨어요. 제 답변에 틀린 점도 있었는데 틀린 부분을 친절히 설명해 주시기도 했어요. 2차 면접도 역시 편안했고요.민진 : 저는 1차 면접을 마케팅팀 분들과 봤어요. 면접 자체가 제가 일방적으로 질문에 응답하는 것이 아닌, 서로 이야기를 주고 받는 '대화'에 가까웠어요. 그래서 저도 면접 이후로 더욱 좋은 인상을 받았어요. 두 번의 면접이 진행되면서 어반베이스가 하고 있는 사업들에 대해 더욱 자세히 알게되었는데, 진짜 꼭 붙고 싶더라고요. 붙어서 참 다행입니다. 마지막으로Q. 전공과는 조금 다른 길을 선택했는데, 후회는 없나요?수민 : 음, 그래도 어반베이스는 건축이 바탕이 되어 있으니까요. 건축산업이 좀 더 유연하게 바뀌고, 기술이 많이 도입 된다면, 지금 제가 보내는 이 시간들이 굉장히 값진 시간이 될 거예요. 프로그래밍과 건축 베이스의 지식이 굉장한 무기가 될 수 있다고 생각해요. 윤아 : 저도 후회는 없어요. 요즘 데이터 분석은 어딜가나 쓰이니까요. 전공을 살려 의료 쪽 데이터를 다룰 수도 있지 않을까요? 그런 의미에서 전공지식이 무용지물은 아니라고 생각해요. 민진 : 저도 후회 안해요. 건축을 전공했기 때문에 지금 어반베이스가 하고 있는 일을 훨씬 잘 이해할 수 있었어요. Q. 어반베이스를 들어오고 싶은 사람들에게?수민 : 어반베이스는 기술 집약적인 기업이라 생각해요. 프로그래밍의 아주 초입자라면 어렵겠지만 업무가 적성에 맞다면 즐겁게 일할 수 있을 거에요.민진 : 미래산업에 관심이 있다면  더욱 흥미롭게 다가올 것 같아요. 현재 국내에서 쉽게 접할 수 있는 사업이 아니기 때문에 굉장히 도움이 될 거라고 생각해요. 인터뷰 Behind 1어반베이스의 좋은 점에 대해 이야기하며 어반베이스 복지문화 중 하나인 ‘어반테이스트’의 얘기가 나왔습니다. 수민 : 아, 그 어반테이스트도 가신 분들 엄청 부러워요. 그 쓰리쁠 등심.. 나도 먹어보고 싶다. 윤아 : 나는 어반 테이스트 뽑히면 스시먹어야지. 수민 : 오마카세..!민진 : 아, 갑자기 배고프네. 다들 좋아하는 음식 있어요?윤아 : 아무거나 다 잘 먹어요.수민 : 저는 라멘이 먹고 싶네요.윤아 : 수민님 며칠전부터 라멘 얘기하셨어요. (웃음)민진 : 그럼 오늘 점심 때 먹으러 가요. 빨리 선릉역 라멘 맛집 찾아봐요. 선릉역 라멘집 호타루인터뷰 하다말고 맛집을 검색하더니 곧 우리의 행선지가 결정되었습니다! 점심으로 라멘을 먹고 셋이서 아주 뿌듯했다는 이야기. (ㅎㅎ) 인터뷰 Behind 2윤아 : CTO님과 면접보다가, 나중엔 자소서 잘 쓰는 법도 알려 주셨어요. 그래서 '아, 날 뽑지 않고 자소서 잘 써서 다른데 지원하라는 의미구나.' 싶었어요. 그래서 떨어질 줄 알았는데, 합격 전화가 와서 깜짝 놀랐어요. (웃음)수민 : 원래 공대생들이 글을 잘 못쓰잖아요. 모두 : 아, 완전 공감.선택한 길에 대해 후회는 없다는 인턴 3인방. 인터뷰를 하며 공통적으로 말했던 것은 ‘좋은 사람들과 멋있는 일을 할 수 있어 아주 즐겁고 재밌다!’는 것이었어요. 어반베이스도, 우리들도 더욱 발전할 수 있었으면 좋겠습니다. :) 어반베이스에 관심이 생기신 분들, 그래서 입사 지원을 하시는 분들 중 혹시 더 궁금한 점이 있다면 댓글에 남겨주세요. 담당자분에게 직접 물어봐 드릴게요.  그럼 이만 일하러 가보겠습니다 !출처: https://blog.naver.com/urbanbaseinc
조회수 1147

[인공지능 in IT] 인공지능과 저널리즘

얼마 전, 재미있는 기사를 읽었다. 일본의 한 SF 공모전에 응모한 작품 1,400편 중 인공지능이 작성한 소설 두 편이 예선 심사를 통과했다는 내용이었다. 이 중 소설 한편의 제목은 '컴퓨터가 소설을 쓴 날'이다. 소설을 작성하는 인공지능 기술을 개발한 연구팀은 육하원칙 등의 제시어를 준 뒤, 연관어에 따라 소설을 쓰는 알고리즘을 활용했다.미디어 혹은 인공지능 분야에 생소한 독자들에게 다소 신기할 수 있겠지만, 사실 인공지능을 활용한 저널리즘은 수 년 전부터 진행 중이다. 국내에서는 2014년 서울대학교 언론정보학과의 'hci+d Lab' 이준환 교수팀이 개발한 알고리즘을 시초라고 할 수 있다. '프로야구 뉴스 로봇'이라고 불리는 소프트웨어는 KBL의 모든 경기를 자동으로 요약해 정리한다. 연구팀이 처음부터 이 같은 기능을 염두에 둔 것은 아니었고, 데이터를 시각화하는 과정에서 시각화 방식을 텍스트로 바꿔본 것이 연구의 시작이라고 한다. 위 사례는 사람이 아닌 기계가 직접 '글'을 작성했다는 점에 있어 의미가 크다. 미디어 업계에서도 디지털화는 불가항력 같은 존재가 되고 있다.얼마 전, 옥스퍼드-로이터 저널리즘 연구소에서 미디어 업계를 대상으로 조사를 시행했다. "2018년 실행해야 할 가장 중요한 과제는 어떤 것이라고 생각하는지"에 대한 물음에 "데이터 수용량을 증가시키는 것"을 가장 많이 답변했다. 모바일 알림, 웹사이트나 애플리케이션에 사용자를 등록시키는 일 등 여러 과제들이 있었지만, IT 솔루션 업계도 아닌 미디어 업계가 데이터 수용량 증가를 최우선 과제로 생각하고 있다는 사실은 개인적으로 매우 충격적이었다. 또한, "현재 귀사에서는 기사 보도에 있어 어떠한 용도로 적극적인 인공지능 기술을 도입할 예정입니까?"라는 질문에 '컨텐츠 추천', '업무 자동화', '기삿거리 탐색' 등 다양한 분야에서 인공지능 기술 도입을 계획하고 있었다. 그만큼 이미 언론에서도 인공지능 기술은 먼 세상 이야기가 아닌, 당장 피부로 느껴질 정도로 가까워졌다.세계 최대 통신사 중 하나인 'Associated Press(AP)'는 2017년 'The Future of Augmented Journalism: A guide for newsrooms in the age of smart machines'이라는 인공지능 활용 기술 가이드를 발간했다. 해당 가이드에 따르면, 인공지능은 언론에서 크게 다섯가지 영역으로 활용된다. 이에 대한 예시를 하나씩 살펴보도록 하자.첫번째로 'Machine Learning', 즉 기계학습이다. 기계학습을 이용하면, 방대한 데이터로부터 결론을 도출하는 과정을 쉽게 처리할 수 있다. 그리고 기계학습 알고리즘을 통해 기자들은 이미지를 포함한 막대한 양의 자료를 한 번에 처리할 수도 있다. 미국의 매체 'Quartz' 소속 'Sarah Slobin' 기자가 트럼프 미국 대통령의 취임 연설에 대한 기사에 기계학습을 이용한 분석 자료를 쓴 일례가 있다. 트럼프의 얼굴 표정과 연설에서 표현된 감정을 판단하는 데에 기계학습 알고리즘을 사용한 것.< 출처: Quartz, 제공: 스켈터랩스 >두번째 활용 영역은 'Language'다. 인공지능 분야에서 언어에 대한 연구는 꾸준히 이어지고 있는데, 언어 처리 분야 중에서도 저널리즘과 관련 있는 기술은 '자연어 생성'과 '자연어 처리'다. 당연하겠지만, 자동으로 문장을 생성하는 것은 언론에서 매우 유용하게 사용할 수 있는 기술 중 하나다. 'LA Times'는 'LA Quakebot'이라는 서비스를 개발했다. 'LA Quakebot'은 자연어 생성 기술을 활용해 지역에서 지진이 일어난 순간, 이미 작성된 프레임에 맞춰 기사를 작성하며, 완성된 기사는 트위터를 통해 송출한다.< 출처: LA QuakeBot 트위터, 제공: 스켈터랩스 >세번째는 'Speech'로, 저널리즘에서 대화형 인터페이스가 뉴스 소비 및 유통에 어떠한 영향을 미칠 지 관심을 가지고 있다. 이미 'AP', 'Wall Street Journal', 'BBC', 'Economist' 등 여러 미디어가 오디오 인터페이스 기술을 시도하는 것으로 알려졌다. Speech 역시 크게 두 가지로 나뉘는데, 'TTS'라고 불리는 'Text-To-Speech'를 활용하면 뉴스룸에서 제공하는 문자 기사를 음성으로 변환시키고, 합성된 음성을 콘텐츠로 송출할 수 있다. 반대로 'STT', 즉 'Speech-To-Text'를 활용하면 음성으로부터 의미를 잡아내고, 모든 의도와 목적에 맞춰 음성을 문자로 변환시키며, 이를 통해 기자들이 인터뷰 내용을 녹취하는데 소요하는 시간을 줄일 수 있다.< 출처: BBC NEWS LABS, 제공: 스켈터랩스 >네번째, 듣는 것과 녹취하는 것을 넘어 눈으로 본 것을 기록할 수 있는 'Vision' 기술이다. 컴퓨터 비전을 활용하면 빠르고 쉽게 이미지 및 영상을 분류하고 정리할 수 있다. 용이한 검색을 통해 궁극적으로 편집 속도까지 높일 수 있는 셈이다. 'AP'는 인공위성으로 수집한 영상 데이터를 공급하는 'Digital Globe'라는 기업을 통해 동남아 선박의 고해상도 위성사진을 확보했다. 이를 통해 노예선에 관한 탐사보도에 필요한 결정적인 증거를 찾으며, 2016년 공공서비스 부문 퓰리처상을 수상했다.< 출처: AP, 제공: 스켈터랩스 >마지막으로 'Robotics'를 꼽을 수 있다. 로봇 센서를 활용해 사건 사고에 대한 사람들의 반응을 실시간으로 측정할 수 있으며, 앞서 언급한 'Quakebot'의 예처럼 자연재해가 발생하는 것에 대해 다룰 수 있다. 'AP'는 2016년 하계올림픽 당시, 로봇과 원격 카메라를 이용해 기자들이 물리적으로 직접 접근할 수 없는 지역에 카메라를 설치하고, 원격 조종해 촬영했다. 또한, 드론을 이용해 이라크 모술 남동쪽 다이바가 근처에 추방된 이라크인들을 촬영해 중독 지역 난민 위기에 대해서도 보도한 바 있다.< 출처: AP, 제공: 스켈터랩스 >이렇듯 인공지능이 미디어 업계 전체에 긍정적인 영향을 주고 있으며, 이를 활용한 사례는 앞으로도 더욱 늘어날 것으로 전망한다. 다만, 지속적으로 발전하는 인공지능을 무조건 도입하는 것만이 능사는 아니다. 인공지능 기술의 확산으로 보도 속도, 보도 규모 및 범위 등에 도움될지라도, 데이터의 질에 따라 좋지 않은 기사가 나올 수 있기 때문이다. 'AP'의 스마트머신 시대 뉴스룸을 위한 가이드에도 언급된 포인트로 마무리를 해보자.1. 인공지능은 저널리즘의 도구이지, 저널리즘을 대체하지 않을 것이다.2. 인공지능은 인간과 마찬가지로 편향적이고, 실수를 할 수도 있다. 이는 데이터가 모든 것을 결정하기 때문이다.3. 인공지능이 만병통치약은 아니다. 최근 자율주행 자동차 사고 이슈처럼 기술이 극복하지 못하는 문제는 여전히 존재한다.4. 인공지능에 대해 더 많이 알아야 인공지능 활용 가능성의 문이 크게 열린다.5. 저널리즘의 도구가 변한다고 해서 저널리즘의 법칙이 변하지 않는다. 언제나 윤리와 기준은 매우 중요하다.이호진, 스켈터랩스 마케팅 매니저조원규 전 구글코리아 R&D총괄 사장을 주축으로 구글, 삼성, 카이스트 AI 랩 출신들로 구성된 인공지능 기술 기업 스켈터랩스에서 마케팅을 담당하고 있다 #스켈터랩스 #기업문화 #인사이트 #경험공유 #조직문화 #인공지능기업 #기술기업
조회수 885

[Tech Blog] Keep Principles in Mind

원칙(Principle)은 중요합니다. “난 원칙대로 살지 않겠어!” 라고 외치고 싶더라도, 원칙이 있고 원칙을 충분히 이해하고 있지 않다면 그저 사춘기 소년/소녀의 이유 없는 반항 정도로 밖에 들리지 않을테니까요. 사실 대부분의 이런 경우 원칙 보다는 “규칙(Rule)대로 살지 않겠다”에 가깝지만, 여기에서는 그냥 넘어가도록 하죠. 소프트웨어 개발에도 다양한 원칙들이 존재합니다. 학부 수업에서 잠깐 들었거나 이런 저런 글들을 읽다가 접해 봤을 이런 원칙들은 실제 서비스를 만들면서 바쁘게 기능을 추가하고 버그를 수정 하느라 어느새 기억 속에서 잊혀지곤 하죠. 정신없이 기능을 구현하다가 문득 코드를 돌아봤을 때 ‘이게 왜 여기에 있지’ 라는 의문이 든다면 한 번쯤 원칙을 되새겨 보라는 신호가 아닐까요? 이 글에서는 Clean Architecture 와 Clean Code 등의 저자로 유명한 Uncle Bob(Robert C. Martin)이 얘기하는 S.O.L.I.D Principles 에 대해 얘기해 보려고 합니다. SOLID 원칙은 밥 아저씨가 2000년도 자신의 논문 Design Principle and Design Patterns 에서 OOD(Object-Oriented Design)를 위해서 제안한 5가지 원칙의 앞 글자만 떼서 붙여졌습니다. Object-Oriented Design 을 대상으로 제안된 원칙이지만 Agile 개발 등의 개발 방법론 핵심 철학에도 적용될 수 있는 개념들 입니다. S.O.L.I.D Principles Single Responsibility Principle Class 는 오직 한 가지의 책임이 주어져야 하고, 오직 한 가지 이유에서만 변경되어야 합니다. 보고서를 편집하고 출력하는 모듈에 대해서 생각해 볼까요. 해당 모듈은 두 가지의 이유로 변경될 가능성이 있습니다. 보고서의 내용이 바뀌었을 때도 변경되어야 하고, 보고서의 형식이 바뀌었을 때도 변경되어야 합니다. 편집 과정 때문에 모듈을 변경하다 보면 해당 변경 사항이 출력 부분에도 영향을 미칠 가능성이 상당히 높습니다. 이 경우 내용을 편집하는 모듈(i.e 내용을 담당하는 모듈)과 출력하는 모듈(i.e 형식을 담당하는 모듈) 두 가지로 나뉘어야 합니다. “할 수 있다고 해서 해야 한다는 뜻은 아닙니다.” Open / Closed Principle Class, Module, Function 등의 소프트웨어 구성 요소는 확장(extension)에 대해 열려 있어야 하며, 변경(modification)에 대해 닫혀 있어야 합니다. 어떤 모듈이 Data Structure 에 필드를 추가하거나 함수를 추가하는 등 확장이 가능하다면 그 모듈은 확장에 대해 열려 있다고 표현합니다. 반면에 어떤 모듈이 수정 없이 다른 모듈에 의해 사용될 수 있다면 그 모듈은 닫혀 있다고 표현합니다.  public class CreditCard {     private int cardType;       public int getCardType() { return cardType; }       public void setCardType(int cardType) { this.cardType = cardType; }          public double getDiscount(double monthlyCost){          if (cardType == 1) {              return monthlyCost * 0.02;          } else {              return monthlyCost * 0.01;          }     } }  위 CreditCard class 에 새로운 카드 타입을 추가하려고 하면 getDiscount 함수를 변경할 수 밖에 없습니다. 이 경우 Open/Closed Principle 을 위반된다고 볼 수 있습니다. “코트를 입기 위해서 개복 수술을 할 필요는 없으니까요.” Liskov Substitution Principle 프로그램 상의 Object 들은 프로그램의 정확성을 해치지 않으면서 하위 타입의 Instance 로 변경 가능해야 합니다. 하위 타입 함수 인자의 반공변성(Contravariance), 하위 타입 함수 반환 타입의 공변성(Covariance), 상위 타입의 예외를 상속하지 않는 추가적인 예외 발생 금지 등의 요구 사항이 있습니다. OOP 에서 상속 개념을 배울 때 이해를 돕기 위해 주어진 몇 가지 예시들이 있었을텐데, 우습게도 우리가 생각하기에 타당한 상속에 관한 예시들 중 의외로 원칙을 위배하는 경우가 많습니다. Liskov Substitution Principle 을 위반하는 대표적인 예시는 정사각형과 직사각형입니다. 정사각형은 직사각형의 일종이니 Square가 Rectangle을 상속받는 것이 충분이 타당한 것으로 보입니다. 정말 그럴까요? Rectangle 의 넓이를 구하는 함수의 테스트를 구성해 봅시다.  Rectangle rect = new Rectangle(); rect.setWidth(10); rect.setHeight(20); assertEquals(200, rect.getArea());  여기에 new Rectangle() 대신에 new Square()가 rect 에 할당되면 어떻게 될까요? 넓이는 400 을 반환하기 때문에 테스트는 실패하겠죠. 정사각형이 직사각형을 상속 받으면 Liskov Subsitution Principle 을 위반한다고 볼 수 있습니다. 상속은 문제를 해결하는데 있어서 상당히 유혹적인 방법입니다. 하지만 상당히 많은 경우에 상속을 오용할 가능성이 높습니다. “오리처럼 생기고 오리처럼 꽥꽥 거리더라도, 배터리가 필요하다면 오리가 아닙니다.” Interface Segregation Principle 많은 것을 아우르고 일반적으로 사용 가능한 하나의 interface 보다 특정 클라이언트를 위한 여러 개의 interface 가 낫습니다. Xerox는 Stapling(프린터기가!?), Fax 등의 다양한 기능이 포함된 신규 프린터 소프트웨어를 개발 도중, 더이상 개발이 불가능할 정도로 프로그램이 번잡 해졌다는 것을 인정하고 밥 아저씨에게 도움을 요청합니다. 문제는 Job Class 하나가 모든 기능을 다 구현하고 있다는데 있었습니다. 이 비대한 Class 는 Client 입장에서 사용되지도 않을 모든 함수를 알 수 있게 구성 되어 있었죠. 이 문제에 대해 밥 아저씨는 Interface Segregation Principle 을 적용하여 각 Client 입장에서 사용해야 하는 함수 만을 가지고 있는 각 interface 들을 따로 만들었습니다. 그리고는 다음에 나올 Principle 인 Dependency Inversion Principle 을 통해서 해당 기능을 구현하게 함으로써 문제를 해결했습니다. Dependency Inversion Principle “추상화에 의존해야지, 구체화에 의존하면 안됩니다.” 상위 계층의 모듈은 하위 계층의 구현이 아니라 추상화에 의존해야 합니다. 상위 계층이 하위 계층의 구현에 의존하던 전통적인 의존 관계를 역전 시킴으로써 상위 계층이 하위 계층의 구현으로부터 독립되게 할 수 있습니다. 예를 들어 Dependency Injection 은 이 원칙을 따르는 방법 중 하나 입니다. Conclusion 세상에 나쁜 프로그램은 있습니다. 당장 눈에 보이는 기능이 똑같다고 같은 프로그램인 것은 아닙니다. 생각보다 많은 코드들이 ‘그 곳에 넣을 수 있기 때문에’, ‘그 곳에 넣어도 돌아가기 때문에’ 깊은 고민 없이 그 곳에 정착합니다. 당장 좀 더 빠르게 기능을 추가해서 주변 사람들의 박수를 받을 수도 있습니다. 허나 이것들이 쌓이면 더이상 손댈 수 없는 코드가 되고, 문제를 느끼고는 Refactoring을 하자고 다짐하고, 모두 엎은 다음 또 다시 같은 코드를 만들게 되겠죠. 쉬운 코드가 가장 만들기 어려운 코드이고, 그런 좋은 코드는 좋은 원칙으로 부터 나옵니다. 변화에 적응할 수 있는 프로그램, 의도가 쉽게 읽히는 프로그램, 문제 발생 가능성이 적은 프로그램, 쉽게 확장할 수 있는 프로그램 등 좋은 프로그램을 만드는 것은 우리가 실제로 목표하는 것을 달성하기 위해서 정말 중요합니다. 이는 그저 경험이나, Tweak 만으로 이루어지지 않습니다. 다양한 신규 기술들과 Framework 들을 두루 섭렵하면서 활동 반경을 넓히고 경험을 쌓았다면, 가끔은 잠시 서서 원칙에 대해 되돌아 보는 것은 어떨까요?   *버즈빌에서 활기찬 개발자를 채용 중입니다. (전문연구요원 포함)작가소개 Whale, Chief Architect “Keep calm and dream on.”
조회수 2897

웹 플러그인 개발기 - iframe의 재발견

채널 웹 플러그인을 개발하며 겪은 문제들과 우리 팀의 해결책을 소개합니다. 채널 웹 플러그인은 SDK의 형태로 고객사 웹사이트에 붙어서 고객이 매니저와 대화할 수 있는 인터페이스를 제공합니다. 이 글을 쓰고 있는 당시 약 2300개의 채널이 개설되었고, 하루 약 180만 명의 일반 유저가 웹사이트에 붙은 저희 플러그인을 보고 있습니다.플러그인은 고객사 웹사이트 (이하 호스트 웹사이트라고 함) 의 HTML 도큐멘트에 붙어서 실행됩니다. 이 말은 실행 환경 (자바스크립트, CSS, DOM 환경 등) 을 우리가 컨트롤하지 못한다는 것을 의미합니다. 이것이 일반적인 웹서비스와 플러그인 개발의 가장 큰 차이점이고 사실상 많은 이슈들은 이 차이로부터 기인합니다. 또 이것에 대응하기 위해 프레임워크의 선택부터 개발, 배포에 이르기까지 훨씬 신경 써야할 부분이 많았습니다. 이 글에서는 그 중 호스트 웹사이트와의 실행 환경 공유에 따른 문제들을 자바스크립트와 CSS로 나누어 나열하고 iframe 을 이용하여 해결한 과정에 대해 설명하겠습니다.채널 홈페이지에 웹 플러그인이 붙은 모습1. 자바스크립트와 관련된 이슈1-1. 네임스페이스 공유에 따른 충돌 문제브라우저에서 자바스크립트는 글로벌 네임스페이스를 공유합니다. 이 속성 때문에 플러그인에서 window 를 접근해서 수정한다던가 글로벌로 객체를 정의해서 사용하면 호스트 웹사이트에 영향을 미칠 수 있습니다. 이 문제는 코딩할 때 아래 항목을 주의하는 정도로 큰 비용 없이 방지할 수 있습니다.플러그인의 최상위 네임스페이스를 만든다.(ex. window.CHPlugin)플러그인에서 사용하는 모든 객체는 최상위 네임스페이스 아래에 정의되도록 한다.(ex. window.CHPlugin.outObject)window 객체에 접근할 때는 수정하거나 추가하는 부분이 없도록 주의한다.(ex. [removed] = function(){}와 같은 코드는 사용하면 안 됨. 기존에 [removed] 이벤트가 날아감)사용하는 라이브러리들 중에 window에 바인딩하는 것이 없는지 체크하고 있으면 직접 수정하여 모듈화한다. (ex. lodash는 기본적으로 window 에 _ 객체를 생성함)이건 사실 플러그인이 아니더라도 주의해야하는 거죠..1-2. 에러로 인한 오동작 가능성더 어려운 문제는 바로 예측하기 어려운 오동작의 가능성이 있다는 것입니다. 호스트 웹사이트에서 동작하는 자바스크립트에서 에러가 날 경우 플러그인의 동작에도 영향을 미칠 수 있으며, 반대로 플러그인에서 에러가 발생해서 호스트 웹사이트의 코드 실행을 멈출 수 있다는 것입니다. 양방향으로 영향을 미칠 수 있는 것이죠. 특히 후자의 경우는 우리의 실수로 고객사의 서비스에 피해를 끼칠 수 있으니 쉽게 넘길 문제는 아닙니다.아이디어 1: try/catch를 적절히 처리한다?이를 해결하기 위해 가장 쉽게 생각할 수 있는 방법으로는 호스트 웹사이트 쪽에서 try/catch를 적절하게 처리하도록 가이드를 하는 방법입니다. 예를 들어 플러그인 코드의 바깥 쪽에 try/catch처리를 하고 호스트 웹사이트의 자바스크립트에도 적당하게 처리를 하면 되지만 이 방법은 현실적으로 어려움이 있습니다. 우리의 타겟 고객사들은 일반 쇼핑몰들이고 이들은 대부분 개발자가 없거나 쇼핑몰 빌더를 이용해 만들어진 사이트들이기 때문에 개발력이 없는 경우가 많습니다. 또 설사 개발력이 있다 하더라도 플러그인을 붙이기 위해 가이드할 것이 너무 늘어나는 문제가 있죠.아이디어 2: 자바스크립트 실행 순서를 강제한다?생각해볼 수 있는 또 다른 방법은 호스트 웹사이트의 코드와 플러그인 코드의 실행 순서를 명확히 정해서 한 방향의 영향이라도 차단하는 것입니다. 예를 들어 플러그인 코드가 호스트 웹사이트의 코드보다 항상 먼저 실행되도록 고객사에게 가이드한다면 우리의 코드는 항상 문제 없이 실행될 것이고 호스트 웹사이트에서 에러가 발생하더라도 영향을 받지 않을 것입니다. 하지만 이 방법 역시 마음에 들지 않았는데요 양방향의 영향을 모두 차단하지는 못하기 때문입니다. 그리고 더욱 큰 문제는 플러그인은 한 번 실행되고 끝나는 단순한 스크립트가 아니라 계속해서 실행이 되는 애플리케이션이기 때문에 사실상 소용이 없습니다.2. CSS와 관련된 이슈채널 웹 플러그인은 UI도 포함합니다. 플러그인의 DOM이 호스트 웹사이트에 붙어있기 때문에 플러그인의 스타일을 정의하는 CSS도 호스트 웹사이트에 Inject 되어야합니다. 호스트 웹사이트의 CSS와 플러그인의 CSS가 같은 스코프에 존재하기 때문에 우리가 의도한 스타일이 제대로 표현되지 않을 가능성이 있습니다. 실제로 이 문제는 런칭 초기에 우리를 가장 괴롭혔던 문제입니다. 쉽게 생각해볼 수 있는 방법은 아래와 같습니다.플러그인의 CSS에 네임스페이스를 둔다.(플러그인 CSS가 호스트 웹사이트 CSS에 주는 영향을 차단함)CSS 의 우선순위를 이해하고 플러그인 CSS의 우선순위가 항상 높도록 처리한다. (CSS Specificity 링크 참조)하지만 위처럼 처리하더라도 모든 경우에 대해 해결이 되는 것은 아닙니다. 주된 이유는 우리가 개발을 할 때 모든 CSS 속성을 정의하지 않기 때문입니다. 플러그인에서 정의하지 않은 속성을 호스트 웹사이트에서 사용한다면 호스트 웹사이트의 스타일이 적용될 것입니다. 또 특수한 경우이긴 하지만 만약 호스트 웹사이트에 !important 가 적용되어 있다면 그 속성이 덮어씌워지게 됩니다.!important는 사용하지 맙시다..ㅜ아이디어: 스타일 Normalizing?여기에서 의미하는 Normalizing은 모든 DOM 엘리먼트에 가능한 모든 CSS 속성의 기본값을 정의하는 것을 의미합니다. 크로미움을 기준으로 모든 CSS 속성 목록은 이 곳을 참조하시면 됩니다. 이것을 바탕으로 normalize.css를 만들어 적용했습니다.이 방법을 적용한 이후로는 스타일이 오버라이딩되는 문제는 어느 정도 해결되었습니다. 물론 !important에 대한 대응은 여전히 되지 않지만요. 그런데 예상하지 못한 부작용이 발생했는데 첫번째는 디버깅할 때 크롬 인스펙터가 도저히 사용하지 못할 정도로 느리다는 것입니다. 두번째는 CSS가 inheritance 가 안 되고 기본 엘리먼트 셀렉터의 우선순위가 높아서 직접 코딩해야하는 CSS가 2~3배는 길어지는 불편함입니다. 위 두 이유로 개발 피로도가 상당히 높아져서 머지 않아 다른 방법을 알아보게 되었습니다.3. iframe 도입위에 나열한 문제들을 해결할 수 있는 아이디어로 iframe을 리서치하게 되었습니다. 사실 iframe은 최근 웹서비스에서는 잘 사용하지 않기도 하고, 보통은 사용하지 않는 것을 권장하기도 하죠. 따라서 저희 팀에서도 처음에는 고려사항이 아니었는데요 우리와 유사하게 채팅 인터페이스를 제공하는 인터콤에서 iframe 을 적용한 것으로부터 아이디어를 얻어왔습니다.원래 목적에 맞게 사용하지 않으면 독이 됩니다.iframe은 HTML 도큐멘트 안에서 또 다른 도큐멘트를 임베드합니다. iframe 내에 있는 도큐멘트는 호스트 도큐멘트와 자바스크립트 스코프가 분리되어 있고, CSS가 적용되는 스코프 역시 분리되어 있습니다.이런 속성 때문에 위에 나열한 문제들을 원천 차단할 수 있습니다. 자바스크립트 스코프가 분리되어 있기 때문에 글로벌 네임스페이스에 접근해도 호스트 웹사이트에는 전혀 영향이 없고, 자바스크립트의 에러로 인해 다른 쪽 자바스크립트까지 실행을 멈추는 오동작을 막을 수 있습니다. CSS 역시 Normalizing 을 하지 않더라도 호스트 웹사이트와 플러그인은 완벽히 분리가 됩니다.4. iframe 의 단점iframe을 도입하여 1, 2번에 나열한 문제들은 해결했지만 그에 따른 작은 문제들도 발생했습니다. 첫번째는 iframe도입 시 가장 먼저 고민해야할 부분인데 바로 3rd-party cookie 문제입니다. iframe 안에서 로드되는 도큐멘트는 3rd-party 컨텐츠로 인식합니다. IE에서는 기본 설정이 3rd-party cookie 허용을 하지 않기 때문에 쿠키를 사용해서 인증을 구현한 경우 문제가 될 수 있습니다.두번째는 도큐멘트가 분리됨에 따라 발생하는 코딩상의 여러 불편함들입니다. 여기에서는 범위를 벗어나 더 자세하게는 설명하지 않겠지만 도큐멘트가 분리되니 조금 더 신경써야할 것들이 있었습니다.저희 팀의 경우 쿠키 인증 방식이 아닌 토큰 형태의 인증도 지원을 하고 있었기 때문에 첫번째는 크게 문제되지 않았고 두번째 문제도 얻는 이득에 비하면 불편함을 감수하는 편이 훨씬 좋다는 판단이 들어서 도입을 결정했습니다.마무리플러그인 개발을 시작할 당시에 우리 팀은 웹 SDK 형태의 프로젝트 개발 경험이 없었습니다. 리서치를 해도 플러그인 개발과 관련된 아티클이나 리소스 그리고 보일러플레이트 프로젝트도 많지 않았습니다. 프레임워크, 아키텍쳐를 선택하는 것부터 프로젝트를 구성하는 것부터 개발, 배포 및 운영에 이르기까지 일반적인 웹서비스를 개발할 때와 조금 다른 고민들을 해왔던 것 같습니다. 앞으로 저희가 해 온 고민을 공유하려고 합니다. 저희와 같은 플러그인, SDK 형태의 제품을 개발하고 계신 분들에게 도움이 되었으면 좋겠습니다.#조이코퍼레이션 #개발자 #개발팀 #인사이트 #경험공유 #일지
조회수 1021

VCNC 개발팀 워크숍을 소개합니다. - VCNC Engineering Blog

VCNC 에서는 최근에 모빌리티 서비스 이동의 기본 타다를 출시했습니다. 신규 서비스를 준비하면서 팀도 새롭게 구성되고 새로운 멤버들이 팀에 합류했습니다. 이러한 변화 속에서도 좋은 개발 문화를 유지하기 위해서 VCNC 개발팀은 큰 노력을 하고 있습니다. 그중에서도 모두가 자랑하고 싶어 하는 VCNC 개발팀 워크숍을 소개합니다.VCNC 개발팀 워크숍최근 VCNC 개발팀 워크숍은 2018년 12월 19일 수요일에 진행되었습니다. 2016년 12월 처음 시작해서 최근까지 총 6번의 워크숍이 열렸습니다. VCNC 가 SOCAR에 인수되어 타다 서비스를 바쁘게 준비했던 2018년 8월을 제외하고 1년에 3번씩(4, 8, 12월) 꾸준히 개최되고 있습니다.VCNC 개발팀 워크숍은 개발팀 멤버들이 업무 외적으로 가지고 있던 각자의 관심사들을 공유하고 개발자들이 할 수 있는 고민을 같이 나눠보기 위한 욕구에 의해 처음 제안되었습니다. 포맷을 어떻게 할지 논의한 끝에 아래와 같은 포맷으로 워크숍을 진행하기로 했고 최근까지 이 포맷으로 워크숍을 진행하고 있습니다.오전 시간에는 모든 멤버가 각자의 관심사에 대해 5~10분 정도로 가벼운 라이트닝 톡을 하자.오후 시간에는 토의 주제를 정해서 몇 가지 깊은 토의를 나눠보자.회사의 업무에서 완전히 벗어나서 집중하기 위해 프로젝터 사용이 가능한 외부 카페를 대관하자.고기 회식을 하자!2018년 12월 제 6회 VCNC 개발팀 워크숍 단체 사진라이트닝 톡라이트닝 톡은 위에 언급했던 대로 모든 멤버가 5~10분 정도의 시간 동안 각자의 관심사에 대해서 다른 멤버들에게 소개하는 시간입니다. 발표 주제는 처음에는 개발로 한정 지었다가 더 폭넓게 관심사를 공유하기 위해 자유 주제로 변경했습니다. 다들 워크숍 전날까지는 어떤 발표를 해야 할지 걱정하며 투덜대지만, 막상 워크숍 당일이 되면 굉장히 흥미로운 주제들을 가지고 참여를 합니다. 라이트닝 톡이라는 의미에 맞게 1회 워크숍에서는 타이머를 켜고 시간 체크를 하면서 간단하게 발표를 했습니다. 그런데 기대했던 것보다 훨씬 좋은 발표들이 나오면서 발표 시간을 유동적으로 해서 발표의 퀄리티를 더 높이기로 했는데, 바로 다음 워크숍에 1시간 10분짜리 장대한 강의가 등장하는 바람에 절제의 중요성을 다시금 느끼면서 다시 타이머를 켜기로 했습니다…2017년 12월 워크숍에서는 PB팀이 상품 협찬을 해줘서 (PB팀 감사합니다!) 최고의 발표를 선정해 밀크 미니 인형을 지급했습니다. 영예의 수상자는 욕망의 흐름 이라는 발표를 정말 욕망의 흐름대로 발표한 Max로 선정되었습니다.<iframe src="https://docs.google.com/presentation/d/e/2PACX-1vQChBaARqlj8XfZx75MtkcejwupwBPt9tgD47sL99L1mHceYnPR2yDJnVAKFq8nFHXG9Pc9QbWBA5Eb/embed?start=false&loop=false&delayms=10000" frameborder="0" allowfullscreen="true" mozallowfullscreen="true" webkitallowfullscreen="true"> 지금까지 워크숍을 6회나 진행했기 때문에 상당한 양의 라이트닝 톡 발표자료들이 모였습니다. 그중에서 몇 가지 발표의 슬라이드를 공유합니다.Glitches of Mario by PrinceOrigami - 종이접기와 수학 by PrinceLattice-based Cryptography by BradTADA-Android 회고 by David기반 작업들을 무엇을 했는가? + RIB 간단 설명Contract by DoogieAd Fraud by HughBB84 - 양자 역학을 이용한 절대적으로 안전한 키 분배 프로토콜 by James불완전성 정리 by James삼단논법 by JamesGAN by MaxReinforcement Learning based on AlphaGo by NelsonSteganography by Nelson재귀의 폭풍 by TedUBER: COSTS & REVENUES by TerryProbabilistic Filter by Youngboom다음 워크숍부터는 발표를 녹화해서 슬라이드와 함께 공유해보도록 하겠습니다.최고의 발표로 선정된 Max종이접기로 각의 3등분선 구하기 실습필자의 발표를 경청하는 멤버들디스크의 위험성을 온몸으로 표현 중 심층 토의VCNC 개발팀 워크숍에서는 회사의 주요 결정사항 혹은 공통으로 관심이 있는 이슈들을 선정해서 모두의 의견을 듣고 공감대를 형성하거나 액션 플랜을 세우는 토의를 진행합니다. 토의의 주제는 발전적이고 열린 커뮤니케이션을 지향하는 멤버들의 특성상 회사 생활 과정에서 자연스럽게 형성됩니다. VCNC 에서는 평소에도 서로의 의견을 공유하는 자리를 자주 가집니다. 그 예로는 매 달 진행하는 매니저와의 1:1 개인 리뷰 제도, 각 팀별 주간 회고 회의, 제품 피쳐 개발 단위로 진행하는 회고 회의 등이 있습니다. 이러한 의견 공유 과정에서 멤버 각자가 생각하는 불만, 문제점, 희망 사항들이 자연스럽게 워크숍의 토의 주제로 발전됩니다. 토의는 특별한 절차 없이 모든 구성원이 자연스럽게 끼어들면서 자신의 의견을 펼치며 진행됩니다. 모두의 의견을 듣는 것이 중요하기 때문에 특별한 주제가 아니라면 적은 인원으로 조를 구성해서 토의한 뒤 의견을 취합합니다. 정리한 내용은 제품팀 및 HR 담당자에게 전달되며 그 후 우리가 해볼 수 있는 시도들을 하거나 새로운 회사의 정책들이 생겨나기도 합니다.둘러앉아서 토의에 집중하는 멤버들 (편안한 자세 가능)아래의 항목들은 실제로 진행했던 토의의 주제들입니다.순수 개발 관련점차 높아지는 개발 복잡성을 어떻게 해결할까?서버-클라 간 프로토콜 문서화 문제제품 개발 프로세스 관련제품 개발 프로세스를 스프린트에서 칸반으로 변경하고 지금까지 겪었던 느낀 점, 문제점 및 해결 방안은?이슈 관리가 잘 안 되는데 원인 및 해결책은?QA가 필요한가? 제품 품질을 높이기 위해선 무엇을 해야 하는가?회사의 문화, 복지 등 전반회사에서 팀 간 커뮤니케이션을 원활하게 하기 위해 Manager 제도가 도입되는데 Manager 는 어떠한 역할을 맡아야 하는가?Manager 제도의 후기 공유 및 개선 방향.어떠한 모습의 회사를 원하는가?필요한 사내 문화 및 복지는 무엇이 있을까?개인의 발전 관련언제 동기부여가 되는가? 저하되게 만드는 요인은?어떠한 사람과 같이 일을 하고 싶은가?어떠한 모니터링 및 피드백을 받고 싶은가?VCNC 개발팀 워크숍의 토의 결과로 회사의 많은 부분이 발전하고 있습니다. QA 팀이 생겼고 해외 및 국내 콘퍼런스 지원 관련 복지 정책이 새로 생겼습니다. 제품 개발 프로세스는 새로운 시도를 거치면서 지속해서 발전해 나가고 있습니다.그 외우걱우걱워크숍에는 풍족한 먹을거리가 함께합니다. 카페를 대관하는 경우에는 무제한으로 음료가 제공되며 점심시간에는 배달을 시켜서 먹으면서 함께 이야기를 나눕니다. 마무리로 저녁에는 고기를 먹고 싶은 만큼 맘껏 먹으면서 역시 이야기꽃을 피웁니다.미니게임워크숍의 포맷이 라이트닝 톡 + 심층 토의 조합으로만 진행되어 느껴지는 지루함을 탈피하기 위해 2018년 4월 워크숍에서는 2인 1조로 팀을 구성해서 미니게임을 진행했습니다. 개발자 감성에 걸맞게 스크래치 게임인 Lightbot 2로 1시간 정도 플레이를 했습니다. 승패가 있는 대결은 아니었지만 다들 피로감을 호소할 정도로 엄청나게 집중하면서 시간을 보냈습니다.워크숍의 핵심은 고기를 굽는 것점심에는 피자를 시켜 먹으며 자유로운 대화를 나눕니다.집중해서 Lightbot 을 플레이하는 플레이어휴식 중에도 즐거운 대화는 계속됩니다. 마치며VCNC 개발팀 워크숍은 앞으로도 계속됩니다. 앞으로도 좋은 회사의 문화를 소개하는 기회를 자주 만들도록 노력하겠습니다. 저희와 함께 VCNC 를 발전시킬 좋은 분들을 기다리고 있으니 많은 지원 바랍니다!
조회수 2897

Eclipse 디버거 사용법

꽤 많은 분들이 디버거의 존재 자체를 모르고 있거나 혹은 디버거가 있다는 사실은 알아도 그 효용성에 의문을 제기하곤 합니다. 왜냐하면, 우리에겐 Log 클래스나 혹은 printf같은 훌륭한(?) 디버깅 도구가 있다고 생각하기 때문이죠. 물론 이렇게 필요한 변수를 찍어보면서 어떤 곳에서 버그가 있는지를 알아보는 일이 잘못된 일은 아닙니다만 복잡한 여러 상황이 맞물려 재현되는 버그는 이러한 고전적인(?) 방법을 써서 알아보기가 매우 어렵습니다.원인을 정확히 그리고 빨리 파악하려면 디버거의 사용법을 숙지하고 사용하는 것이 가장 좋습니다. 대부분의 개발 환경에서 디버거를 제공하는데 다행히 이클립스에서도 쓸만한 디버거를 내장하고 있습니다.오늘 포스팅에서는 이클립스 디버거 사용법에 대해 다루어 볼까 합니다.이클립스 디버거 뷰이클립스는 디버거 뷰를 제공하여 디버거를 사용할 수 있도록 합니다. 디버거 뷰는 어디에서 확인할 수 있을까요? 바로 우측 상단에 Debug 뷰에 들어가면 그곳에서 확인할 수 있습니다.디버깅의 시작그렇다면 어떻게 디버깅을 활성화한 상태로 프로그램을 실행할 수 있을까요? 상단 메뉴의 Run에서 프로그램을 실행할 때 Debug를 이용하여 프로그램을 실행하면 디버거가 작동하게 됩니다.브레이크 포인트 설정과 뷰보통 디버깅을 할 때 가장 먼저 하는 일이 브레이크 포인트를 잡는 일입니다. 브레이크 포인트를 에러가 일어나는 라인이나 혹은 의심이 가는 변수를 추적할 수 있는 라인쯤에 잡아놓고 프로그램을 디버깅하면 해당 라인을 실행할 때 디버거가 작동하게 되고 그곳에서 프로그램을 라인 별로 진행해가며 관찰을 진행할 수 있게 됩니다.브레이크 포인트 설정은 매우 간단합니다. 편집기 왼쪽에 파란 부분(마커 바)을 더블 클릭하게 되면 파란 원이 생기는데 이 원이 브레이크 포인트입니다. 혹은 오른 클릭하여 Toggle break point를 누르면 됩니다. 설정 후 다시 더블 클릭하게 되면 브레이크 포인트가 사라지게 됩니다.또한, 디버그의 브레이크 포인트 뷰에서 지금까지 걸어놓은 모든 브레이크 포인트들의 위치를 확인할 수 있고 활성화/비활성화, 삭제도 할 수 있습니다. 여러 브레이크 포인트가 걸려있을 때에는 이 탭에서 확인하고 관리하는 것이 더 편합니다.또한, 디버깅을 진행하고 있는 도중에도 다른 의심이 가는 라인에 브레이크 포인트를 걸 수 있습니다.스텝 단위 진행지정한 브레이크 포인트에 다다르면 동시에 디버거가 작동하게 되고 그 라인부터 스텝 단위의 진행을 할 수 있게 됩니다.이제 이 뷰의 버튼들을 이용하여 현재 상황을 진행하거나 되돌릴 수 있습니다. 자주 사용하는 버튼의 사용법을 알아보면Resume : 다음 브레이크 포인트를 만날때까지 진행합니다.Suspend : 현재 작동하고 있는 쓰레드를 멈춥니다.Terminate : 프로그램을 종료합니다.Step Into : 메서드가 존재할 경우 그 안으로 들어가 메서드 진행 상황을 볼 수 있도록 합니다.Step Over : 다음 라인으로 이동합니다. 메서드가 있어도 그냥 무시하고 다음 라인으로 이동합니다.Step Return : 현 메서드에서 바로 리턴합니다.Drop to Frame : 메서드를 처음부터 다시 실행합니다.등이 있습니다.실제로 디버깅 화면에서 버튼들을 눌러보면 쉽게 그 쓰임새를 아실 수 있습니다.변수의 상태 확인을 쉽게 해주는 변수 뷰디버깅을 진행하는 도중 변수의 값이나 객체의 상태를 알고 싶은 상황이 생기게 됩니다. 현재 의심이 가는 변수 이외에도 이 변수에 영향을 끼칠 다른 변수들이나 객체들의 상황을 실시간으로 검사할 필요가 있을 때 변수 뷰를 이용하면 도움을 얻을 수 있습니다.이곳에서 변수나 객체의 상태를 확인하고 변수의 상황에 대해서 저장할 수 있습니다. 변수나 객체의 상황을 모두 저장해서 클립보드에 붙이고 싶은 일이 생기면 해당 변수를 오른클릭 후 Copy Variables를 선택합니다.편집 창으로 돌아가 변수에서 Command + shift + i를 누르게 되면(혹은 오른 클릭 후 Inspect를 선택) Inspector 창이 뜨게 됩니다. 이 창에서 다시 한번 Command + shift + i를 누르면 해당 변수를 Expression 뷰로 보내게 되고 이곳에서 지속해서 변수의 상태를 관찰할 수 있게 됩니다.Expression 뷰 이용Expression 뷰에서는 변수 이름을 입력하거나 수행해보고 싶은 명령어를 직접 입력하여 그 결과 값을 관찰할 수 있습니다. 결과 값을 관찰할 뿐만 아니라 Expression에 써놓은 변수들은 명시적으로 지우지 않는 이상 계속해서 관찰을 수행하기 때문에 변해가는 상황을 지속해서 관찰할 일이 있는 변수나 명령문을 등록해놓기에 좋습니다.Display 뷰 이용디스플레이 뷰에서는 현 문맥에서 사용할 수 있는 명령어를 실행하거나 변수의 값을 조작하는 일을 수행하기에 적합한 환경을 제공합니다. Expression에서도 비슷한 기능을 제공하지만, 디스플레이 뷰를 이용하는 것이 더 편합니다. 메모장과 같이 쉽게 쓰고 지울 수 있기 때문입니다.또한, 원본 코드의 수정 없이 편하게 현재의 맥락을 변화시킬 수 있는 것이 가장 큰 장점이라고 볼 수 있습니다.필요한 명령어들을 적어놓은 후 실행하고 싶은 부분만 드래그하여 수행하거나 혹은 값을 리턴받을 수 있습니다. 지금은 boolean변수 하나의 값을 바꿔보기도 하고 조건 값에 따라 무언가를 리턴 받도록도 해놓은 상황을 스크린 샷으로 담아보았습니다.값을 반환받고 싶을 때는 두 번째 버튼을, 단순히 실행만 할 때에는 세 번째 버튼을 누르면 됩니다.두 번째 버튼을 눌러 값을 반환받는 상황입니다.단순히 실행만 하려면 세 번째 버튼을 누릅니다.브레이크 포인트에 조건 걸기브레이크 포인트에 조건을 거는 것이 굉장히 유용할 때가 있습니다. 특히 반복문안에 들어가 있는 코드들을 디버깅할 때 유용하지요. 반복문의 경우 모든 상황을 검사한다기보다는 특정 조건에서 값이 어떻게 들어가는지를 분석하는 경우가 더 많은데 이러한 상황을 검사하기 위해서 브레이크 포인트에 조건을 걸어야 합니다.브레이크 포인트를 거는 과정까지는 똑같습니다. 브레이크 포인트를 건 후 그 포인트에서 오른 클릭을 하면 Breakpoint properties 옵션이 있는 것을 확인할 수 있습니다. 이 옵션에서 조건문을 설정하여 디버거의 활성화 조건을 설정할 수 있습니다.먼저 Conditional을 활성화하여 어떤 조건에서 디버깅 화면으로 전환할지를 쓰면 되는데 이 창에 조건식을 쓰면 됩니다.또 hit count를 이용하여 조건을 걸 수도 있습니다. hit count에 값을 적용하면 해당 라인에 브레이크 포인트가 hit count만큼 잡힌 이후 디버깅 화면으로 전환하게 됩니다. hit count옵션은 반복문에서 한 100번쯤 이후에 디버깅을 시작하고 싶거나 하는 일이 생길 때 유용하게 쓸 수 있습니다.#스포카 #개발 #개발자 #꿀팁 #조언 #인사이트 #디버거 #디버깅 #디버그 #Eclipse
조회수 2363

Good Developer 4 | 학습하는 개발자 -고농축 학습 자료 꿀팁

더 이상의 설명은 필요 없다.지금까지 우리는 Good Developer 시리즈는 커뮤니케이션과 나쁜 개발자의 습관을 통해 좋은 개발자가 무엇인지 알아보았다. 이번에는 좋은 개발자가 되기 위한 가장 중요한 조건 바로 학습하는 개발자에 대해 알아볼 것이다.개발자가 새로운 것을 익히고 배우는 것은 너무도 당연하다. 이것에 대해 글을 쓰는 것은 의미가 없는 것 같아서 많은 고민을 했다. 그래서 실질적으로 학습에 도움을 줄 수 있는 아주 고농축 꿀팁들을 주면 좋은 개발자가 되는데 도움이 되지 않을까 생각했다. 이번 편은 학습하는 개발자 - 고농축 학습 꿀팁 편이다.학습은 천천히, 그러나 꾸준히너무나 당연한 말을 한 번 더 하고 시작할까 한다. 개발뿐만 아니라 모든 학습이 마찬가지겠지만, 꾸준히 학습해야 하는 개발자에게 중요한 것은 학습 습관이다. 이것저것 깨작깨작 찔러보고 공부하는 깊이로는 새로운 기술들을 자신의 것으로 만들 수 없으며 오히려 시간을 낭비하는 것일 수도 있다. 하나의 기술을 배우기 시작했으면 서두르지 말고 천천히 음미하면서 학습해야 한다. 그 대신 한두 달 공부하고 끝내는 것이 아니라 충분한 깊이를 가질 때까지 꾸준히 학습하라!직장을 다녀본 사람은 알 것이다. 직장을 다니면서 따로 자기개발을 하고 학습을 하는 것이 쉽지 않다는 것을 말이다. 하지만 좋은 개발자, 더 나은 개발자가 되기 위해서라면 학습을 멈춰 서는 안된다. 그것이 개발자의 숙명이다. 그래서 개발은 정말 개발을 좋아하는 사람만이 할 수 있는 직업인 것 같다. 혹시 자신이 학습을 하는데 있어 자꾸 포기하게 되고 중단하게 된다면 이전에 썼던 '글로 배우는 코딩 1 | 포기하지 않고 끝까지 공부하는 법'편을 참고해보길 바란다.아래의 학습 정보들은 많이 알 수도 있는 정보지만, 개발자가 되려는 사람들, 잘 모르는 사람들에게는 분명히 좋은 정보가 되리라 생각한다. 알고리즘 사이트 Top 31. 백준 온라인 저지백준 저지는 1만 개 이상의 알고리즘 문제를 보유한 사이트다. 타 사이트에 비해 홈페이지 구성도 잘 되어 있고 문제도 잘 나누어져 있다.그리고 사람들이 문제들을 골라서 자신만의 문제집을 만들어서 공유하기도 한다. 또한 알고리즘 지원 언어도 60개 이상이기 때문에 어떤 언어를 공부하든 웬만해서는 문제없이 풀 수 있다.(이런 언어도 있나 싶을 정도로 많은 언어들의 채점을 지원하고 있다.)기회가 되면 언어들을 직접 세어보는 것도......Baekjoon Online JudgeBaekjoon Online Judge 프로그래밍 문제를 풀고 온라인으로 채점받을 수 있는 곳입니다. 14264 전체 문제 11797 채점 가능한 문제 9316 풀린 문제 64 채점 가능한 언어www.acmicpc.net2. 코드워즈(codewars)코드워즈는 게임 형식의 알고리즘 학습 사이트다. 약 20여 개의 언어를 지원하며, C, C++ C#, Go PHP, JAVA, Python 등 주요 언어들은 모두 지원한다. UI/UX적으로도 굉장히 구성이 잘 되어 있고 인터페이스만 익숙해지면 정말 좋은 코딩 학습 사이트다.영어 사이트이긴 하지만 어느 정도의 독해 수준이면 충분히 학습할 수 있다. 게임 형식으로 알고리즘을 풀기 때문에 정말 재미있게 알고리즘을 학습할 수 있는 사이트! 알고리즘 사이트 중 가장 추천하는 사이트다. 태그도 잘 되어 있어서 function, array, data types 별로 자신이 약한 부분을 집중적으로 학습할 수도 있다.Codewars: Train your coding skillsCodewars is where developers achieve code mastery through challenge. Train on kata in the dojo and reach your highest potential.www.codewars.com3. 프로그래머스프로그래머스는 단계적으로 알고리즘 문제를 풀어볼 수 있는데 최적화된 사이트다. 레벨 1부터 레벨 8까지 정리된 프로그래밍 알고리즘을 풀 수 있다. 지원되는 언어가 C++ 자바 파이썬 자바스크립트로 가장 많이 쓰는 언어만 지원한다는 단점이 있다.모든 문제가 한글이라서 영어가 부담되시는 분들에게는 체계적으로 부담 없이 할 수 있다. 문제를 풀고 제출하는 환경도 잘 구성되어 있어 편리성이 좋은 알고리즘 학습 사이트다. 다만, 다른 사이트 들에 비해 문제의 수가 적다는 점! 영어가 부담되고 단계별로 알고리즘 문제를 풀고 싶다면 이 사이트를 추천한다.프로그래머스동영상과 실습으로 구성된 최고의 프로그래밍 강좌를 만나세요. 프로그래머스에서는 프로그래밍 강좌, 알고리즘 문제, 프로그래밍 대회, 블록체인 자료를 만날 수 있습니다.programmers.co.kr코딩 학습 사이트 Top 51. 유데미(Udemy)엄청나게 질 좋은 강의를 엄청나게 저렴한 가격으로 이용할 수 있는 곳! 1만 원대의 강좌에서 이 정도 퀄리티의 학습 콘텐츠를 얻기는 유데미 외에서는 불가능할 것이다.(광고 글이 아니다 정말이다.) 강의의 분야와 주제도 많고(개발 외에도 여러 가지가 있다) 짧게 짧게, 5~7시간 커리큘럼의 강의들이 많아서 부담 없이 학습할 수 있는 사이트. 강의 수준도 초급부터 고급까지 다양해서 수준 있는 개발자들도 들을 강의가 많다.대부분이 영어 강의이기는 하지만 요즘 한국 강사들의 유입도 늘어서 한국 강의도 늘고 있는 추세다. 영어 자막도 제공하니 영어를 읽을 수만 있다면 강력 추천하는 학습 사이트다.글을 클릭하면 유데미 사이트로 이동합니다.2. 코드카데미(codecademy)체계적으로 코딩을 배우고 싶은데 무료로 배우고 싶다면?! 바로 코드카데미다. 동영상은 보기 귀찮고 읽으면서 단계적으로 코딩을 배우고 싶다면 코드카데미가 적격이다. 자바스크립트를 주축으로 하는 개발 도구 위주만 배울 수 있다는 단점이 있지만, 코딩을 직접 하면서 배울 수 있다는 큰 장점이 있기 때문에 동영상 강의만 보고 그냥 넘길 수 있는 다른 사이트와는 다르게 바로바로 코딩을 쓰면서 배울 수 있다. 역시 영어 학습 사이트지만 개발자가 되기 위해서 필요한 영어 실력만 가지고 있어도 충분히 학습해 나갈 수 있다.Codecademy - learn to code, interactively, for freeCodecademy is the world's most popular way to learn over 12 coding languages including HTML, CSS, JavaScript, Python, SQL, and Ruby. Sign up today and start learning to code in minutes.www.codecademy.com3. 코드스테이츠한국 최초의 코딩 부트 캠프 코드스테이츠. 코드스테이츠 입장에서 코드스테이츠를 추천하는 것이 민망해해 보일 수 있어도, 그만큼 자부심이 있다. 온/오프라인 교육이기 때문에 다른 온라인 교육 사이트보다 저렴하지는 않지만, 개발자를 꿈꾼다면 일정 금액을 투자하고 개발자가 확실히 될 수 있다는 장점이 있다.  온/오프라인에서 직접 멘토링을 받아 가면서 학습을 하고 싶다면 코드스테이츠를 강력 추천한다.온라인 학습과 오프라인 코칭으로 온라인 콘텐츠와 오프라인 교육을 둘 다 가져갈 수 있다는 장점이 있다. 코스 중간에 미니 해커톤과 실제 기업과 협업 프로젝트를 진행해 볼 수 있다는 것도 큰 장점! 단점은 다른 온라인 학습 사이트에 비해서는 가격이 어느 정도 있다.코드스테이츠 | 혁신적인 코딩 교육 부트캠프코드스테이츠(Code States)는 프로그래밍을 배우고 싶은 사람들을 위한 최상의 코딩 교육 프로그램을 제공합니다. 자바스크립트 HTML CSS를 기초로 탄탄한 이론과 실무에 최적화된 기술 스택들을 학습합니다. 주입식이 아닌 자기주도적 학습 방식으로 기존과는 차별화된 혁신적인 교육 시스템을 경험해보세요.goo.gl4. 유다시티유다시티는 가격대는 있지만 탄탄하고 검증된 커리큘럼의 온라인 학습 사이트다. 프로젝트 베이스에 과제도 탄탄하고 동영상 학습 중간중간 텍스트 자료와 퀴즈까지 적절하게 섞여 있어서 충분히 제값을 한다. 다른 온라인 학습 사이트에 비해 가격대가 있지만 그만큼 퀄리티는 훌륭하다. 가장 핫한 트렌드의 기술들도 배울 수 있고 난이도도 초급부터 고급까지 다양한 과정들이 있다.유다시티에서는 학습하기가 굉장히 편하다. 학습 시간을 적절히 쪼개서 부담 없이 학습이 가능하고 자료 또한 탄탄하다는 것이 장점! 하지만 역시 온라인 학습치고 가격은 부담이 된다.Udacity - Free Online Classes & Nanodegrees | UdacityJoin Udacity to learn the latest in Deep Learning, Machine Learning, Web Development & more, with Nanodegree programs & free online courses.www.udacity.com5. 인프런영어가 유데미가 있다면 한국어는 인프런이 있다! 다양한 수준의 프로그래밍 강의를 한국어로 들을 수 있는 온라인 학습 사이트다. 탄탄한 커리큘럼에 강좌 구성까지. 필요한 강의를 골라 들을 수 있다는 장점이 있다. 한국어 강좌다 보니 강사들과의 소통도 원활하다. 영어가 아직은 부담스럽다면 인프런에서 먼저 시작해보자!퀄리티 높은 무료 강좌도 존재하니 처음에는 무료 강좌들을 보면서 나에게 맞는지 확인해 보고 학습을 시작하면 된다. 단점은 유데미 보다는 가격이 비싸다는 점! 하지만 한국어 강의가 많다는 것 자체가 엄청난 장점이라 할 수 있겠다.인프런 - IT, 개발의 좋은 지식을 공유합니다개발, CG, 디자인 등 IT 분야의 고급 지식들을 편하고 경제적으로 학습할수 있는 공간입니다. 배우는 사람에겐 기회를, 지식공유자에겐 보상을 주는 문화를 만들어요.www.inflearn.com코딩 관련 질문을 하고 싶다면스택오버플로우(stackoverflow)스택오버플로우는 개발과 관련된 질문과 답변을 하는 사이트다. 코딩을 하다가 중간에 막혔는가? 괜찮다. 당신의 문제는 이미 선배 개발자들도 했던 고민이니 말이다. 스택오버플로우에서 how to 라는 말과 함께 당신이 궁금한 점을 물어보라 마법과 같은 일이 펼쳐질 것이다. 당신이 알고 싶어 하는 거의 모든 개발 관련된 문제들에 대한 답이 이곳에 있다.영어라서 부담스러워하지 말고 익숙해져보라. 스택오버플로우만 잘 이용해도 현재 당신이 안고 있는 개발 문제의 대부분이 해결될 것이다. 단, 이곳에서의 코드를 너무 복붙 했다가는 오히려 실력 저하가 온다는 것을 명심하기를...Stack Overflow - Where Developers Learn, Share, & Build CareersStack Overflow | The World’s Largest Online Community for Developersstackoverflow.com블로그&커뮤니티JS서울js서울은 자바스크립트에 대해 넓고 얕은 지식을 서울 사용자들에게 보급하려는 지역기반 커뮤니티다. 슬랙방을 만들어서 운영되고 있으며 자바스크립트를 이용하는 이용자라면 활동을 해보면 좋을 것이다.seoul.jsMeetups 2017.08.18(1st) Meeting Notes 2017.07.10 2017.07.19(kickoff) 2017.10.11(conference Staff Offline Meeting 1st) 2017.10.31(conference Staff Online Meeting 1) Seoul.js About Code Of Conduct Sponsors Why We Started Seoul.js Logo Call For Speaker Plan 2018 이제 폭넓게 사용되는 자바스크립트의 매력과 인사이트를 대한민국, 서울에seoul.js.orgOkky개발자들의 커뮤니티, 페이스북이 아니라 다른 페이지를 만들어서 활동하고 있는 개발 커뮤니티 중 가장 큰 규모가 아닌가 생각한다. 개발 관련된 질문도 하고 개발자와 관련된 생활, 진로, 일상들을 이야기하는 개발자 커뮤니티다. 질문을 올리면 선배 개발자들의 따끔한 조언을 얻을 수 있다.OKKY - All That DeveloperEditor's Choice 실리콘밸리를 그리다 - 24. 애자일 방법론으로 프로젝트 진행하기 Karen 10k 6일 전 [OKKY 세미나] 대용량 서비스 성능 개선 노하우 Karen 10k 6일 전 'IT업계 포괄임금제 미적용 특례지정'을 요청합니다. Good Luck 484 8일 전 [OKKY 취준 세미나] 국비 지원 학원 선택의 노하우와 효과적 학습법에 대하여 형 439 13일 전 OKKY 스팸 단어로 인한 글 등록 불가 문제 관련 공지사항 OKKY 475 29일 전 Q&A 자동로그인 코드 구현 할okky.kr조대협님 블로그이미 알만한 사람은 다 안다는 조대협님의 블로그. 개발자 블로깅은 이렇게 하느거야라는 정수를 느낄 수 있고 실제 유익한 정보들이 많이 올라온다. 유명한 개발자 블로거들이 많지만 나열하자면 지면이 길어지기에 대표적인 조대협님의 블로그를 추천한다. 개발 관련된 글, 정보를 얻고 싶다면 이곳에 들어가 보라!조대협의 블로그평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴.bcho.tistory.com
조회수 2259

디너의여왕 탐구 생활_인터뷰2. 개발팀

안녕하세요 :)오늘은 "디너의여왕 탐구생활"개발팀 편을 들고 왔습니다.개발팀 열일 현장입니다.무슨 뜻인지 모를 단어들이컴퓨터에 가득가득하네요!이제 그들과 인터뷰를 진행하면서본격적으로 파헤쳐 보도록 하겠습니다!!!오늘 인터뷰는 개발팀의 3인가디님, 월리님, 펭돌이님과인터뷰를 진행해보겠습니다 :-)첫번째 인터뷰는개발팀 가디님과 진행하겠습니다.Q. 현재 담당하고 계신직무에 대해 소개 부탁드려요. A. 저는 디너의여왕에서데이터 수집과Elasticsearch와 관련된검색시스템을 담당하고 있습니다.  Q. 어떤 동기를 갖고해당 직무에 지원하게 되었나요? A. 개인 프로젝트로기본적인 검색엔진 시스템을구축해 본 적이 있었는데,해당 경험을 살릴 수 있는소중한 기회라 생각해서해당 직무에 지원하게 되었습니다.Q. 해당 직무에 필요한 역량이 있다면무엇일까요?  A. 검색 시스템의전체적인 흐름을 아는 것이아무래도 업무를 수행하는데 도움이 됩니다.그리고 관련된 자료가 한국어로는 흔하지 않기 때문에필요한 자료들을 잘 찾을 수 있는스킬이 필요할 것 같습니다.Q. 해당 직무에서 일할 때 사용하는자신만의 스킬, 노하우가 있다면 무엇인가요? A. 직무와 관련된 자료는아무래도 영문이 많은데다행히 제가 익숙한 일본어로도양질의 자료가 있어서자료를 얻는데 도움이 되고 있습니다.Q. 해당 직무에서 일하면서 즐거웠던 적,힘들었던 적이 있다면 언제일까요?  검색과 관련된 기능은 Elasticsearch에서많은 것을 처리해 주기는 하지만여전히 개발자가 직접 처리해 주어야 하는작업들이 있습니다.다소 지루하게 느껴질 수 있는 부분이지만시행착오를 겪으면서조금씩 개선이 되는 시스템을 보면서보람을 느낄 수 있었습니다.두 번째 인터뷰는개발팀 월리님과 진행하겠습니다.Q. 현재 담당하고 계신 직무에 대해소개 부탁드려요.  디너의여왕 웹 프론트엔드 개발을맡고있습니다.Q. 어떤 동기를 갖고해당 직무에 지원하게 되었나요?디자인을 직접 코딩해서나오는 표현이 재밌어서 시작했는데마침 타이밍 맞게 여기에 기회가 생겨서요.Q. 해당 직무에 필요한 역량이 있다면 무엇일까요?  기본적인 html/ css/ javascript에 대한기본적인 이해가 일단 필요하고요,프론트엔드 분야가 일반적으로가장 노출이 많이 되는 부분이다 보니일반적으로 개발만 하는 것보다는UX/UI에 대한 고민하는 자세가가장 중요한 것 같습니다.  Q. 해당 직무에서 일할 때 사용하는 자신만의 스킬, 노하우가 있다면 무엇인가요?  저도 부족한데 뭐…코딩은 왕도가 없습니다.일단 많이 뜯어고쳐보고또 삽질도 많이 해봐야 한다고 생각합니다.  그러다 보면 자연스럽게 익혀져서나만의 노하우가 생긴다고 보면 됩니다!Q. 해당 직무에서 일하면서 즐거웠던 적,힘들었던 적이 있다면 언제일까요?  프론트엔드 개발자로서내가 만든 코드가실제 서비스에 나온다는 것 자체가보람찬 일입니다.힘든 건 묻지 마세요Q. 마지막으로, 디너의여왕이 될지원자들에게 한 마디 부탁드려요. 어솨요 반가버요 ヽ(‘ ∇‘ )ノ세 번째 인터뷰입니다.개발팀 펭돌이님과 함께 진행하겠습니다!Q. 현재 담당하고 계신직무에 대해 소개 부탁드려요.  A. 안녕하세요.저는 디너의여왕에서 사용되는웹 서비스 백엔드를 개발하고 있어요.  Q. 어떤 동기를 갖고 해당 직무에지원하게 되었나요?  A. 실시간 트래픽이 높은 웹 서비스를개발해보고 싶은 욕심이 있었어요.트래픽이 높으면 신경 써야 할 것들이여러 가지가 있는데그것 또한 경험이 되리라고 생각했습니다.  또, 과거에잠시 블로그를 운영했던 적이 있었는데그 덕분에,  SNS 블로그 마케팅이라는세일즈 프로모션에도 관심이 많았어요.Q. 해당 직무에 필요한 역량이 있다면무엇일까요?  A. 한 가지 이상의 서버에서 사용되는프로그래밍 언어를 다룰 줄 알아야 합니다. 또 데이터를 수집하고,가공하는 등의 기술에 대해서도응용력이 좋아야 합니다.  그 외에도 다양한 요구 사항들이동시다발적으로 발생할 수가 있으니우선순위에 따라업무를 순서대로 처리할 수 있는 능력이중요한 것 같아요.Q. 해당 직무에서 일할 때 사용하는자신만의 스킬, 노하우가 있다면무엇인가요?  A. 저는 최대한 오픈 소스,검색을 활용하는 편이에요.  오픈 소스 같은 경우에는여러 포럼, 저장소 등에서 검색해보는 것이중요하고,검색 같은 경우에는적절한 키워드 (영어 의문문 how to ~)를이용하여 검색하면웬만한 지식들은 구글에 나와 있습니다.Q. 해당 직무에서 일하면서 즐거웠던 적,힘들었던 적이 있다면 언제일까요?  A. 갑작스럽고 치명적인 오류 등에 의해서갑자기 바빠지거나,예상치 못한 오류 때문에업무에 지장이 생기는 경우가가장 스트레스를 많이 받았던 것 같아요.최대한 그런 일들이 발생하지 않도록예방해요.집을 짓는다고 가정하면초석부터 탄탄히 짓는 것이죠.즐거운 일은아무래도 예상외로 술술 풀려나갈 때가장 보람찬 것 같아요.Q. 개발 업무의 매력은 어떤 것이 있을까요? A. 개발 업무는인터넷이라는 가상의 공간에서무언가를 창조하고,사람들에게 보여주는 매력이 있는 것 같아요.  또, 만들어진 결과물로 인해서누군가의 인생을좌우할 수 있을 것만 같아요.이런 게 매력이 아닐까요? Q. 마지막으로,디너의여왕이 될 지원자들에게한 마디 부탁드려요. A. 디너의 여왕은단순한 음식점 소개 웹 사이트가 아닌,푸드 플랫폼을 위한다양한 기술들이 집약되어 있습니다.단순히 포스트를 올리고,보여주는 것이 아닌어떻게 하면 효율적인 마케팅 효과를 불러올 수 있는 것인지 수집하고 가공하는복잡한 기술들이 집약되어 있습니다.  빅데이터 등의 IT 패러다임에관심이 있으시다면서로 win-win할 수 있는 기회가 될 것 같아요.이상으로 인터뷰를 마치겠습니다 :-)디너의여왕 탐구생활 다음 편은누구와 함께 하게 될까요?#디너의여왕 #개발팀 #팀원소개 #팀원인터뷰 #기업문화 #조직문화
조회수 986

AWS IoT Core 활용하기

이 포스팅에 실린 실습은 AWS CLI가 설치되어 있고, AWS credentials이 설정되어 있는 상태에서 진행했습니다. 서버와 하드웨어 사이의 TCP 연결을 구현하지 않고 AWS IoT를 이용해 MQTT 프로토콜로 데이터를 송수신하는 환경을 구성해보겠습니다. 진행을 위해 AWS IoT와 NodeJS가 필요합니다.1.AWS IoT Core로 접속해 사물을 생성합니다. 테스트로 1개만 사용할 것이므로 “단일 AWS IoT 사물”로 등록합니다.2.‘인증서 없이 사물 생성’을 클릭합니다. 인증서는 사물 등록 후에 생성할 예정입니다.3.사물이 정상적으로 등록되었는지 확인합니다.4.루트 CA 인증서를 생성합니다. 4-1.개인키를 생성하기 전, openssl 설정 파일을 추가해 아래 내용으로 저장합니다. 아래와 같이 진행하는 이유는 basicConstraints = true로 설정하기 위해서입니다.4-2.개인키를 생성합니다.openssl genrsa -out rootCA.key 2048 4-3.루트 인증서를 생성합니다.openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem -config rootCA_openssl.conf -extensions v3_ca 5.인증서를 생성합니다. 5-1.AWS IoT 등록 코드를 확인합니다.aws iot —region=ap-northeast-1 get-registration-code 5-2.개인키를 생성합니다.openssl genrsa -out verificationCert.key 2048 5-3.CSR을 생성합니다. 앞서 5-1에서 확인한 등록코드를 Common Name 항목에 입력합니다.openssl req -new -key verificationCert.key -out verificationCert.csr 5-4.인증서를 생성합니다.openssl x509 -req -in verificationCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out verificationCert.pem -days 500 -sha256 5-5.CA 인증서와 개인 인증서 파일들을 확인합니다.5-6.AWS에 인증서를 등록합니다.aws iot register-ca-certificate —ca-certificate file://rootCA.pem —verification-cert file://verificationCert.pem —region=ap-northeast-2 5-7.AWS에 인증서를 활성화합니다.aws iot update-ca-certificate --certificate-id 인증서 등록 후 응답으로 오는 certificateId 값 --new-status ACTIVE --region=ap-northeast-2 예)aws iot update-ca-certificate —certificate-id AAAAAABDADFDF1ABADFDFDFDF### —new-status ACTIVE —region=ap-northeast-2 5-8.AWS에 인증서 자동 등록 활성화를 켭니다.6.AWS 콘솔에 접속해 CA 인증서 등록을 확인합니다.7.AWS 콘솔에서 인증서를 생성합니다.7-1.원클릭 인증서 생성을 클릭합니다.7-2.활성화를 클릭하면 완료됩니다.8.인증서와 사물을 연결합니다.9.상호 작용 탭에서 디바이스를 연결합니다.10.환경에 맞게 선택하여 다운로드합니다.11.압축을 해제해 srart.sh를 실행하고, 연결 대기합니다.12.AWS IoT 테스트 접속 후, topic 1으로 메시지를 게시합니다.13.터미널을 확인합니다.이것으로 AWS IoT 로컬 환경이 구성되었습니다. AWS IoT를 사용하면 서버와 하드웨어를 제어하는 클라이언트 간 통신을 쉽게 하도록 다양한 구성을 할 수 있습니다. 모든 포맷은 JSON 포맷으로 송수신하며, MQTT(Message Queueing Telemetry Transport) 방식이라 양방향 통신을 쉽게 처리하고 전송할 수 있을 겁니다.참고자세한 MQTT - Publish/Subscribe 모델은 여기를 클릭하세요.글장현준 팀장 | R&D 개발3팀[email protected]브랜디, 오직 예쁜 옷만
조회수 1812

Amazon SageMaker는 처음이지?

Overview브랜디 랩스를 사랑해주시는 여러분, 안녕하세요. 개발자 오-연주입니다. 지난 4월, Brandi Back-end 개발자 분들과 코엑스에서 열렸던 AWS Summit(04.18 - 04.19)에 다녀왔습니다!여러 세션을 듣는 와중에 우연히 AI machine learning 를 쉽게 도와주는 Cloud Machine learning Flatform인 Amazon SageMaker에 대해 들었습니다. 듣던 중 머닝러닝에서 학습을 시켜 그 데이터로 ‘Brandi 서비스와 연관지으면 어떨까’ 라는 생각을 했는데요. 그래서 오늘은 많은 분들의 관심사인 머신러닝 학습관련 Amazon Amazon SageMaker에 대한 글을 쓰려고 합니다.sage는 마법사, 현자라는 의미입니다.sageMaker를 create하자!“자, 퐈이팅 넘치게 신나게 sagemaker를 create해볼까요!” 했는데…Seoul Region이 없다!현재 지원되는 리전은 아직 네 군데입니다. 저는 제일 있어 보이는 미국 동부의 버지니아를 선택하겠습니다.1] EU (Iceland) 2] US West (Oregon) 3] USEast (N. Virginia) 4] US East (Ohio)SageMaker를 create하기 전에는 학습할 데이터와 학습 모델을 저장할 S3 Bucket이 필요합니다.1. Default 값으로 S3를 만드세요.중요한 점은, bucket 이름이 “sagemaker-” 로 시작되어야 한다는 것입니다. 그래야 나중에 notebook instance가 어느 곳에 데이터를 저장할지 알 수 있습니다.Next, Create bucket 버튼을 누르다 보니, S3 Bucket이 생성되었습니다.2. Create notebook instance 버튼을 눌러 SageMaker를 만들어 봅시다!원하는 이름을 지어줍니다. 저는 machineLearningTest 라고 지었어요. IAM role 선택하는 부분에서 None을 눌러 Default 값으로 sageMaker를 만듭니다.인고의 Pending 시간3. Pending이 끝나고 “open” action을 선택하면 Jupyter가 열립니다.Jupyter(Jupyter Notebook)는 오픈 소스로 라이브 코드, 등식, 코드에 대한 시각화를 위해 사용됩니다. 또한 description을 위한 텍스트 문서(마크다운 등)를 지원하는 웹 어플리케이션입니다. 이렇게 하면 코드에 대한 문서화가 가능합니다. 이 글에서는 Jupyter Notebook을 통해 데이터를 학습하고, 그 데이터를 테스트하겠습니다. 제가 진행한 전체 코드 스크립트(entire script)는 이 글의 마지막 부분에 기술있으니 참고해 주세요.자, 이제 드디어 머신러닝 학습을 시킬 차례입니다. 머신러닝 학습에 꼭 필요한 키워드 두 가지를 뽑아봤는데요. - Dataset: 정제된 데이터와 그 데이터에 대한 label을 정리해 놓은 데이터 모음      - Machine learning Algorithm: 기계학습 알고리즘 우리는 MNIST 데이터셋을 k-means 알고리즘으로 학습시킬 겁니다.1)MNIST Dataset기계학습 알고리즘을 사용할 때 가장 기본적으로 테스트하는 데이터셋으로 MNIST 데이터셋이 있습니다. 이것은 사람이 0부터 9까지 숫자 중 하나를 손글씨로 쓴 이미지 데이터와, 해당 이미지에 대한 레이블(0 - 9)이 6만 개 들어있는 학습 데이터셋입니다. 각 이미지는 가로와 세로가 각각 28 픽셀로서, 각 픽셀은 0부터 255 사이의 숫자가 있습니다. 다시 말해, 하나의 이미지는 28 x 28 = 784개의 숫자로 이루어진 데이터입니다. 하나의 이미지를 나타내는 데이터의 array > length가 784라고 표현할 수 있겠네요.MNIST dataset2)k-means지금 만든 SageMaker 학습 알고리즘은 AWS 튜토리얼에서 제시한 K-means를 사용할 예정입니다. k-means는 label 없이, 즉 정답을 모르는 상태로 학습을 하는 비지도 학습 (unsupervised learning) 알고리즘 중 가장 쉽고 많이 쓰입니다. 정답을 모르니, ‘비슷한 애들끼리 뭉쳐봐’ 라고 하고, 알고리즘은 비슷한 친구들끼리 뭉쳐 놓습니다. k-means에서 k는 ‘k개 덩어리로 뭉쳐주세요’라고 제시하는 숫자입니다. 우리는 0부터 9까지 비슷한 친구들끼리 모이게 하고 싶으니 k=10을 쓸 겁니다.지금부터 해야 할 TO DO!1. MNIST 데이터셋을 다운로드받고, 우리가 학습시키기 좋도록 정제하기(preprocessing)2. Amazon SageMaker를 통하여 데이터 학습시키기(training job)3. Amazon SageMaker를 통하여 학습된 데이터를 배포하기(Deploy the model)4. 배포된 모델에 요청을 보내 테스트 데이터에 대한 예측값을 받아오기(inference)4. Jupyter 노트북 인스턴스 생성하기Jupyter에 New Notebook(conda_python3)을 선택해 새로운 노트북을 생성합니다.5. 학습시키기 위한 기본 셋팅드디어 코딩 시작입니다! (의욕활활) 초기 설정해두었던 IAM role, S3 Bucket, MNIST 다운로드, 다운받은 데이터 등을 확인하세요. 글보다 코드로 주석을 보는 게 가독성이 더 좋습니다. 아래 노트북을 통해 마크다운, 주석처리를 통해 description을 해두었으니 참고 바랍니다.외부에서 MNIST 다운로드가 쉽도록 한 url로 MNIST를 다운받는데 성공했습니다. MNIST 데이터셋 내용물 중 하나를 jupyter notebook에 그려서 제대로 다운 받았는지 show_digit() 함수를 작성해 확인하겠습니다.서른 번째 데이터는 누군가 3을 손글씨로 쓴 이미지입니다.6. 머신러닝 학습하기이 세션에서는 기계학습 알고리즘 설정, 학습할 데이터 경로를 지정하겠습니다. 그 후 MNIST 학습 데이터를 S3 버킷에 옮겨 저장합니다.kmeans.fit() 함수를 호출해 직접 학습을 시켜볼까요? 학습 과정은 상당히 오래 걸린다고 했는데 다행히 4분 만에 학습이 끝났습니다.여기서 잠깐! 여기서 k = 10에 대해서 조금 더 알아보도록 할게요. cluster란 한 지점에 점을 찍고 데이터 분석을 한 뒤, 비슷한 데이터들의 군집을 만들어 주는 것입니다. k-means가 진행되면서 각 cluster의 중심이 서로가 잘 뭉치는 방향으로 이동합니다. 직접 그려봤어요(부끄).7. 학습된 모델을 배포하기학습을 시키면 테스트를 하거나 사용할 수 있어야겠죠? 학습된 모델을 배포해 주세요.8. 배포된 모델 테스트 진행하기배포된 모델에 valid_set 데이터로 검증 데이터를 진행합니다..predict() 함수를 호출하면 새로운 이미지가 어떤 cluster에 속했는지 예측 결과를 알려줍니다. 가장 가까운 cluster가 0번이라고 예측 결과를 반환했네요. 또한 cluster 중심과의 거리는 5.85라고 알려줍니다. 여기서 중요한 점은 cluster 번호와 실제 숫자는 일치하지 않는다는 겁니다. 알고리즘은 임의로 cluster 중심에 번호를 매기는데, 꼭 0번 클러스터가 숫자 ’0’을 뭉쳐놓은 건 아니에요!9. 데이터 예측해보기더 많은 데이터를 예측해볼까요? valid set에 있는 100개 데이터를 예측해봅시다! 각 cluster에 가까운 데이터들이 쭉 선정되었습니다. 정확하지는 않지만 비슷한 숫자 모양들이 서로 군집되어 나타납니다. 0과 2같은 숫자들은 잘 표현되지만, 알고리즘이 9랑 4를 헷갈리거나 5와 3을 헷갈리는 듯 하네요.FASHION MNIST로 SageMaker 머신러닝 학습 및 예측해보기자, 이제 몸도 풀었으니 제가 하고 싶었던 패션 관련 머신러닝 학습 및 예측을 진행해볼게요. 마침 옷 그림으로 MNIST와 매우 비슷한 데이터를 만들어 놓은 fashion-MNIST라는 데이터셋을 발견했어요!1. 패션 관련 MNIST 다운로드 받기패션 MNIST 데이터셋을 우선 다운받아 볼게요! 다운로드는 여기에서 받을 수 있습니다. 총 네 개의 파일을 다운로드 받으세요.- train-images-idx3-ubyte.gz : train set 이미지  - train-labels-idx1-ubyte.gz : train set 레이블  - t10k-images-idx3-ubyte.gz : test set 이미지  - t10k-labels-idx1-ubyte.gz : test set 레이블  다운로드 받은 패션 Mnist의 label은 아래와 같이 되어 있습니다. 숫자 0부터 9 대신에 각 이미지가 어떤 이미지인지 텍스트로 표현되어 있어요.LabelDescription0T-shirt/top1Trouser2Pullover3Dress4Coat5Sandal6Shirt7Sneaker8Bag9Ankle boot2. Fashion-MNIST 데이터셋을 이전에 사용했던 mnist.pkl.gz 와 같은 형태로 변환해주는 스크립트 작성해주기위에서 연습할 때는 mnist.pkl.gz 한 개 파일만 사용했는데요!?! 그래서 다운로드 받은 네 개의 파일을 똑같은 형식의 파일 하나로 만들어주는 파이썬 스크립트를 작성해 fashion-mnist.pkl.gz 파일로 만들었어요.import gzip import pickle import numpy as np # MNIST 데이터셋은 train, test 셋이 각각 image, label로 나누어 저장되어있는 4개의 파일로 구성 test_image_path = 't10k-images-idx3-ubyte.gz' test_label_path = 't10k-labels-idx1-ubyte.gz' train_label_path = 'train-labels-idx1-ubyte.gz' train_image_path = 'train-images-idx3-ubyte.gz' out_file_name = 'fashion-mnist.pkl.gz' # train label / images 추출 with gzip.open(train_label_path, 'rb') as train_label_f:     train_label = np.frombuffer(             train_label_f.read(), dtype=np.uint8, offset=8).astype(np.int64)   with gzip.open(train_image_path, 'rb') as train_image_f:     train_imgs = np.frombuffer(             train_image_f.read(), dtype=np.uint8, offset=16).reshape(-1, 784).astype(np.float32)   # test label / images 추출 with gzip.open(test_label_path, 'rb') as test_label_f:     test_label = np.frombuffer(test_label_f.read(), dtype=np.uint8, offset=8).astype(np.int64)   with gzip.open(test_image_path, 'rb') as test_image_f:     test_imgs = np.frombuffer(             test_image_f.read(), dtype=np.uint8, offset=16).reshape(-1, 784).astype(np.float32)   # 기존 60000개 training set에서 50000개는 train set으로 사용하고, 10000개는 valid set으로 활용 train_label, valid_label = train_label[:50000], train_label[50000:]  train_imgs, valid_imgs = train_imgs[:50000], train_imgs[50000:]   # train set, validati on set, test set을 튜플 자료형으로 저장 out_data = ((train_imgs, train_label),             (valid_imgs, valid_label),             (test_imgs, test_label))   # pickle file로 dataset 데이터 포맷 맞춰주기 with gzip.open(out_file_name, 'wb') as out_f:     pickle.dump(out_data, out_f) 이 과정을 통해 나온 결과물, fashion-mnist.pkl.gz 를 Jupyter Notebook이 있는 경로에 업로드합니다.fashion-mnist.pkl.gz가 업로드 되었습니다!3. 머신러닝 학습하기아까 사용했던 활용했던 숫자 MNIST 스크립트를 그대로 사용하겠습니다. show_digit()을 이름만 바꾼 show_fashion()으로 데이터를 살펴보니 드레스가 보입니다.조금 전에 했던 숫자 MNIST와 똑같은 과정을 SageMaker를 이용해, 학습 → 테스트 → 예측해보니 아래와 같은 예측 결과를 얻을 수 있었습니다. 신발은 신발끼리, 바지는 바지끼리, 가방은 가방끼리 분류된 게 너무나 신기합니다. (아까 진행한 숫자보다 더 학습이 잘 된 것 같은건 기분 탓일까요…?)머신러닝이라고 겁내지 않아도 됩니다! 유저들에게 더 좋은 서비스 제공할 수 있으니까요. 지금까지 브랜디 개발2팀의 단아한 개발자 오연ㅈ….참사를 막아주세요.앗, 잠시만요!! 중요한 것을 놓칠 뻔 했네요.저처럼 테스트를 하면 그냥 지나치지 마세요. 자동 결제로 출금되는 뼈 아픈 경험을 할 수도 있습니다. 반드시 이용했던 서비스들을 stop 하거나 terminate 해주세요. (Clean-up단계) 자세한 내용은 여기를 클릭하세요.지금까지 Brandi 개발 2팀, 단아한 개발자 오연주였습니다!# entire script (숫자 Mnist) # 오호 드디어 coding start! # 이제부터 Brandi의 단아한 개발자, 저를 따라오시면 됩니다 :) # 노트북 Block을 실행하는 방법은 Shift + Enter 입니다 from sagemaker import get_execution_role role = get_execution_role()  # 초기에 설정해 뒀던 IAM role 가져오기 bucket = 'sagemaker-julie-test' # 초기 단계에 만들었던 S3 Bucket 이름 적기 %%time import pickle, gzip, numpy, urllib.request, json   # 여기서 잠깐, 생소한 라이브러리 설명을 드릴게요! # pickle: python식 데이터 압축 포맷 # numpy: 수치 계산을 하기 위한 python package # Load the dataset urllib.request.urlretrieve("http://deeplearning.net/data/mnist/mnist.pkl.gz", "mnist.pkl.gz") with gzip.open('mnist.pkl.gz', 'rb') as f:     train_set, valid_set, test_set = pickle.load(f, encoding="latin1")     # matplotlib로 그리는 그림이 jupyter 노트북에 바로 보여줄 수 있도록 설정 %matplotlib inline import matplotlib.pyplot as plt # 도표나 그림을 그릴 수 있게 해주는 라이브러리 plt.rcParams["figure.figsize"] = (2, 10) # 그림의 크기 지정 def show_digit(img, caption='', subplot=None):     if subplot is None:         _,(subplot) = plt.subplots(1,1)         imgr = img.reshape((28, 28))     subplot.axis('off')     subplot.imshow(imgr, cmap='gray')     plt.title(caption)   # train_set의 그림과[0] 데이터 이름[1]을 예시로 보여준다 show_digit(train_set[0][30], 'This is a {}'.format(train_set[1][30]))   # 학습을 하기 위해 학습 알고리즘 및 데이터 경로 설정! from sagemaker import KMeans data_location = 's3://{}/kmeans_highlevel_example/data'.format(bucket) output_location = 's3://{}/kmeans_example/output'.format(bucket)   print('training data will be uploaded to: {}'.format(data_location)) print('training artifacts will be uploaded to: {}'.format(output_location))   kmeans = KMeans(role=role,                 train_instance_count=2,  # 장비 2대를 사용하여 학습하겠어요!                 train_instance_type='ml.c4.8xlarge',                 output_path=output_location,                 k=10,  # 아래 그림을 참고해 주세요!                 data_location=data_location) %%time   # 학습 시작! kmeans.fit(kmeans.record_set(train_set[0]))   %%time # 모델을 만든 후 사용하기 위하여 배포하기 kmeans_predictor = kmeans.deploy(initial_instance_count=1,                                 instance_type='ml.m4.xlarge')                                  # valid_set에 30번째 sample을 테스트 해보기 result = kmeans_predictor.predict(valid_set[0][30:31])  print(result)   %%time   # vaild_set에 있는 0번부터 99번까지의 데이터로 cluster를 예측 해보자 result = kmeans_predictor.predict(valid_set[0][0:100])   # 예측 결과에 대한 cluster 정보를 수집 clusters = [r.label['closest_cluster'].float32_tensor.values[0] for r in result]   # 각 cluster별 예측된 이미지 출력 for cluster in range(10):     print('\n\n\nCluster {}:'.format(int(cluster)))     digits = [ img for l, img in zip(clusters, valid_set[0]) if int(l) == cluster ]     height = ((len(digits)-1)//5)+1     width = 5     plt.rcParams["figure.figsize"] = (width,height)     _, subplots = plt.subplots(height, width)     subplots = numpy.ndarray.flatten(subplots)     for subplot, image in zip(subplots, digits):         show_digit(image, subplot=subplot)     for subplot in subplots[len(digits):]:         subplot.axis('off')     plt.show() 출처Getting Started - Amazon SageMaker CodeOnWeb - 머신러닝 초보를 위한 MNIST fashion-mnist 글오연주 사원 | R&D 개발2팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 1359

에이스프로젝트 추천도서 - 프론트 편

안녕하세요!기업 문화가 좋은 야구게임 개발사에이스프로젝트입니다.기획팀 편에 이어 2탄!에이스프로젝트의 대소사(?)를 책임지는 '프론트'편을 준비했습니다!프론트는 조직문화 담당자부터 인디자이너까지 다양한 인재들로 구성되어 있어요.하는 일이 다양한 만큼 추천도서의 스펙트럼도 넓었는데 그중 다섯 권을 엄선했다고 합니다.에이스프로젝트 프론트가 추천하는한 번쯤은 읽어보면 좋은 추천 도서 Best 5!1. 구글의 아침은 자유가 시작된다 - 라즐로 복[ 이미지 출처 : 예스 24 ]자유롭게 일하는데 성과도 좋은 조직문화, 구글은 어떻게 만들었을까조직문화 담당자들에게 생각할 주제를 던져주는 책2. 배민다움 - 홍성태[ 이미지 출처 : 예스 24 ]회사에 맞는 문화를 만드는 과정에 대한 정리가 잘 되어 있는 책3. 내 문장이 그렇게 이상한가요? - 김정선[ 이미지 출처 : 예스 24 ]칼럼 쓸 때 도움이 많이 됐던 글쓰기 실용서교정교열 경력 20년이 넘었다는 작가분의 내공이 느껴지는 책4. 좋은 문서 디자인 기본 원리 29 - 김은영[ 이미지 출처 : 예스 24 ]"자네는 디자이너도 아닌데 어떻게 이렇게 전달력이 좋나!"좋은 내용을 더 좋게 만들어 주는 문서 디자인 기본서5. 디자이너 사용설명서 - 박창선[ 이미지 출처 : 예스 24 ]프론트 인디자이너의 추천서!디자이너와의 원활한 협업을 원하는 모든 사람들에게 이 책을 추천합니다프론트는 인사, 채용, 회계, 홍보 등 각자의 전문 영역이 있지만 결국은 다 함께 좋은 회사를 만들기 위해 노력하는 팀입니다. 위 다섯 개의 도서는 프론트가 공통적으로 읽고 추천한 도서라고 해요 :-) 이상 "각자, 그리고 함께 조직문화를 만들어가는" 프론트의 추천도서였습니다!다음은 '그래픽팀'의 추천도서로 찾아올게요 ;)
조회수 797

Android Wear 개발하기

비트윈 팀은 지난달 비트윈에 Android Wear 앱 기능을 릴리즈했습니다. 즐거운 개발 경험이었지만, 힘들었던 점도 많았습니다. 어떤 과정을 통해서 개발하게 되었고, 내부 구조는 어떻게 되어 있는지, 신경 쓰거나 조심해야 할 점은 어떤 것들이 있는지 저희의 경험을 공유해보려고 합니다. 이 글을 통해 Android Wear 앱 제작을 고민하는 개발자나 팀이 더 나은 선택을 하는 데 도움이 되고자 합니다.Android Wear에 대해¶Android Wear는 최근 발표된 구글의 새 웨어러블 플랫폼입니다. 공개된 지 얼마 되지 않았음에도 불구하고 완성도 있는 디바이스들이 출시된 상태이며, 기존의 웨어러블 기기보다 기능과 가격이 매력 있다는 평가를 받고 있습니다. 또한, 2014 Google I/O에서 크게 소개되고 시계를 참가자들에게 나눠주는 등, 구글에서 강하게 밀어주고 있기 때문에 상당히 기대되는 플랫폼입니다.Android Wear의 알림 기능은 연결된 mobile1 기기와 연동됩니다. 예를 들어 메시지를 받았을 때 mobile과 wear에서 모두 알림을 받아볼 수 있고, Google Now와 연동하여 교통, 날씨 등 상황에 맞는 알림을 제공합니다.또, 여러 가지 앱들의 다양한 기능을 음성으로 제어하도록 하여 사용자에게 기존의 시계와는 완전히 다른 경험을 주고 있습니다.한국에서는 Google Play Store의 기기 섹션에서 구매가 가능합니다.Android Wear 개발하기¶Android Wear는 Android 플랫폼을 거의 그대로 사용하기 때문에, Android 개발 경험이 있는 개발자라면 아주 쉽게 개발을 시작할 수 있습니다. 비트윈에서는 구글의 80:20 프로젝트를 패러디한 100+20 프로젝트를 통해 개발을 진행하게 되었습니다. (하던 일을 다 해내면서 시간을 내어 진행한다는 의미로 100+20 프로젝트입니다. 하지만 가끔은 '20' 부분에 너무 몰입하여 0+20이 되기도 한다는 게 함정입니다...)Activity, Service 등 Android의 기본 component들을 모두 그대로 사용 가능하며, 손목에 찰 수 있는 크기의 화면에서 유용하게 사용할 수 있는 WearableListView, GridViewPager 같은 새 widget들이 추가되었습니다. 구글 개발자 사이트의 wearable training 섹션에서 자세한 안내를 볼 수 있습니다.비트윈의 아이디어¶비트윈 Android Wear 기능의 컨셉은, 항상 몸에 착용하는 Wear의 특징을 살려, '커플이 떨어져 있더라도, 항상 함께 있는 느낌을 주기' 였습니다. 그래서 아래와 같은 기능들이 기획되었습니다.Feel His/Her Heart (그대의 심장박동 느끼기): 상대방의 심장박동을 진동으로 재현해주기Where He/She Is (그/그녀는 어느 방향에 있을까?): 상대방의 위치를 나침반과 같은 형태로 보여주기 (안심하세요. 여러분. 방향만 알려주고 정확한 위치는 알려주지 않습니다!)Feel Memories (메모리박스): 언제든 추억을 떠올릴 수 있도록 비트윈의 기존 기능인 메모리박스(추억상자)를 Android Wear에서 구현하지만 이 아이디어들은 하루 만에 망하게 됩니다.메인 아이디어였던 심장박동 느끼기는 사용자가 요청하면 상대방의 시계에서 심장박동이 측정되어 사용자에게 상대방의 심장박동을 진동으로 재현해주는 멋진 기능이었습니다. 하지만 이 아이디어를 낼 때 심박센서가 탑재된 Android Wear 기기가 없었던 게 함정이었습니다.다음날 Android Wear Bootcamp에 참가하여 심박센서가 작동하는 삼성 Gear Live 기기를 사용해 볼 수 있었습니다. 결과는 충격이었습니다. 생각과는 달리 심박박동 측정 결과가 나오는데 10~20초가 걸리고, 그나마도 측정되는 동안은 올바른 위치에 시계를 차고 가만히 있어야 했습니다. 결국, 이러한 제약 때문에 사용자들이 실제로 유용하게 사용할 수 있는 기능이 될 수 없었습니다.그래서 계획을 수정하여 현실적으로 구현 가능한 기능들을 먼저 만들어 보기로 했습니다.목소리로 답변하기: 상대방에게 온 메시지에 Android Wear Framework에서 제공하는 음성인식을 이용하여 목소리를 텍스트로 바꾸어서 답장하기이모티콘 답변하기: 이모티콘을 사용자가 선택하여 이모티콘으로 답장하기비트윈 메모리박스: 비트윈의 기존 기능인 메모리박스(추억상자)를 Android Wear에서 구현처음의 원대한 계획에서 뭔가 많이 변경된 것 같지만, 기분 탓일 겁니다.내부 구현¶비트윈 Android Wear 앱은 크게 두 가지 기능을 가지고 있습니다. 하나는 상대방에게 메시지를 받았을 때, 메시지 내용을 확인하고 여러 가지 형태로 답장할 수 있는 Notification 기능이고, 다른 하나는 Wear에서 원래 Application의 일부 기능을 시작 메뉴를 통하거나 목소리로 실행시킬 수 있게 해주는 Micro App입니다. 해당 기능들의 스크린샷과 함께 내부 구조를 설명하겠습니다.우선 Notification 부분입니다. 앱 개발사에서 아무 작업도 하지 않더라도, 기본적으로 Android Wear Framework이 스크린샷 윗줄 첫 번째, 네 번째 화면과 같이 예쁜 알림화면과 Open on phone 버튼을 만들어 줍니다. 여기에 추가적인 기능을 붙이기 위하여 WearableExtender를 이용하여 목소리로 답장하기, 이모티콘 보내기 버튼을 덧붙였습니다.비트윈 Android Wear 스크린샷 - Notification둘째로는 Micro App 부분입니다. 여기에는 이모티콘 전송과 메모리박스를 넣었습니다. 이 부분은 일반적인 Android 앱을 만들듯이 작업할 수 있습니다비트윈 Android Wear 스크린샷 - Micro App화면을 보면 무척 단순해 보이지만 내부 구조는 간단하지가 않습니다. 연결된 화면들을 만들어내는 코드가 한곳에 모여있지 않고, 각기 다른 곳에 있는 코드들을 연결하여야 하기 때문입니다. Notification 하나를 만들 때에 Framework에서 만들어주는 1, 4번째 화면, Notification에 WearableExtender를 이용하여 덧붙이는 2, 3번째 화면, 그리고 다시 Framework에서 만들어주는 목소리로 답장하기 화면, 그리고 Wear 쪽의 Micro App을 통해 구동되는 이모티콘 선택 화면과 같이 여러 군데에 나누어 존재하는 코드가 연결됩니다.하나의 앱처럼 느껴지는 화면이지만 각각 다른 곳에 코드가 쓰여있습니다.그러면 이번에는 각 화면이 어떻게 연결되는지 알아보겠습니다.사용자가 상대방으로부터 받은 메시지를 Android Wear의 Notification으로 확인하고, 답장으로 이모티콘을 보내고자 하는 상황을 가정해 봅시다. 사용자가 Send Emoticon 버튼을 눌렀을 때 이모티콘 선택화면을 보여주고 싶은데, 이 행동에 대한 pending intent를 wear 쪽의 micro app이 아닌, mobile 쪽에서 받게 되어 있습니다. 이 때문에 아래의 표와 같이 mobile 쪽에서 pending intent를 받은 뒤 다시 wear 쪽으로 이모티콘 선택 화면을 보여주라는 메시지를 전송해줘야 합니다.이모티콘 전송 과정이번에는 메모리박스를 보겠습니다. 메모리박스도 단순한 화면이지만 mobile 쪽과 통신하여 내용을 불러와야 하므로 생각보다 해야 하는 일이 많습니다. Android Wear Message API와 Data API를 이용하여 데이터를 주고받아 사진을 화면에 보여줍니다.메모리박스를 보여주는 과정개발 시 신경 써야 하는 점¶개발하면서 주의 깊게 신경 써야 하는 점들이 있습니다.첫 번째로 코드 퀄리티입니다.Android Wear는 아직 성숙하지 않은 플랫폼이기 때문에 많은 사람이 받아들인 정형화된 패턴이 없습니다. 앞서 살펴보았듯이, 간단한 기능을 구현하려고 해도 상당히 복잡한 구조를 가진 앱을 만들게 되기에, 코드 퀄리티를 높게 유지하기 어려웠습니다비트윈 팀에서는 EventBus를 활용하여 코드를 깔끔하게 유지하려고 노력하였습니다. 이러한 문제를 해결할 수 있는 Guava의 Concurrent 패키지나, RxJava 등의 도구들이 있으니 익숙한 도구를 선택하여 진행하는 것을 추천합니다. 또한, 구글의 Android Wear 코드랩 튜토리얼의 내용이 매우 좋으니, 한번 처음부터 수행해 보면 좋은 코드를 만들 수 있는 아이디어가 많이 나올 것입니다.두 번째로는 원형 디바이스 지원 및 에러 처리입니다.처음부터 원형 디바이스를 신경 쓰지 않으면 마무리 작업 시 상당한 고통을 받게 됩니다. 원형 디바이스에 대한 대응법은 Android 개발자 트레이닝 사이트의 wearable layout 섹션에 자세히 나와 있습니다. 현재는 원형 디바이스를 처리하는 프레임웍에 약간 버그가 있지만, 곧 수정될 것으로 생각합니다.사용자 입력이 있을 때, 그리고 에러가 났을 때 적절하게 처리해주는 것은 제품의 완성도에 있어 중요한 부분입니다. Android Wear Framework에서 제공하는 ConfirmationActivity등을 활용하여 처리하면 됩니다.마지막으로 패키징입니다.자동 설치 패키징은 비트윈 팀에서도 가장 고생했던 부분입니다. Android Wear는 본체 앱을 설치하면 자동으로 함께 설치되는데, 앱이 정상작동하기 위해서는 몇 가지 까다로운 조건이 있습니다.build.gradle 의 applicationId 를 wear와 mobile 양쪽 모두 똑같이 맞춰야 합니다.Wear app의 AndroidManifest에 새롭게 선언한 permission이 있다면 mobile 쪽에도 포함해 주어야 합니다.기본적으로, 똑같은 key로 서명합니다. 다른 key로 sign 하는 경우는 문서를 참고해서 신경 써서 합니다.위 항목들은 아주 중요한 내용이지만 아직 문서화가 완벽하지 않으니 주의 깊게 진행해야 합니다.후기¶개발 과정에서 여러 가지 어려움이 있었지만, 무척 즐거웠던 프로젝트였습니다!우선 새로운 플랫폼에서 새로운 제품의 아이디어를 내고 만들어내는 과정이 많은 영감과 즐거움을 주었습니다.두 번째로는 Android Wear를 포함한 버전 출시 이후 구글플레이의 Android Wear 섹션 및 추천 앱 섹션에 올라가게 되어 홍보 효과도 얻을 수 있었습니다. 또한, 구글의 신기술을 적극적으로 사용하고자 하는 팀에게는 구글 쪽에서도 많은 지원을 해주기 때문에 도움도 많이 받았습니다.세 번째로는 기존의 Android 개발과 비슷하여 접근하기 쉬우면서도, 원하는 것을 구현하려면 상당히 도전적이어서 재미있었습니다.다만 조심해야 할 점은, 구글에서 적극적으로 밀고 있는 프로젝트라고 해서 다 성공하는 것은 아니라는 점입니다. 얼마만큼의 시간과 자원을 투자할지는 신중하게 생각하면 좋겠습니다.정리¶Android Wear는 새로운 기술과 플랫폼에 관심이 많은 개발자, 혹은 팀이라면 시간을 투자해서 해볼 만한 재미있는 프로젝트입니다. 하지만 완성도 있는 좋은 제품을 만들기 위해서는 생각보다 할 일이 많으니 이를 신중하게 고려하여 결정해야 합니다.구글의 튜토리얼 등에서 지칭하는 것과 마찬가지로, 이 글에서도 Android Wear와 연결된 휴대폰을 mobile이라 하겠습니다.↩저희는 언제나 타다 및 비트윈 서비스를 함께 만들며 기술적인 문제를 함께 풀어나갈 능력있는 개발자를 모시고 있습니다. 언제든 부담없이 [email protected]로 이메일을 주시기 바랍니다!

기업문화 엿볼 때, 더팀스

로그인

/