스토리 홈

인터뷰

피드

뉴스

조회수 1167

테이블을 내 마음대로! 컬럼 추가와 삭제, 테이블 분리

Overview이전까지는 단일 테이블에서 INDEX를 적용하는 효과적인 방법들을 살펴봤습니다. 아직 못 본 개발자를 위해 친절히 링크도 준비했습니다. 이 글을 보기 전에 아래의 글들을 먼저 보는 것이 좋습니다.단일 TABLE을 SELECT하자!: 올바른 SELECT문 작성하기순서대로 척척, ORDER BY: ORDER BY 조건 처리 알아보기원하는 대로 뭉치는 GROUP BY: GROUP BY 조건 처리 알아보기이번 글에서는 테이블에서 컬럼을 추가 또는 삭제하고, 테이블을 분리하는 방법까지 알아보겠습니다.Let’s do it먼저 아래의 컬럼을 추가해봅시다.ALTER TABLE test.TB_MBR_BAS ADD COLUMN AREA_NM    VARCHAR(10)    COMMENT '지역 명'; 그리고 테스트 자료를 넣습니다.UPDATE test.TB_MBR_BAS SET     AREA_NM =         CASE FLOOR(RAND()*15)             WHEN 0    THEN '서울특별시'             WHEN 1    THEN '부산광역시'             WHEN 2    THEN '인천광역시'             WHEN 3    THEN '대전광역시'             WHEN 4    THEN '대구광역시'             WHEN 5    THEN '광주광역시'             WHEN 6    THEN '울산광역시'             WHEN 7    THEN '경기도'             WHEN 8    THEN '강원도'             WHEN 9    THEN '충청남도'             WHEN 10    THEN '충청북도'             WHEN 11    THEN '전라남도'             WHEN 12    THEN '전라북도'             WHEN 13    THEN '경상남도'             WHEN 14    THEN '경상북도'             WHEN 15    THEN '제주도'         END WHERE AREA_NM IS NULL ; 자료를 확인하면 아래와 같이 나옵니다.SELECT     * FROM test.TB_MBR_BAS ; AREA_NM 컬럼을 추가해 지역이 나오도록 했습니다. AREA_NM을 보면 중복되는 지역명이 있습니다. 이럴 때 보통 AREA_NM을 별도의 테이블을 만들어 ID OR 코드를 부여해 처리합니다. 위의 UPDATE 문을 참조하여 ID를 만들면 아래와 같이 만들 수 있습니다.0    : ‘서울특별시’1    : ‘부산광역시’2    : ‘인천광역시’3    : ‘대전광역시’4    : ‘대구광역시’5    : ‘광주광역시’6    : ‘울산광역시’7    : ‘경기도’8    : ‘강원도’9    : ‘충청남도’10    : ‘충청북도’11    : ‘전라남도’12    : ‘전라북도’13    : ‘경상남도’14    : ‘경상북도’15    : ‘제주도’먼저 AREA_NM과 ID를 다룰 테이블을 만들겠습니다.CREATE TABLE test.TB_AREA_BAS  (     AREA_ID        TINYINT UNSIGNED NOT NULL    COMMENT '지역 아이디 '     ,AREA_NM     VARCHAR(10)             NOT NULL    COMMENT '지역 명'     ,PRIMARY KEY (AREA_ID)  ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='TB 지역 기본' ; 테이블을 만들었으면 자료를 넣어줍니다. INSERT INTO test.TB_AREA_BAS  (     AREA_ID      ,AREA_NM  ) VALUES (0,'서울특별시')  ,(1,'부산광역시')  ,(2,'인천광역시')  ,(3,'대전광역시')  ,(4,'대구광역시')  ,(5,'광주광역시')  ,(6,'울산광역시')  ,(7,'경기도')  ,(8,'강원도')  ,(9,'충청남도')  ,(10,'충청북도')  ,(11,'전라남도')  ,(12,'전라북도')  ,(13,'경상남도')  ,(14,'경상북도')  ,(15,'제주도')  ; 자료를 확인하면 아래와 같이 나옵니다.SELECT     * FROM test.TB_AREA_BAS ; 테이블을 만들었다면 test.TB_MBR_BAS 테이블에 AREA_ID 를 추가하여 자료를 넣은 후 AREA_NM 컬럼을 삭제하면 됩니다.이제 AREA_ID를 추가합니다.ALTER TABLE test.TB_MBR_BAS ADD COLUMN AREA_ID TINYINT UNSIGNED NOT NULL COMMENT '지역 아이디'; AREA_NM을 참조하여 AREA_ID를 넣습니다.UPDATE test.TB_MBR_BAS SET     AREA_ID =         CASE AREA_NM             WHEN '서울특별시'    THEN 0             WHEN '부산광역시'    THEN 1             WHEN '인천광역시'    THEN 2             WHEN '대전광역시'    THEN 3             WHEN '대구광역시'    THEN 4             WHEN '광주광역시'    THEN 5             WHEN '울산광역시'    THEN 6             WHEN '경기도'    THEN 7             WHEN '강원도'    THEN 8             WHEN '충청남도'    THEN 9             WHEN '충청북도'    THEN 10             WHEN '전라남도'    THEN 11             WHEN '전라북도'    THEN 12             WHEN '경상남도'    THEN 13             WHEN '경상북도'    THEN 14             WHEN '제주도'    THEN 15         END ; 자료를 확인하면 아래와 같이 나오는데요.SELECT     * FROM test.TB_MBR_BAS ; 최종적으로 AREA_NM 컬럼을 삭제합시다.ALTER TABLE test.TB_MBR_BAS DROP COLUMN AREA_NM; 삭제했다면 자료를 확인해봅시다.SELECT     * FROM test.TB_MBR_BAS ; 이제 두 개의 테이블을 연결해서 조회해보겠습니다. JOIN을 사용하면 되고, Quey 문은 아래와 같습니다.SELECT     T101.MBR_ID      ,T101.MBR_INDFY_NO      ,T101.MBR_NM      ,T101.AGE      ,T101.AREA_ID      ,T102.AREA_NM FROM test.TB_MBR_BAS T101      INNER JOIN test.TB_AREA_BAS T102          ON T102.AREA_ID = T101.AREA_ID  ; 정리하며위에서 보여드린 예시는 두 가지 다른 점이 있습니다. 첫째는 TABLE 뒤에 T101, T101 과 같은 얼라이스를 준 것, 둘째는 INNER JOIN 문장이 들어간 것입니다.만약 테이블이 2개 이상이라면 사용할 테이블 컬럼을 써야 하는데 테이블명을 그대로 쓴다면 너무 길어집니다. 그래서 얼라이스로 테이블을 간단하게 표시하는 것이죠.INNER JOIN은 JOIN 중 가장 기본이 되는 문장입니다. 플랜을 보면 T101 즉 test.TB_MBR_BAS를 차례대로 전부 읽는데, 그때마다 T102인 test.TB_AREA_BAS 를 AREA_ID 를 기준으로 값을 읽습니다. T101에 해당하는 내용과 T102에 해당하는 내용을 보여주는 것이죠. 저는 Database를 쓰는 이유가 바로 JOIN 때문이라고 생각하는데요. 여러분의 생각은 어떤가요. 조금 헷갈린다면 다음에는 JOIN에 대해서 알아보도록 하겠습니다. (자연스러운 결말..!)글한석종 부장 | R&D 데이터팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 818

순서대로 척척, ORDER BY

ORDER BY 는 원하는 순서대로 자료를 출력하고 싶을 때 사용합니다. 편의를 위해 이전 글의 예제에서 MBR_NM 의 INDEX 인 IX_MBR_BAS_02 를 제거하고 진행하겠습니다. 이번 글에서는 이해-적용-출력-활용의 순서로 살펴볼게요. 지난 글 보기: 단일 TABLE을 SELECT하자!이해: ORDER BY의 오름차순과 내림차순SELECT     MBR_NM FROM test.TB_MBR_BAS ORDER BY     MBR_NM  ; 기본적인 ORDER BY는 위와 같이 사용합니다. 오름차순과 내림차순으로도 정렬할 수 있습니다. 오름차순일 때는 컬럼 뒤에 옵션을 넣지 않거나 ASC를 사용하고, 반대로 내림차순일 때는 DESC를 사용하면 됩니다.[오름차순]ORDER BY      MBR_NM ORDER BY      MBR_NM ASC [내림차순]ORDER BY      MBR_NM DESC 위의 Query(오름차순) 의 실행계획을 보면 아래와 같이 표시됩니다.결과는 다음과 같습니다. (수행시간 3초)내림차순 Query의 실행 계획을 보면 아래와 같이 표시됩니다.결과는 다음과 같습니다. (수행시간 3초)오름차순과 내림차순 정렬 Query를 보면 실행계획은 같고 결과는 다르게 나타납니다.실행계획을 보면 이렇게 표시됩니다.- table : TB_MBR_BAS - type : ALL - Extra : using filesort Extra의 using filesort는 DBMS에서 정렬을 한다는 의미로 퀵소트 알고리즘을 사용합니다. 실행계획의 내용을 풀어보면 “TB_MBR_BAS 을 전부(ALL) 읽은 후 정렬한다(using filesort)” 정도로 보면 됩니다.적용: INDEX와 정렬의 관계이번에는 삭제했던 MBR_NM의 INDEX인 IX_MBR_BAS_02를 다시 생성하고 수행해보겠습니다.CREATE INDEX IX_MBR_BAS_02 ON test.TB_MBR_BAS (MBR_NM); SELECT     MBR_NM FROM test.TB_MBR_BAS ORDER BY     MBR_NM  ; INDEX를 생성하고 실행계획을 보면 아래와 같이 표시됩니다.실행계획을 보면 몇 가지 달라진 게 눈에 띕니다.1. type : ALL -> index 2. key : 없음 -> IX_MBR_BAS_02 3. Extra : using filesort -> Using index 특히 Extra는 using filesort에서 Using index 로 바뀐 것을 알 수 있습니다. using filesort가 정렬을 한다는 것인데, 정렬을 하지 않고 어떻게 정렬해서 보여준다는 것일까요? INDEX를 이해하면 바로 알 수 있습니다. 일반적인 INDEX는 기본이 BTree INDEX 입니다. MySQL의 BTree INDEX는 오름차순 정렬 상태로 저장되어 있습니다. 이미 정렬한 상태로 저장되어 있는 INDEX를 사용하기 때문에 Query를 수행할 때 다시 정렬할 필요가 없죠. 그래서 using filesort가 나타나지 않는 겁니다.출력: Query 실행다음으로 성이 김 씨인 사람들의 이름을 순서대로 출력해보겠습니다. 여기서는 두 가지 Query를 이용해 비교해보겠습니다.예시 1)SELECT     MBR_NM FROM test.TB_MBR_BAS WHERE MBR_NM LIKE '김%' ORDER BY     MBR_NM  ; 예시 2)SELECT     MBR_NM FROM test.TB_MBR_BAS WHERE SUBSTR(MBR_NM,1,1) = '김' ORDER BY     MBR_NM  ; 예시를 보면 WHERE 절이 다릅니다. 예시1은 “MBR_NM이 ‘김’으로 시작하는 것을 오름차순 정렬해 보여주라는 것”이고, 예시2는 “MBR_NM의 첫 번째 글자가 ‘김’인 것을 오름차순 정렬해 보여주라는 것”입니다.이제 두 개의 Query 실행계획을 비교해보겠습니다.예시 1)예시 2)여기서 주의 깊게 봐야 할 컬럼은 type입니다. 다른 컬럼들은 TB_MBR_BAS의 테이블을 조회하면서 IX_MBR_BAS_02 INDEX만을 사용해 보여주겠다는 내용을 갖고 있습니다. IX_MBR_MAS_02 INDEX가 MBR_NM으로 정렬되어 있기 때문에 using filesort가 나타나지 않은 것입니다. 그렇다면 type에 range와 index는 어떤 차이가 있는 것일까요?range : where 조건에 조회하는 범위가 지정된 경우 나타납니다.예시1은 TB_MBR_BAS를 조회하는데 IX_MBR_BAS_02 INDEX의 MBR_NM에서 ‘김’이 시작되는 위치부터 끝나는 위치까지 조회해 보여주라는 의미입니다. IX_MBR_BAS_02 INDEX를 이용해 ‘김’이 시작되는 위치로 바로 접근할 수 있는 것이 핵심입니다.index : index를 처음부터 끝까지 읽는다는 의미입니다.예시2는 TB_MBR_BAS를 조회하는데 IX_MBR_BAS_02 INDEX를 순서대로 읽어서 MBR_NM의 첫 글자가 ‘김’인 것을 보여주라는 의미입니다.두 개의 차이점을 꼽자면, range는 원하는 범위로 바로 접근해 값을 가져올 수 있는 것이고, index는 처음부터 끝까지 읽어서 그 값이 조건에 맞을 경우 가져오라는 것입니다. 따라서 예시1이 휠씬 성능이 뛰어난 Query라고 볼 수 있습니다. 결과는 모두 아래와 같이 출력됩니다.수행시간은 차이를 보였습니다. 예시1은 0.0041초, 예시2는 0.5초였는데요. 예시에서는 건수가 적기 때문에 큰 차이가 없는 것처럼 보이지만, 자료가 10배 또는 100배 많아진다고 생각해보세요. 엄청난 차이겠죠.활용: Query를 만들고 DISTINCT !마지막으로 Query 하나를 만들어보겠습니다. 1) MBR_NM의 중복을 제거하고2) 김 씨이면서3) 이름이 ‘혜’로 시작하는 사람을 먼저 출력하고4) 이외의 사람은 그 다음부터 오름차순으로 출력하려면 어떻게 만들어야 할까요?중복을 제거할 때는 일반적으로 DISTINCT 와 GROUP BY 두 가지를 사용합니다. 이번 글에서는 DISTINCT를 사용하겠습니다. 다음으로는 오름차순 정렬할 때 김 씨를 먼저 출력하는 것인데 조건문을 사용하여 김 씨인 것과 아닌 것을 구별해 우선순위를 주겠습니다. 다른 것은 위의 Query를 이행하면 됩니다. 먼저 DISTINCT를 넣고 수행해 보겠습니다.SELECT     DISTINCT     MBR_NM FROM test.TB_MBR_BAS ORDER BY     MBR_NM  ; 실행계획은 다음과 같습니다.DISTINCT를 수행하면 Extra가 나타나며 group by로 표시됩니다. 여기서는 IX_MBR_BAS_02를 이용하여 gorup by(중복제거)하여 보여준다는 의미입니다. 수행하면 다음과 같은 값이 나옵니다.다음으로는 MBR_NM이 ‘김혜’로 시작하는 것을 먼저 보여주기 위해 ORDER BY 절에 CASE WHEN문을 사용하겠습니다.SELECT     DISTINCT     MBR_NM FROM test.TB_MBR_BAS ORDER BY     CASE         WHEN MBR_NM LIKE '김혜%'    THEN 0         ELSE 1     END     ,MBR_NM  ; 실행계획은 다음과 같습니다.ORDER BY에 조건이 들어가면서 INDEX의 순서대로 정렬한 것을 그대로 보여줄 수 없기 때문에 Extra에 Using temporary, Using filesort가 나타납니다. Using temporary는 가상 테이블을 만들어 사용하는 것인데, 다시 말해 가상 테이블을 만들어 다시 정렬하는 것입니다. 이에 대한 출력값은 다음과 같습니다.‘김혜’로 시작하는 사람이 먼저 나왔군요.글을 마치며지금까지 ORDER BY와 연관된 조건 처리를 알아봤습니다. 데이터를 더욱 체계적으로 나타내고 싶으신가요? ORDER BY를 이용해서 원하는 목적을 달성해보세요.글한석종 부장 | R&D 데이터팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발자 #개발팀 #인사이트 #경험공유
조회수 1017

맛있는 인터뷰: 잔디 그로스 팀 개발자, Hugo

 역삼 맛집▲ 금강산도 식후경이라 했던가? 맛있는 인터뷰가 맛있는 이유는 늘 음식과 함께 하기 때문이다오늘 온 맛집. 분위기가 심상치 않다. 어떤 곳인지 소개해달라. Hugo(이하 ‘휴’): 역삼역 근방에 있는 ‘산촌’이란 곳이다. 얼마 전 버디런치 장소 물색을 위해 ‘다이닝코드’로 역삼역 주변 한식집을 찾던 중 발견했다. 예로부터 어르신들이 찾는 곳은 맛집이라는 얘기가 있다. 보면 알겠지만 어르신들이 많다. 괜찮은 가격에 건강한 음식을 섭취할 수 있는 곳이라 많은 듯 하다. 그리고.. 우리도 건강을 챙겨야 하는 나이다. 몸에 좋은 곤드레밥, 메밀 전병을 먹으며 함께 하는 건강한 인터뷰가 되었으면 하는 바람에 이 곳을 선택했다.깔끔한 답변 고맙다. 이제 본인 소개를 부탁한다. 휴: 반갑다. 개발자 Hugo다. 잔디 그로스 팀(Growth Team)에서 로우 데이터(Raw data) 가공, 분석을 통해 유의미한 지표를 보여주는 데이터 분석 툴 ‘스프링클러’를 개발하고 있다. 잔디 멤버들 사이에서 유독 명성이 자자하다 휴: 여러분의 관심을 먹고 자라는 임무를 수행하다 보니 그런 듯 하다. Hannah, Jihoon, Jane 등과 함께 GWP 팀으로 활동해서 많이들 알아봐 주시고 격려해주시는 것 같다. * GWP 팀? GWP는 Great Working Place의 줄임 말이다. 단어 그대로 물리적+비물리적 최고의 업무 공간을 만들기 위해 TF팀 형태로 구성된 그룹이 다양한 활동을 한다. 예를 들면, 할로윈 파티 개최부터 탕비실 냉장고 음식 채우기 등 업무 환경 개선을 위해 크고 작은 일을 수행한다. ‘비선실세’라는 얘기도 돌던데? 휴: 천부당 만부당한 말씀이다. 그저 잔디를 사랑하는 멤버 중 한 명이다.스프링클러? 휴: 잔디 그로스 팀에서 자체적으로 만든 분석 툴이다. 쉽게 말하면 잔디 데이터 분석과 가공에 최적화된 잔디 전용 구글 어널리틱스(Google Analytics)로 보면 된다. 스프링클러를 통해 잔디 DAU(Daily Active User) 파악, 마케팅 채널 별 효율 측정, 유저 별 사용량 측정 등을 할 수 있다.  스프링쿨러▲ 잔디의 모든 데이터를 가공, 분석해 보여주는 스프링클러잠깐! 유저 별 사용량 측정도 스프링클러를 통해 가능하다고 했는데 잔디 팀이 유저의 모든 정보를 열람하는 건가? 휴: 많은 분들이 오해할 수 있을 것 같은데 그렇지 않다. 스프링클러에서 열람할 수 있는 유저 별 사용량 확인은 특정 채널을 통해 유입된 유저가 메시지를 몇 건 보내고, 파일 업로드를 얼마나 하는지 정도다. 유저가 어떤 메시지를 주고 받는지, 어떤 파일을 올리는지 등 개인 정보는 원칙적으로 잔디 팀이 접근할 수 없다.   스타트업은 시간과 리소스 관리가 생명이다. 구글 어널리틱스와 같은 훌륭한 툴이 있는데 굳이 자체 데이터 분석 툴을 만든 이유가 무엇인지? 휴: 날카로운 질문이다. 나도 처음에 왜 스타트업에서 데이터 관련 팀을 꾸려 분석 툴을 만들려고 하는지 이해가 가지 않았다. 하지만 좀 더 생각해보니 잔디에서 발생한 데이터에 특화된 분석 툴이 있어야 정확한 결과를 얻을 수 있고, 이를 통해 스타트업 특유의 린(Lean)한 개발이 가능할거란 결론에 도달하였다.   듣기엔 스프링클러의 사용성과 분석 능력이 뛰어나 독자 서비스로 나오는 것 아니냔 루머가 있었다. 사실인가? 휴: 하하. 루머일 뿐이다. 다만 그런 생각을 갖고 그로스 팀과 최선을 다해 스프링클러 개발을 하고 있다. 어쨌든 좋게 봐주셔서 이런 루머가 나온 것 같아 담당자로서 기쁘다.   스프링클러에 애정이 많을 것 같다 휴: 내게 잔디도 소중하지만 스프링클러도 무척 중요하다. 소박한 꿈이 있다면 스프링쿨러가 내가 없어도 100% 완벽히 잘 돌아가게 만들고 싶다. 물론, 분석 툴로서 멤버들이 원하는 결과를 보여줄 수 있도록 정교하게 만드는 것도 중요하다.   그로스 팀은 과거 ‘맛있는 인터뷰’의 Kevin을 통해 소개한 바 있다. 당시 개발자 중 몇 명을 차출해 그로스 팀에 합류시킨 걸로 알고 있는데 여러 개발자 중 Hugo가 차출된 이유가 있다면? 휴: 평소 데이터 마이닝 분야에 관심이 많아 대학원에서 관련 공부를 하기도 했고, 그로스 팀 초창기 모든 업무를 책임지던 팀장 겸 팀원 Kevin이 추천해 팀에 합류하게 되었다. 아, 그로스 팀 오기 전엔 백엔드(Back-end) 개발자 포지션으로 있었다. 팀을 옮길 땐 백엔드 개발자들로부터 ‘배신자’란 오명과 함께 모진 고문과 학대를 받았다. 하하.. 농담이다.   다른 얘기를 해보자. 잔디에 어떤 이유로 조인했는지 궁금하다 휴: 건방진 말일 수 있지만 내 의지대로 무언가 만들고 싶었다. 대한민국 수 많은 개발자들이 그렇겠지만 회사에서 내가 할 수 있는 건 생각보다 한정돼 있다. 아이디어를 내도 예산 때문에 혹은 기타 다른 이슈 때문에 반려되기 일쑤였다. 어떻게 보면 그런 현실에 대한 반발심으로 잔디를 선택한 게 가장 크다고 볼 수 있다.   잔디에서는 생활은 만족스러운가? 휴: 70% 정도?   왜 70%인가? 휴: 장-단점이 있지만 장점이 조금 더 크기 때문에?   그럼 장점부터 말해보자 휴: 합당한 이유가 있다면 내가 하고 싶은 일을 진행할 수 있다는 점이 큰 장점이다. 그 일을 실행하기까지 절차도 이전까지 다녔던 회사 대비 상당히 간소화되어 있어 부담감도 적다. 각 분야에서 두각을 드러낸 사람들과 함께 일하고 있다는 점도 매력적이다. 다들 자부심을 갖고 일하고 있어 자극을 받는다.   단점은? 휴: 장점이 때에 따라 단점으로 보일 때도 있다. 논리적인 어프로치가 필요할 때도 있지만 분명 전쟁터로 돌진하는 돌격병 같은 저돌성이 필요할 때도 있다. 그럴 땐 일부터 치고 보는 자세가 필요한데 그 때를 놓치는 경우가 눈에 보여 개인적으로 아쉽다.   스트레스는 어떻게 푸는지? 휴: 주말에 13시간 이상 잔다. 밤에 10시간, 낮에 3시간. 남는 시간엔 수영이나 등산을 한다.   등산? 휴: 집 바로 뒤에 나지막한 산이 있다. 평소 자연을 좋아하는데 등산을 하다 보면 산의 나무나 풀, 바람을 보고 즐길 수 있어 좋다.   생각보다 감성적인 남자라 당황스럽다 휴: ^^ ▲ 감성적인 남자로 보이는 그는 한 때 해병대 전우였다.수영은 시작한지 얼마 안됐다고 들었다 휴: 작년 10월부터 시작했다. 이제 갓 1년이 넘었다. 작년 초부터 체력적으로 처진 것 같은 느낌이 들어 이대론 안되겠다 싶어 수영을 시작했다. 등산과 함께 꾸준히 하는 운동 중 하나다.   꾸준히 운동하고 있는데 달라진 점이 있다면? 휴: 몸도 몸이지만 정신적으로 건강해졌다. 확실히 체력이 떨어지면 부정적인 생각을 하는 경향이 있는 것 같다. 운동을 시작하기 전과 후의 마음 상태가 정말 많이 다르다. 앞으로도 꾸준히 운동을 할 생각이다.   곤드레밥과 함께 한지 벌써 1시간 가까이 됐다. 인터뷰 질문도 다 소진되어 이전 맛있는 인터뷰 주인공이었던 David이 남긴 질문을 묻고 싶다 휴: 준비됐다.   잔디 멤버 중 전생에 공주나 왕자였을 것 같은 사람은? 휴: 왕자는 디자인 팀의 Ben. 도도하고 말수도 적고. 공주는 디자인 팀의 Yujin (A.K.A Summer)? 얘기는 많이 안 해봤지만 말도 고급스럽게 하는 것 같다. 두 사람 모두 괜찮은 사람들이라 이번 인터뷰를 통해 점수를 따보고 싶다.   전략적인 답변 감사하다 휴: ^^   마지막 질문이다. ‘맛있는 인터뷰’의 백미는 다음 인터뷰이에게 현재 인터뷰이가 질문을 남기는 것이다. 다음 사람에게 묻고 싶은 질문이 있다면? 휴: 잔디 멤버 중 내 주변 괜찮은 남자 사람이나 여자 사람을 소개시켜주고 싶은 사람은?   오늘 맛있는 곤드레밥 덕분에 잘 먹었다. 계산은 인터뷰이가 한다는 거 다시 한번 더 상기시켜 드리며 인터뷰 마무리하겠다 휴: …^^#토스랩 #잔디 #JANDI #개발 #개발자 #개발팀 #인터뷰 #팀원 #팀원소개 #팀원인터뷰 #기업문화 #조직문화
조회수 3889

크몽 개발팀 문화와 구조 이야기

안녕하세요. 크몽 개발자들과 함께하고 있는 크레이그(a.k.a. 크알)입니다.크몽 개발자 그룹은 1년 내 그 규모가 3배로 커지고, Data Science, Growth Hacking 조직이 만들어지는 등 질적, 양적으로 급성장하고 있는 팀입니다.크몽 개발 부서에 계신 분들은 크몽에 대해 이렇게 이야기 합니다.(참고 : 크몽 개발팀원 더팀스 인터뷰 - '신뢰할 수 있는 동료와 함께 초고속 성장을 만들어가는 크몽 팀' )"제가 크몽에서 전반적으로 느낀 인상은 능동적인 분들이 많다는 거예요. 수동적인 업무를 책임감 있게 하는 것도 중요하지만 문제를 스스로 찾고, 동료들에게 제기하고, 문제를 해결했을 때 진심으로 기뻐하면서 행복감을 느끼시는 분들이 많아요. 그게 큰 조직에 있다가 온 저에게는 정말 많은 자극이 되었어요. "- 데이터분석 KM님"크몽이 저의 개발자 커리어에서 마지막 회사였으면 좋겠다고 생각해요. 실은 진심이고요. 그동안 회사의 성장을 지켜봤고 개발적으로도 많은 변화를 경험했어요"- BackEnd Sean님이렇게 개발자들이 행복하게 개발할 수 있는 환경을 우선시하고 있습니다. 그리고 크몽의 오픈 커뮤니케이션 문화를 지향함과 동시에 ‘Work Happy’와 'Freedom with Responsibility’ 란 가치 아래 최대한 자율성을 보장된 실무자 중심의 개발 문화를 추구합니다.크몽 개발 조직 구조위 핵심 가치 아래 크몽 개발 조직 구조는 크게 ‘Go’와 ‘Chapter’로 구성되어 있습니다.Go  ; 고우선 ‘Go’는 프로젝트 개발 팀 단위로 크몽 서비스를 개선하기 위한 목표 중심의 조직입니다. 다른 회사에서는 ‘Silo’, ‘Team'로 명칭 하기도 합니다. 물리적으로 한 공간에서 스크럼을 이루어 일할 수 있도록 자원을 갖추고 있습니다. Go 안에는 Go Leader(GL) 가 있어 팀 업무 관리 및 우선순위를 정합니다.현재 크몽 개발 파트의 Go는 아래와 같이 구성되어 있습니다.UX-Go크몽 서비스 UX를 개선하기 위한 목표로 데이터를 기반으로한 UX Iteration & Growth Mission 을 수행하는 팀Data-Go데이터 파이프라인을 구축, 활용하여 조직 내 필요한 데이터 자료를 공급하고, 크몽 서비스안에 머신러닝/딥러닝 등의 인공지능 기술 영역을 담당하는 팀Dasi-Go서비스 안정적인 운영 및 릴리즈,  CRM 기술 지원을 담당하는 팀Mobile-Go검색 서비스, 서비스 카테고리 개선 등 크몽 서비스 향상을 위한 모듈 개발팀크몽 라운지Chapter  ; 챕터'Chapter'는 직군별 조직 단위로 주 1회 정도의 커뮤니케이션 타임을 통해 업무 및 기술 동향을 교환합니다. 더불어 챕터 안에서 필요한 스터디, 외부 교육 등의 직군별 자기 능력 향상을 도모하고, 회사에선 이를 적극 지원합니다. 그리고 챕터 내 프로젝트를 통해 서비스 개선에 기여하기도 합니다.크몽 개발 파트는 아래와 같은 챕터가 있습니다.(참고 : 웹 프로트엔드 챕터의 'gulp 개선기' -  https://brunch.co.kr/@kmongdev/5 )**챕터 프로젝트는 챕터 내에서 개발자분들이 스스로 필요하다는 판단 하에 빌딩 된 프로젝트입니다. 챕터 내에는 CL(Chapter Leader)가 존재하며, Chapter 구성원 관리 및 의견을 모아 조직에 전파하는 역할을 담당합니다.Guild  ; 길드개발 파트 안에서의 'Guild'는 토이 프로젝트 같은 성격의 공통 관심 분야를 지닌 프로젝트 팀이라고 볼 수 있습니다. 길드 기획 단계에서 회사 전사적으로 적용되면서, 동호회 성격으로 피보팅(Pivoting) 되어 있지만, 기본적으로 공통의 관심 분야를 같이 학습하고 프로젝트에 적용하는 팀입니다. 매주 수요일 오후 2~3시 사이의 시간은 챕터(Chapter), 고(Go)를 떠나 본인이 원하는 길드에 들어가서 새로운 영역을 탐색하고 연구하는 시간입니다.크몽 개발 파트는 아래와 같은 길드가 있습니다.(참고 : 코틀린 길드의 코틀린 리서치 이야기  https://brunch.co.kr/@kmongdev/9 )정리모든 개발 조직은 '성과 중심' 또는 '성장 중심'의 문화를 가지고 있습니다. 균형을 꾀하는 게 이상적이긴 하지만 스타트업에선 쉽지 않은 일입니다.하지만 크몽 개발 부서에선 인적 성장 중심 문화를 고민하고, 끊임없이 시도하고 있습니다. 이를 위해 여러 전문 교육 기관과 협약을 맺고 교육 지원을 하고 있으며, 국내 정상급 권위자 분들로 구성된 외부 컨설턴트 그룹을 구성해 개발자 분들께 배움과 성장의 기회를 부여하려고 노력하고 있습니다. 1년의 기간 동안 이직률3%의 수치를 기록하고 있는 크몽 개발 파트에선 신규 인력 채용 시 제 1의 인사 기준은 '높은 학력'도, '화려한 커리어'도 아닌우리와 '오랫동안' 함께 '성장'할 수 있는가?입니다. 이를 위해선 개발자 성장을 돕기 위한 환경 구축 및 관리가 필수이고,  그것이 궁극적으로는 회사 및 팀원에게도 장기적인 발전을 가져올 꺼란 굳은 믿음이 있습니다.크몽 개발 그룹CTO#크몽 #개발팀 #개발자 #사내복지 #기업문화 #조직문화 #사내스터디 #CTO
조회수 4856

웹서버 로그 수집과 모니터링 설정

우리는 고객이 무엇에 관심 있어 하고 무엇에 관심 없어하는지, 어떤 것을 보았을 때 클릭해 들어가고 어떤 것을 보았을 때 사이트에서 이탈하는지 궁금해 합니다. 이러한 정보를 얻기 위해 봐야 할 것은 역시 웹서버의 접속 로그입니다.처음에는 매일 생성되는 로그 파일을 일일이 파싱해서 원하는 정보를 DB에 쌓는 방법을 이용했지만, 이러한 방식은 한계가 있었습니다. 저장할 수 있는 데이터의 양에 심각한 제한이 있었고, 따라서 처음에 얻고자 했던 데이터 이상의 것을 새로 추출할 수도 없었습니다.그래서 지금은 웹서버 로그를 하둡(Hadoop) 클러스터에 쌓고 있습니다. Google Analytics 같은 외부 분석툴을 사용하기도 하지만, 아무래도 데이터를 우리 손에 직접 들고 있는 것이 더 유연한 분석을 제공할 수 있지요. 클러스터에서 로그를 분석하려면 가장 먼저 로그 수집 시스템을 만들어야 합니다.이번 포스팅에서는 이 로그 수집 시스템이 어떻게 만들어져 있는지, 그리고 그보다 더 중요한 시스템의 모니터링을 어떻게 하고 있는지 설명하려고 합니다.Flume 에이전트 설정하기Apache FlumeApache Flume은 로그와 같은 데이터의 흐름(streaming)을 제어할 수 있게 해주는 도구입니다. 단순하면서도 확장성 높은 구조로 되어 있기 때문에 많은 시스템에서 채택하는 도구가 되었고, 리디북스에서도 Flume 을 사용하게 되었습니다.Flume 의 기본 구조는 단순합니다.기본적인 에이전트 구성 (이미지 출처: Apache Flume 홈페이지)에이전트(agent)는 Source, Channel, Sink 로 이루어진 자바 프로세스이다.소스(source)는 외부에서 이벤트를 입력받아 채널(channel)로 전달하고, 채널은 이벤트를 저장하고 있다가 싱크(sink)로 전달한다. 싱크는 이벤트를 외부로 출력한다.한 에이전트의 Sink와 다른 에이전트의 Source가 같은 타입이면, 에이전트 간에 이벤트를 전달할 수 있다.굉장히 간단하지만 강력한 모델입니다. Flume 은 Avro, Thrift, Exec, HDFS, Kafka 등 다양한 라이브러리를 적용한 소스와 싱크를 미리 제공하고 있기 때문에, 사용자는 자기 입맛에 맞게 이를 조합해서 시스템을 구성할 수 있습니다.예를 들면 아래와 같습니다.좀 더 복잡한 에이전트 구성 (이미지 출처: Apache Flume 홈페이지)초기 에이전트 구성: Avro를 통해 클러스터에 로그 전송저희가 맨 처음 설정한 Flume 에이전트의 구성은 다음과 같습니다.초기 에이전트 구성각 웹서버ExecSource: exec 명령으로 실행된 프로세스의 표준 출력을 이벤트로 입력받음. (tail -F <로그파일>)MemoryChannel: 메모리상의 큐(queue)로 구현된 채널AvroSink: 클러스터에 상의 에이전트가 실행하는 Avro RPC 서버로 이벤트를 전송하둡 클러스터AvroSource: 웹서버의 에이전트가 Avro RPC 로 보내는 이벤트를 수신MemoryChannelHDFSSink: HDFS 상의 지정된 경로의 파일에 이벤트 내용을 출력각 웹서버에는 에이전트가 하나씩 실행되어서, 로그 파일에 새로 추가되는 로그를 클러스터에 전송합니다. 클러스터 상의 에이전트는 단 한 개 존재하는데, 웹서버로부터 전송받은 로그를 HDFS(Hadoop File System) 에 파일로 출력하는 역할을 합니다. 웹서버 에이전트와 클러스터 에이전트 간의 통신은 Avro RPC 로 하게 하였습니다. Flume 에서 기본적으로 AvroSource 와 AvroSink 를 구현하여 제공해 주는 것을 이용했습니다.사실은 클러스터 상의 에이전트가 Avro 서비스를 통해 데이터를 모아 주지 않고, 웹서버 상의 에이전트가 HDFSSink 를 이용해서 직접 클러스터에 파일을 쓰게 하더라도 대부분의 경우는 상관없습니다. 하지만 리디북스의 경우는 그렇게 할 수 없었는데, 왜냐하면 웹서버와 하둡 클러스터가 서로 다른 네트워크 상에 있기 때문입니다.리디북스의 웹서버는 국내 IDC에 존재하지만 하둡 클러스터는 Miscrosoft Azure 클라우드 내의 가상머신으로 실행되고 있습니다. 따라서 하둡의 네임노드(namenode)가 인식하는 각 노드의 사설 IP 주소를 웹서버들이 쉽게 접근할 수 없습니다. 이를 우회하는 다양한 방법을 시도해 보았지만 최종적으로는 Avro 서비스를 중간에 두어 해결하였습니다.모니터링 알람 설정하기JSON 리포팅 사용다음은 에이전트 프로세스를 모니터링하는 문제가 있었습니다. 예기치 않은 에러로 에이전트가 종료되어서 로그가 수집되지 않고 있는데 며칠 동안 모르고 있어서는 안되겠지요.Flume 에서는 모니터링 인터페이스도 여러가지를 제공하고 있는데, 그 중 가장 이용하기 간편한 것은 HTTP 를 통한 JSON reporting 이었습니다. 에이전트 자체가 HTTP 서비스로 작동해서, 특정 포트로 요청을 보내면 에이전트의 상태를 JSON 으로 정리하여 응답을 주게 되어 있습니다. 에이전트 실행시에 옵션 몇 개만 추가하면 바로 설정할 수 있기 때문에 매우 간단합니다.Health 페이지를 이용한 모니터링그런데 이 리포팅이 제대로 나오지 않으면 어떻게 알림을 받을 수 있을까요? 각 서버마다 JSON 리포팅을 요청해서 응답이 제대로 오지 않으면 이메일을 보내는 스크립트를 만들어서 cron 으로 5분마다 실행하는 방법도 있습니다. 하지만 이 스크립트가 제대로 동작하지 않거나, 이게 실행되는 서버가 다운되면?결국 스스로를 믿지 못하고 택한 방법은 외부 서비스 Pingdom을 이용하는 것이었습니다. 단, 외부 서비스가 각각의 웹서버에 직접 접근하여 리포팅을 요청하는 방식은 보안상 문제가 될 수 있어서 아래와 같이 보완하였습니다.웹 서비스 상에 health 페이지 구현. 이 페이지는 각 웹서버의 에이전트의 JSON reporting 포트로 요청을 보내서, 결과를 종합해서 다시 JSON 으로 보여줌.모든 에이전트가 정상적으로 리포트를 보내면 {“status”: “OKAY”} 를, 아니면 {“status”: “ERROR”} 를 보여줌.이 health 페이지의 내용을 모니터링하도록 Pingdom 설정. {“status”: “OKAY”} 가 응답에 없으면 알람 메일이 오도록 함.{ "status": "OKAY", "metrics": { "192.168.0.101": { "SOURCE.log_src": { ... }, "SINK.avro_sink": { "BatchCompleteCount": 562110, "ConnectionFailedCount": 294, "EventDrainAttemptCount": 56246850, "ConnectionCreatedCount": 31, "Type": "SINK", "BatchEmptyCount": 16, "ConnectionClosedCount": 30, "EventDrainSuccessCount": 56243927, "StopTime": 0, "StartTime": 1459135471379, "BatchUnderflowCount": 610 }, "CHANNEL.mem_channel": { ... } }, "192.168.0.102": { ... } } }Health 페이지의 Json내용JSON 리포팅의 문제이렇게 설정해 놓고, 며칠간 로그가 HDFS 상에 잘 수집되는 것을 확인하고 만족해 했습니다. 그런데 며칠간 신경을 쓰지 않은 사이, 다시 에이전트를 확인해 보니 모든 웹서버 에이전트가 죽어 있었습니다. HDFS에 로그도 쌓이지 않았구요.확인해 보니, MemoryChannel 의 설정 문제였습니다. byteCapacity 값을 실수로 너무 작게 설정해서, 채널 큐가 메모리 부족으로 터져나간 것이죠. 해당 문제는 byteCapacity 값을 늘려서 간단하게 해결했습니다.문제는 알람이 오지 않았다는 것이었습니다. 문제를 재현해 본 결과, 채널이 터져서 에이전트 실행이 중단되어도, 에이전트 프로세스는 죽지 않고 ExecSource 에서 실행한 자식 프로세스(tail -F)만 죽어 있었습니다. 이렇게 되면 JSON 리포팅도 정상적으로 나오기 때문에, 결국 JSON 리포팅으로는 이런 유형의 에러를 잡지 못한다는 결론이 나왔습니다.클러스터에 모니터링 설정하기결국 웹서버상에서 모니터링하는것 보다는 데이터를 최종 전달받는 하둡 클러스터 상에서 모니터링하는 것이 안정적이라 판단하였습니다. 다행히도, 하둡 클러스터에서 사용할 수 있는 꽤나 좋은 모니터링 도구가 이미 있었습니다.CDH 의 알람 트리거리디북스에서는 기본 하둡 패키지가 아닌, Cloudera에서 제공하는 하둡 배포판인 Cloudera CDH를 사용하고 있습니다. CDH는 클러스터 상에서 사용되는 서비스마다 각종 테스트를 자동으로 실행하여, 테스트가 통과되지 않을 때마다 메일로 알람을 보내줍니다. 그리고 웬만한 필수 테스트는 기본적으로 설정되어 있지만, 사용자가 커스텀 서비스를 직접 제작할 수도 있습니다. CDH가 각 에이전트의 소스, 채널, 싱크마다 초당 전송한 이벤트 개수 등의 측정치(metric)을 모두 기록하고 있기 때문에, 이 값들이 일정 수준 이상/이하가 될 때마다 알람이 트리거되도록 설정할 수 있습니다.CDH의 알람 트리거 편집 화면웹서버마다 알람 설정하기그런데 이것으로 끝이 아닙니다. 클러스터 에이전트는 각 서버에서의 트래픽이 모두 모이는 곳이기 때문에, 여기에서 모니터링을 하는 것은 웹서버 상에서 모니터링하는 것보다 기준이 애매해집니다.10대의 웹서버 중에 한 대만 문제가 생겼을 경우, 클러스터 에이전트가 받는 트래픽은 0으로 줄어드는 것이 아니라 90%로 줄어듭니다. 알람을 트리거하는 역치(threshold)를 평소 트래픽의 90%로 잡아야 한다는 것이지요. 그런데 트래픽이라는 것이 원래 날짜와 시간에 따라 달라지기 때문에, 이 역치값을 고정된 값으로 정할 수가 없습니다. 트래픽이 높은 때를 기준으로 하면, 트래픽이 낮아지는 새벽 시간마다 가짜 알람(false alarm)이 오게 되겠지요. 그렇다고 트래픽이 낮은 때를 기준으로 하면, 트래픽이 높은 때 웹서버 에이전트가 죽더라도 새벽이 될 때까지 알 수 없습니다.결국 클러스터 단에서도 각 웹서버마다 트래픽을 구분해 주어야 한다는 결론이 나옵니다. 다행히 한 에이전트가 여러 개의 채널과 싱크를 가질 수 있고, 이벤트 헤더의 내용에 따라 소스가 어느 채널로 이벤트를 보낼지 결정해 주는 채널 셀렉터 (Channel Selector)라는 것이 있습니다.웹서버 에이전트의 소스에서는 각 이벤트 헤더에 자기 호스트명을 달아 준다. (Interceptor 는 각 이벤트에 원하는 헤더를 달아주는 역할을 한다. HostInterceptor 이용)클러스터 에이전트는 1개의 소스와, 웹서버 대수만큼의 채널 및 싱크가 있다.클러스터의 소스는 이벤트의 host 헤더를 보고 그에 해당하는 채널로 이벤트를 전달한다. (MultiplexingSelector 사용)각 채널은 자신에게 대응되는 싱크에 이벤트를 전달하고, 싱크는 각자의 HDFS 경로에 이벤트를 파일로 출력한다.최종 에이전트 구성: 채널 셀렉터로 트래픽 나누기최종적으로 나온 에이전트의 구성은 다음과 같습니다.최종 에이전트 구성그리고 에이전트 설정 파일은 아래와 같이 작성했습니다.... log_to_avro.sources.log_src.type = exec log_to_avro.sources.log_src.command = tail -F /path/to/log/file log_to_avro.sources.log_src.restart = true log_to_avro.sources.log_src.channels = mem_channel log_to_avro.sources.log_src.interceptors = ts_ic host_ic # 호스트 인터셉터 설정 log_to_avro.sources.log_src.interceptors.ts_ic.type = timestamp # 이벤트 헤더에 timestamp 삽입 (날짜별 구분을 위해) log_to_avro.sources.log_src.interceptors.host_ic.type = host # 이벤트 헤더에 호스트명 삽입 (호스트별 구분을 위해) log_to_avro.sources.log_src.interceptors.host_ic.useIP = true # 호스트명 대신에 IP 사용 log_to_avro.channels.mem_channel.type = memory log_to_avro.channels.mem_channel.capacity = 10000 log_to_avro.channels.mem_channel.transactionCapacity = 10000 log_to_avro.channels.mem_channel.byteCapacityBufferPercentage = 20 log_to_avro.channels.mem_channel.byteCapacity = 10485760 log_to_avro.sinks.avro_sink.type = avro log_to_avro.sinks.avro_sink.channel = mem_channel log_to_avro.sinks.avro_sink.hostname = hostname.of.cluster.agent log_to_avro.sinks.avro_sink.port = 4141 ...웹서버 에이전트 설정파일... avro_to_hdfs.sources.avro_src.type = avro avro_to_hdfs.sources.avro_src.bind = 0.0.0.0 avro_to_hdfs.sources.avro_src.port = 4141 avro_to_hdfs.sources.avro_src.channels = c_101 c_102 avro_to_hdfs.sources.avro_src.selector.type = multiplexing # Multiplexing Selector 설정 avro_to_hdfs.sources.avro_src.selector.header = host # 호스트 이름으로 채널 나누기 avro_to_hdfs.sources.avro_src.selector.mapping.192.168.0.101 = c_101 # 192.168.0.101 에서 온 이벤트는 c_101 채널로 avro_to_hdfs.sources.avro_src.selector.mapping.192.168.0.102 = c_102 # 192.168.0.102 에서 온 이벤트는 c_102 채널로 # 채널 c_101 설정 avro_to_hdfs.channels.c_101.type = memory avro_to_hdfs.channels.c_101.capacity = 10000 avro_to_hdfs.channels.c_101.transactionCapacity = 10000 avro_to_hdfs.channels.c_101.byteCapacityBufferPercentage = 20 avro_to_hdfs.channels.c_101.byteCapacity = 10485760 # 싱크 k_101 설정 avro_to_hdfs.sinks.k_101.type = hdfs avro_to_hdfs.sinks.k_101.channel = c_101 avro_to_hdfs.sinks.k_101.hdfs.fileSuffix = .log.gz avro_to_hdfs.sinks.k_101.hdfs.path = hdfs://namenode/path/to/logs/dir/%Y%m%d/%{host} # 날짜별, 호스트별로 다른 디렉토리에 avro_to_hdfs.sinks.k_101.hdfs.rollSize = 104857600 avro_to_hdfs.sinks.k_101.hdfs.rollInterval = 7200 avro_to_hdfs.sinks.k_101.hdfs.rollCount = 0 avro_to_hdfs.sinks.k_101.hdfs.fileType = CompressedStream avro_to_hdfs.sinks.k_101.hdfs.codeC = gzip # 채널 c_102 설정 avro_to_hdfs.channels.c_102.type = memory avro_to_hdfs.channels.c_102.capacity = 10000 avro_to_hdfs.channels.c_102.transactionCapacity = 10000 avro_to_hdfs.channels.c_102.byteCapacityBufferPercentage = 20 avro_to_hdfs.channels.c_102.byteCapacity = 10485760클러스터 에이전트 설정파일p.s. Flume 설정 파일은 변수 또는 외부 파일 include 등을 지원하지는 않아서, 위와 같이 반복되는 설정을 여러 번 써 주어야 합니다.호스트마다 CDH 알람 트리거 설정그리고 CDH 상에서도 웹서버 호스트의 개수만큼 알람 트리거를 만들어 줍니다. 초당 이벤트 개수가 0에 가깝게 떨어지면 알람이 오도록 해 주면 됩니다. 채널/싱크 중 어느 것을 기준으로 해도 크게 상관은 없는데, 저희는 싱크가 초당 이동완료한 이벤트 개수를 기준으로 했습니다.CDH에서의 알람 트리거 상태 화면이렇게 해 놓으면 또 한가지 좋은 점은, CDH가 알아서 차트를 그려 주기 때문에, 웹서버마다 트래픽 추이를 한눈에 볼 수 있다는 것입니다.HDFSSink의 초당 이벤트 개수 그래프맺음말지금까지 Apache Flume 과 CDH 를 사용해 로그 수집 시스템을 구성하고 모니터링을 설정한 후기를 살펴 보았습니다. 이 과정에서 느낀 점들을 한번 정리해 보겠습니다.첫째, 일견 간단해 보이는 기능이었지만 의외로 많은 시행착오를 거쳐야 했습니다. 아무리 간단해 보이더라도 각자의 상황에 맞추어 시스템을 설계하는 데에는 그에 맞는 고민을 거쳐야 합니다.둘째, 처음에는 로그가 일단 수집되게 하는 것이 가장 중요하다고 생각했는데, 실제로 겪어보니 모니터링이 훨씬 어렵고 중요한 문제라는 것을 알게 되었습니다. 어떤 기능이 일단 실행되도록 설정을 해 놓더라도, 그것이 매일 문제없이 실행됨을 보장받는 것은 또 다른 문제입니다.셋째, Health 페이지와 Pingdom을 이용한 웹서버 측의 모니터링은 JSON 리포팅의 문제 때문에 큰 쓸모가 없게 되었습니다. 하지만 꽤 유용한 테크닉이라는 생각이 들고, 어딘가에서는 비슷하게 이용할 수 있을 것 같습니다.마지막으로 CDH 쓰면 좋습니다. 많은 것들이 편해집니다.P.S. 리디북스 데이터팀에서는 이러한 로그 시스템을 함께 고민하고 만들어나갈 분들을 찾고 있습니다. 많은 관심 부탁드립니다.#리디북스 #개발 #서버 #서버개발 #모니터링 #로그 #Flume #CDH #로그수정 #인사이트
조회수 1432

Semantic Versioning 소개

Semantic Versioning 소개Versioning?소프트웨어 개발 생태계는 수많은 사람들이 서로의 기술과 성과를 이어받아 오며 믿을 수 없는 수준의 협력 체제를 구축해오고 있습니다. 의존성은 이러한 협력체제에서 나오게 된 요소로, 다른 사람들이 만들어온 기능을 다시 만들 필요 없이 손쉽게 가져와서 재활용하는 방식으로 빠르게 소프트웨어를 만들 수 있게 되었습니다.하지만 이렇게 여러 사람에게 이용되는 패키지가 새롭게 업데이트될 때, 생각보다 다양한 문제에 직면하게 되었습니다. 기능의 사용법을 바꾸어버리거나 동작 방식의 변경 같은 변화들은 그에 의존하는 다른 소프트웨어를 의도대로 동작하지 못하게 하므로, 새로운 변화와 기존의 것을 구분할 필요가 생겼습니다. 버전이라는 개념은 이러한 패키지의 변화를 구분하기 위해 사용하기 시작하였습니다.Semantic Versioning?버전이라는 코드 형태의 구분방식은 많은 핵심 문제를 해결해주었지만, 아직 여러 과제가 남아있었습니다. 버전 명의 작성 방식에 관한 기준이 패키지마다 제각각 다른 것이 문제였습니다. 0.x와 1.x의 차이, 1.0.0 혹은 1.000. 선행 배포와 정식 버전의 구분 방법 등 모든 소프트웨어, 패키지는 저마다의 기준을 가지고 있었으며, 이는 어느 정도의 적당한 공통점이 있었지만, 그 점이 미묘하게 모두 차이가 있어 버전에 따른 의미 해석을 어렵게 하였습니다.Semantic Versioning은 Github의 공동창업자인 Tom Preston-Werner가 위의 문제를 해결하기 위해 기존의 현안을 모아 만든 제안입니다. 스펙 문서는 RFC 2119에 의해 규칙을 표기하여 의미적 엄격함을 높이고, 패키지 개발 생명주기에 발생할 수 있는 여러 상황을 포괄적으로 담아 일관성과 유연성을 균형 있게 갖추고 있습니다.규칙다음은 Semantic Versioning(v2.0.0-rc1)의 스펙을 한국어로 번역한 내용입니다.1. Semantic Versioning을 쓰는 소프트웨어는 반드시 공개 API를 정의해야 한다. 이 API는 코드 자체에 정의되어 있거나 명시적으로 문서화 되어있어야 한다. 이 과정은 포괄적이며 정확해야 한다.2. 일반 버전 명은 반드시 X.Y.Z 형태를 보여야 하며 X, Y, Z는 음이 아닌 정수이다. X는 주요한 버전이며, Y는 작은 버전, Z는 패치버전이다. 각 요소는 1씩 차례로 증가해야 한다. 예: 1.9.0 -> 1.10.0 -> 1.11.0.3. 주요 버전 숫자가 올라갈 때, 작은 버전 숫자와 패치 버전 숫자는 0으로 재설정되어야 한다. 작은 버전 숫자가 올라갈 때, 패치 버전 숫자는 0으로 재설정되어야 한다. 예: 1.1.3 -> 2.0.0, 2.1.7 -> 2.2.04. 버전 명이 주어진 패키지가 한번 공개되면, 해당 버전의 내용은 절대 수정되어선 안된다. 어떤 수정도 반드시 새로운 버전으로 공개되어야 한다.5. 주요 버전 0 (0.y.z)은 초기 개발을 위한 것이다. 언제든 변경될 수 있다. 공개 API는 안전하지 않다고 여긴다.6. 버전 1.0.0은 공개 API를 정의한다. 이 공개 이후의 버전 숫자가 바뀌는 방법은 공개 API와 변경 방법에 따라 결정된다.7. 패치 버전 Z (x.y.Zx > 0)는 하위호환을 하지만 버그 수정이 있을 때 올라간다. 버그 수정은 내부적으로 잘못 처리되고 있는 것을 고치는 것을 의미한다.8. 작은 버전 Y (x.Y.zx > 0)는 새로운 기능이 추가되었지만 기존의 공개 API가 하위호환되고 있을 때 올라간다. 공개 API가 하나 이상 deprecated될 시에도 올라가야 한다. 부가적인 새 기능이나 개선이 내부 코드 (private code)에 있을 시에도 올릴 수 있다. 이는 패치 수준의 변화를 포함할 수 있으나, 작은 버전이 올라가면 패치 버전은 꼭 0이 되어야 한다.9. 주요 버전 X (X.y.zX > 0)는 하위호환되지 않는 변화가 추가될 때 반드시 올라가야 한다. 이는 패치 수준과 작은 수준의 변화를 포함할 수 있으나, 주요 버전이 올라가면 작은 버전과 패치 버전은 꼭 0이 되어야 한다.10. 선행 배포 버전은 대시(-)와 점으로 나누어진 식별자들의 묶음을 패치 버전 뒤에 표시한다. 식별자들은 ASCII 영숫자와 대시로만 구성되어야 한다. [0-9A-Za-z-]. 선행 배포 버전은 연관된 일반 버전보다 낮은 우선순위를 가진다.11. 개발 버전은 더하기(+)와 점으로 나누어진 식별자들의 묶음을 패치 버전 뒤에 표시한다. 식별자들은 ASCII 영숫자와 대시로만 구성되어야 한다. [0-9A-Za-z-]. 빌드 버전은 연관된 일반 버전보다 높은 우선순위를 가진다.12. 우선순위는 주요, 작은, 패치, 선행 배포, 빌드 식별자 내 숫자 순으로 계산되어야 한다. 주요, 작은, 패치 버전은 항상 숫자로 비교되어야 한다. 선행 배포와 빌드 버전의 우선순위는 반드시 각 점으로 나누어진 식별자들이 아래 규칙에 따라 비교되어야 한다: 1. 숫자로만 이루어진 식별자는 숫자로 비교 (2) 문자와 대시가 포함된 식별자는 ASCII 정렬 순서대로 비교. 숫자 식별자는 숫자가 아닌 식별자보다 낮은 우선순위를 가진다. 예: 1.0.0-alpha < 1>응용여러 오픈소스 프로젝트들이 이미 Semantic Versioning에 따라 버전 명을 표기하기 시작하였으며, 해당 규칙에 기반을 둔 버전 비교 라이브러리도 만들어지고 있습니다.•node.js: https://github.com/isaacs/node-semver•PHP: https://github.com/GordonSchmidt/SemVer•Python: https://github.com/k-bx/python-semver•Ruby: https://github.com/iantruslove/SemverStringerseaport는 node.js 에서 서비스 클러스터들이 Semantic Versioning에 따라 버전 의존성을 가지게 설계할 수 있어 보다 안정적인 버전 협상이 가능하도록 하고 있습니다.server.js:var seaport = require('seaport');var ports = seaport.connect('localhost', 9090);var http = require('http');var server = http.createServer(function (req, res) {res.end('beep boop\r\n');});server.listen(ports.register('[email protected]'));client.js:var seaport = require('seaport');var ports = seaport.connect(9090);var request = require('request');ports.get('[email protected]', function (ps) {var u = 'http://' + ps[0].host + ':' + ps[0].port;request(u).pipe(process.stdout);});output:$ node server.js &[1] 6012$ node client.jsbeep boop마치며비록 작은 통일일지는 모르나, 버전 명을 작성하는 훌륭한 기준이 있다는 것은 장기적으로 개발 생태계를 더욱 빠르고 긴밀하게 협력하도록 도와줄 것이라 생각됩니다. 의미적 해석이 가능한 코드는 의존성 문제를 더 똑똑한 수준으로 자동화할 수 있기 때문이죠. 버전 명을 지으실 때 좋은 안내서가 되었으면 좋겠습니다.#스포카 #개발 #개발자 #개발팀 #꿀팁 #인사이트
조회수 777

비트윈이 사용자를 분석하는 방법 - VCNC Engineering Blog

 빅데이터분석이 최근 이슈가 되면서 관심이 많으실 것 같습니다. 비트윈팀도 데이터 분석 참 좋아하는데요, 저희도 한번 해보았습니다. 이번 포스팅에서는 비트윈팀의 데이터 분석 노하우를 아낌없이 공유해드립니다.왜 사용자의 데이터를 분석해야하는가요?비트윈같은 서비스는 초기 단계에는 앱을 기획하고 만들어낸 팀에 아이디어에 의해 계속해서 발전하고, 유지됩니다. 하지만 기능이 점점 다양해지고 사용자가 점점 많아지면서 사용자들의 앱 사용패턴을 점점 예측하기 어려워집니다. 게다가 비트윈은 해외 진출을 구상 중이었는데, 개인 혹은 팀의 아이디어만으로 해외에서의 사용패턴을 정확히 알기는 어려웠습니다.이런 시점에 필요한 것이 사용자 분석입니다.사용자들의 사용패턴을 분석해 보는 방법은 여러 가지가 있습니다. 초기에 해볼 수 있는 가장 직관적이고 쉬운 것은 비트윈을 사용하는 자기 자신의 사용 패턴을 돌아보고 분석해보는 것입니다. 또 친구들이나 익명 사용자들의 사용패턴을 물어보거나, 관찰하는 방법들이 있습니다. 이런 방법은 매우 효과적이고 많은 아이디어를 주지만 여러 가지 한계점이 있습니다. 지역적, 시간적인 한계 등이 그것입니다.그래서 택할 수 있는 방법이 실제로 사용자들의 행동을 컴퓨터로 수집해서 분석하는 것입니다. 말 그대로 '데이터 분석'을 하게 되는 것입니다.무엇을 분석할지 알아야 합니다데이터로 분석할 수 있는 것은 무궁무진합니다만, 먼저 데이터가 있어야합니다. 비트윈과 같이 서버와 통신하는 앱은 사용자들이 서버에 요청을 할 때마다 엑세스 로그를 남기게 됩니다. 이 엑세스 로그는 사용자들의 사용패턴을 고스란히 담고 있어, 소중한 데이터가 됩니다.엑세스 로그 분석은 전혀 어렵지 않습니다. 엑세스 로그에서 특정 행동에 해당하는 내용을 세는 것만으로도 여러 가지 유의미한 값을 얻어낼 수 있습니다. 하루 동안의 로그를 한줄씩 읽어서 메시지에 관련된 로그를 카운트하면 그날의 메시지 전송 건수를 얻을 수 있는 것입니다. (참 쉽죠?)엑세스로그에서 가입, 메시지, 사진, 메모 등 기본적인 내용에 해당하는 것들을 카운트하는 것만으로도 꽤 자세하게 앱 전체 사용자들의 전반적인 사용통계를 얻어낼 수 있습니다. 이제 해당 데이터를 엑셀에 넣어서 차트를 그려보면, 사용 통계에 대한 그럴싸한 차트가 그려집니다.엑세스 로그 분석에 성공했다면 좀 더 다양한 분석을 해볼 수 있을 텐데요, 사용자별 행동패턴 분석이나, 나라별, 혹은 아이폰, 안드로이드 디바이스별 분석 등 다양한 분석을 시도해볼 수 있습니다. 분석을 하기 전에 중요한 것은 무엇이 궁금한지, 어떻게 궁금한 데이터를 모을지 아이디어를 먼저 내는 것입니다. 여러 예제들을 찾아보며 공부해보면, 금방 좋은 아이디어를 얻으실 수 있을 겁니다.물론 여기서 중요한것은 개인정보나 사생활의 보호입니다. 로그가 유출되었을때의 보안 문제 뿐 아니라, 데이터 분석팀에게조차 개인정보가 노출된다면 곤란합니다. 이 문제에 저희가 어떻게 대처하고 있는지는 글 뒷부분에 자세히 알려드리겠습니다.특정 기술에 구애받지 말고 다양하게 구현해봅시다처음에는 로그 파일을 돌며 간단한 string을 검사하는 스크립트와 엑셀로도 충분했지만, 점점 복잡한 분석을 할수록 다양한 기술이 필요해집니다. 비트윈 사용자 분석도 점점 다양해지고 복잡해지면서 여러 가지 기술들을 사용하고 있습니다.비트윈 사용자 분석은 처음에는 6줄짜리 간단한 shell script에서 시작되었습니다.cat 2011-10-31.log | grep /messages | grep POST | wc -l cat 2011-10-31.log | grep /photos | grep POST | wc -l cat 2011-10-31.log | grep /memos | grep POST | wc -l cat 2011-10-31.log | grep /like | grep POST | wc -l cat 2011-10-31.log | grep SIGN | wc -l cat 2011-10-31.log | grep REL | grep POST | wc -l 이런 스크립트를 만들어서 결과를 이메일로 공유하거나, 엑셀로 만들어 놓곤 했습니다.여기에 비트윈 분석은 조금 더 발전하여, 로그파일을 쿼리하여 Map Reduce 작업이 가능한 Hive를 사용하고, PHP로 통계 웹사이트를 만들어 차트를 그리기 시작했습니다. 이 방식은 처음에는 매우 편리했지만 차츰 쿼리만으로 원하는 결과를 얻기가 힘든 다소 복잡한 분석이 필요해지기 시작했습니다.현재는 모든 로그를 분산 데이터베이스인 HBase에 Date Key와 User Key로 넣고, 코드 생산성이 좋은 Scala로 직접 Map Reduce코드를 작성해서 데이터들을 분석하고 있습니다. 그래서 충분히 scalable하면서도 꽤 편리하게 이용할 수 있는 데이터베이스를 활용하고, Scala의 좋은 expression을 활용하여 짧고 유지보수나 확장이 쉬운 코드로 분석을 수행하면서도 Java와 호환되는 Scala의 특성을 이용하여 Map Reduce 코드 작성을 효과적으로 하고 있습니다. 이렇게 분석한 데이터는 MySQL에 넣어서 2차로 가공하고, Scala Web Framework인 Play Framework을 이용하여 분석 사이트를 구축하고 D3 Chart를 이용해서 Visualize하고 있습니다. 이렇게 함으로써 편리한 MySQL 쿼리 사용의 장점을 취하고 멋진 차트를 효과적으로 그려낼 수 있습니다.좋은 Visualization은 멋질 뿐만 아니라 손쉽게 아이디어를 공유할 수 있게 해줍니다.앞으로는 더 빠른 성능을 위해 Hive를 더 잘 사용해보거나, Elastic Search같은 index engine들을 사용해 볼 계획도 가지고 있습니다. 또한 End point들에서 직접 성능을 측정하여 중앙으로 모아서 분석해보려는 생각도 가지고 있습니다.기술을 선택함에 있어서 정답은 없는 거 같습니다. 널리쓰이는 MySQL같이 scalability가 좀 떨어지지만, 다양한 쿼리로 높은 생산성을 낼 수 있는 데이터베이스도 있고, HBase같이 scalability가 좋지만, 데이터를 저장하는 형태에 제한이 있어 생산성이 조금 떨어지는 데이터베이스도 있습니다. 저희는 앞서 소개드렸듯이 이 두 가지를 모두 혼용하여 사용하고 있습니다. 각자가 마주한 상황에 맞게, 또 각자가 익숙한 기술에 맞게 설계하고, 사용해보면 됩니다.개인정보 보호는 철저하게빅데이터 분석이 개인정보를 침해하는 빅 브라더가 될 수 있다는 우려들이 나오고 있습니다. 300만이 넘는 커플들의 비밀스러운 일기를 담고 있는 비트윈 서비스는 당연하게도 모든 업무를 진행하는 데 있어 보안과 개인정보를 최우선으로 하고 있습니다. 데이터 분석에서도 분석할 수 있는 내용을 상당히 제한받더라도, 예외 없이 그 원칙을 지키고 있습니다.비트윈의 API서버는 AWS클라우드에서 운영되고 있는데, 사용료가 상당히 비싸기 때문에 큰 컴퓨팅 파워를 사용해야 하는 데이터분석까지 AWS에서 하기엔 좀 부담이 되었습니다. 그래서 PC급 컴퓨터 여러 대를 구입하여 사무실 구석에 쌓아놓고 사용하고 있습니다.하지만 문제는 보안이었습니다. AWS의 비트윈 API서버는 다중으로 보안이 유지되고 있지만, 사무실에 있는 서버에 사용자들의 개인정보를 담아둘 수는 없는 일이었습니다. SECO*이 사무실을 지켜주고 있긴 하지만 보안회사에 고객들의 소중한 개인정보를 맡기고 안심할 수는 없으니까요. 그리고 설사 보안 문제가 잘 해결된다고 해도, 분석을 수행하는 비트윈 데이터분석팀원에 개인정보 혹은 사생활이 노출된다면 그 또한 문제라고 생각하였습니다.그래서 저희가 생각해낸 방법은 '익명화'입니다. Access Log들을 저장할 때 사용자의 아이디를 전부 단방향 salted-hash하여 누구인지 알 수 없게 만들었습니다. (물론 salt key는 데이터 분석팀은 알 수 없습니다.) 그리고 애초에 Access Log에는 '어떤 사람'이 '50글자짜리 메시지를 보냈다' 라던가, '사진을 올렸다' 정도만 기록이 되기 때문에, 이를 통계적으로 분석하는 것은 유의미하지만, 사적인 정보를 담고 있지는 않습니다.익명화되어 처리되고 있는 로그는 개인정보는 거의 담고 있지 않으면서도, 유익한 분석 결과를 만들어줍니다.이런식으로 운영을 한다면 데이터 분석팀에서도 사적인 정보(예: 메시지 내용)에 대해서는 접근할 수 없기 때문에, 회원들의 소중한 개인정보와 사생활을 지킬 수 있습니다. 어떤 분석을 수행할 때 언제나 비트윈팀은 언제나 보안과 사생활 보호의 원칙을 지킬 수 있는 범위에서만 진행하고 있습니다.아이디어의 공유, 그리고 액션아이템이 무엇보다도 중요합니다데이터 분석의 목표가 무엇인지, 왜 해야 하는지 생각해보면, 무엇을 해야 하는지 알 수 있습니다. 바로 분석으로부터 얻은 아이디어를 공유하고 액션아이템을 정하고 실천하는 것입니다.데이터를 visualization하는것이 중요한 이유가 여기에 있습니다. 보기 좋은 떡이 먹기도 좋다는 말이 있듯이, 데이터도 먹기 좋아야 합니다. 여러 사람이 쉽게 이해할 수 있어야 아이디어를 공유하고 의사결정을 내리기가 수월하기 때문입니다.민트&베리 사용량 분석. 연인들이 쓰는 앱이라 사랑표현이 인기가 많군요. 디자인팀이 이런 자료를 참고하여 이후 디자인 아이디어를 내는 데 도움이 되면 좋겠죠?비트윈팀은 매번 데이터 분석 미팅을 진행하고 나면 액션아이템을 정하고 실천합니다. 저희가 어떤 식으로 의사결정을 내리고 행동하는지에 대해서는 비트윈 팀블로그의 VCNC는 데이터분석에 기반해 어떤 결정을 내렸나 포스팅을 보시면 도움이 되실 것 같네요.맺으며이번 포스팅에서는 비트윈팀이 어떻게 무엇을 분석하는지 간단하게 다뤄봤습니다. 의견이나 참견 모두 환영이니 댓글 많이 남겨주세요! 다음번 포스팅엔 기술적인 부분에 대해 좀 더 자세하게 다뤄보도록 하겠습니다.
조회수 1824

서비스 중단 없이 Amazon EKS로 옮긴 이야기 - VCNC Engineering Blog

Amazon EKS는 AWS의 관리형 Kubernetes 서비스입니다. 2017년 11월 AWS re:Invent에서 프리뷰 버전이 출시되었고, 2018년 6월에 상용(GA) 버전이 미국 리전에만 출시되었습니다. 그래서 서울 리전을 사용해야 했던 타다 프로젝트에서는 Kubernetes 클러스터를 직접 kops로 설치하여 운영할 수 밖에 없었습니다.2019년 1월, 오랜 기다림 끝에 드디어 서울 리전에 EKS가 출시되어 기쁜 마음으로 EKS로 옮겨가게 되었습니다. 이 글에서는 직접 구축한 클러스터 대비 EKS의 특징에는 어떤 것이 있는지 살펴보고, 서비스 중단 없이 EKS로 옮기기 위한 전략을 공유하고자 합니다.EKS 서울 리전 출시를 염원하던 한국인(?)들EKS는 뭐가 다른가요?AWS에서 마스터 노드를 관리해줍니다.Kubernetes 클러스터는 마스터 노드와 워커 노드로 구성되어 있습니다. EKS는 이 중에서 마스터 노드를 직접 EC2로 띄울 필요 없이 AWS에서 관리해주는 서비스입니다. RDS를 사용할 때 직접 DB 인스턴스를 생성하지 않는 것과 비슷합니다. 별도의 설정 없이도 알아서 여러 가용 영역에 마스터 노드를 실행하여 HA(고가용성) 구성을 해주고, 비정상 마스터 노드를 자동으로 감지하고 교체합니다. 또한 자동화된 버전 업그레이드 및 패치를 지원합니다. EKS를 사용하더라도 워커 노드는 직접 EC2 인스턴스를 생성·관리해야 합니다.EKS 클러스터의 요금은 2019년 2월 현재 시간당 $0.20입니다. 타다에서는 기존에 t2.medium 3대를 마스터 노드로 사용하고 있었기 때문에 관리를 직접 하지 않는 대신 비용이 약간 증가하게 되었습니다.AWS IAM 기반 인증을 사용합니다.VCNC에서는 기존에 Kubernetes API에 접속할 때 가장 간단한 basic auth 인증 방식을 사용했습니다. 그 대신 외부 네트워크에서 접근할 수 없게 해두고 필요한 경우 Bastion 호스트를 통해 SSH 터널링하여 접속했습니다.EKS의 API 서버는 인터넷에 노출되어 있으며, 별도로 네트워크 접근 제한 설정을 할 수 없고 AWS IAM으로 사용자를 인증합니다. (물론 공개망에 노출되어 있으면 Kubernetes API 서버에 보안 취약점이 발견되는 경우 안전하지 않을 수 있는 단점이 있습니다. 앞으로 PrivateLink가 지원되면 해결될 것입니다.)IAM은 인증에만 사용되고, 특정 작업을 할 수 있는 권한은 Kubernetes 기본 RBAC로 관리됩니다. IAM 사용자나 역할을 RBAC 그룹에 매핑할 수 있습니다.EKS 인증 흐름도워커 노드 당 Pod 개수 제한이 있습니다.예를 들어 c5.large 인스턴스에는 29개의 Pod을 띄울 수 있습니다. (표 참고) 그러므로 기존 클러스터에서 노드 당 Pod이 몇 개나 되는지 미리 확인할 필요가 있습니다. 왜 이런 제약이 있을까요?Kubernetes에서는 네트워킹 플러그인으로 Pod 사이에 네트워크 통신하는 방식을 다양하게 설정할 수 있습니다. EKS는 기본적으로 amazon-vpc-cni-k8s를 사용합니다. 이 네트워킹 플러그인은 VPC 상에서 유효한 실제 IP를 Pod에 할당합니다.그러기 위해서는 하나의 EC2 인스턴스에서 여러 개의 IP를 받아와야 하고, 이를 위해 추가적인 네트워크 인터페이스(ENI)를 붙입니다. 그런데 인스턴스 타입에 따라 추가할 수 있는 ENI 수와 ENI 당 IP 수에 제한이 있습니다. 따라서 이 제한이 워커 노드 하나에 띄울 수 있는 Pod 개수 제한이 됩니다.flannel 등 오버레이 네트워크 기반의 다른 네트워크 플러그인을 사용하면 이러한 제약을 피할 수 있습니다. 하지만 EKS에서 기본 제공하는 방법을 그대로 사용하는 것이 좋고, Pod을 엄청나게 많이 띄워야 하는 상황이 아니어서 시도하지 않았습니다.EKS로 중단 없이 넘어가기개요타다의 Kubernetes 클러스터에서 돌아가는 서비스들은 모두 영속적인(persistent) 상태를 가지고 있지 않습니다. 따라서 EKS 클러스터 위에 동일한 서비스를 띄우고 외부 트래픽을 옮겨주기만 하면 특별히 데이터를 옮기지 않고도 이전이 가능했습니다. 또한 거의 대부분의 Kubernetes 리소스는 Helm 차트로 생성한 것이기 때문에 새로운 클러스터에 동일한 서비스를 띄우는 작업도 쉽게 할 수 있었습니다.이전 작업은 다음과 같은 순서로 진행했습니다.EKS 클러스터를 만들고 워커 노드를 생성모든 서비스 다시 설치트래픽을 새 클러스터로 보내기이전 클러스터 제거EKS 클러스터를 만들고 워커 노드를 생성타다의 AWS 환경은 거의 모두 Terraform으로 정의되어 관리되고 있습니다. EKS 클러스터와 워커 노드도 HashiCorp Learn의 문서를 참고해서 Terraform으로 생성했습니다. 해당 문서에 설명이 잘 되어 있어서 거의 그대로 따라할 수 있었습니다.EKS 클러스터 설정은 재사용 가능하도록 Terraform 모듈로 만들었습니다. 덕분에 테스트용 클러스터와 실서비스용 클러스터를 동일한 모듈로 변수만 바꿔서 설정할 수 있었습니다.모든 서비스 다시 설치타다의 Kubernetes 리소스는 Helm 차트로 관리되고 있어서 기존 차트를 거의 그대로 설치할 수 있었습니다. 사용자에게 직접적인 영향을 덜 주는 워커 서비스를 먼저 설치해서 제대로 동작하는 것을 확인한 뒤, 마지막으로 프론트엔드 서비스를 설치하였습니다.트래픽을 새 클러스터로 보내기타다의 모든 트래픽은 NLB로 들어온 뒤 NGINX를 거쳐 다시 적절한 Pod에 라우팅됩니다. 그러므로 타다의 모든 도메인은 NLB를 가리키고 있습니다.타다는 Route 53을 DNS 서버로 사용합니다. Route 53에는 가중치 기반 DNS 레코드를 설정할 수 있습니다. 이를 이용하여 일부 트래픽만 새 클러스터의 NLB로 보낼 수 있습니다. 처음에는 아주 적은 트래픽만 새 클러스터로 보내다가 문제 없이 작동하는 것을 확인한 다음 조금씩 트래픽을 늘려나갔습니다.DNS 가중치 설정으로 일부 트래픽만 새 클러스터의 NLB로 보낼 수 있습니다.DNS 설정에서 이전 클러스터로 가는 레코드를 완전히 제거한 뒤에도, DNS 캐시 등의 이유로 일부 클라이언트가 이전 클러스터에 접속할 수도 있습니다. 따라서, 이전 클러스터 NLB에 새 클러스터의 노드들을 붙여서 아직 DNS를 따라오지 못한 클라이언트들의 요청을 처리하였습니다.이전 클러스터 제거가장 신나면서 조심해야 하는 작업입니다. 먼저 이전 클러스터로 트래픽이 전혀 들어오지 않는 것을 확인하였습니다. 그 다음에는 Terraform에서 이전 클러스터 리소스에 대한 참조를 제거한 뒤, terraform destroy 명령으로 이전 클러스터와 관련된 리소스를 한번에 삭제할 수 있었습니다.맺음말Kubernetes는 깔끔한 추상화를 통해 컨테이너 기반 배포를 간단하게 만들어주지만, 직접 클러스터를 관리해야 하는 부담이 있었습니다. Amazon EKS는 이러한 부담을 많이 덜어주는 좋은 서비스입니다. 앞으로 EKS의 무궁한 발전을 기원합니다.VCNC에는 오랫동안 쌓아온 AWS 인프라 운영 경험이 있습니다. 타다에서는 그동안의 경험과 비교적 최근에 시작한 프로젝트의 이점을 살려 컨테이너, Infrastructure as Code 등 업계 표준의 인프라 관리 방법론을 적극 도입하려고 노력하고 있습니다. 앞으로도 이에 관해 기술 블로그에 더 자세히 공유할 계획이니 기대해주세요. 또한 저희와 함께 안정적인 서비스를 만들어나갈 좋은 분들을 기다리고 있으니 VCNC 채용에도 많은 관심 부탁드립니다.
조회수 3204

사물인터넷(IOT) 란? 

안녕하세요?크몽(www.kmong.com) 개발자SEAN입니다.오늘은 요즘 말이 많이 나오고있는 IT용어중에서 사물인터넷(IOT)에 대해서 적어 봅니다. 위키피디아의 사물인터넷의 정의는 '사물 인터넷(Internet of Things, 약어로 IoT)은 각종 사물에 센서와 통신 기능을 내장하여 인터넷에 연결하는 기술을 의미한다. 여기서 사물이란 가전제품, 모바일 장비, 웨어러블 컴퓨터 등 다양한 임베디드 시스템이 된다. 사물 인터넷에 연결되는 사물들은 자신을 구별할 수 있는 유일한 아이피를 가지고 인터넷으로 연결되어야 하며, 외부 환경으로부터의 데이터 취득을 위해 센서를 내장할 수 있다.모든 사물이 해킹의 대상이 될 수 있어 사물 인터넷의 발달과 보안의 발달은 함께 갈 수밖에 없는 구조이다.'라고 정의가 되어있습니다.예를 들자면 아침에 집에서 알람이 울리면 그와 동시에 토스트기계가 반응하여 저절로 빵이 구워진다든지 집을 나서기 직전 문앞에서 오늘의 날씨를 알려준다든지, 모든 전자기기에 접목을 시킬수있습니다. 또다른 예를 들자면 카페의자에 센서를 달아서 카페마다 자리가 몇자리 남았는지 몇명이 있는지 등을 파악하여 굳이 찾아가지 않아도 내가 쉽게 자리가 있는 카페를 찾을 수 있습니다.  사물인터넷은 매우 좋지만 쉽게 대중화 되지 못하는 점은 위의 정의와 같이 보안에 매우 취약합니다.예를 들어 위의 카페의 정보를 잘못 보이도록하여 그 카페에 못가게 한다든지, 집안의 기계를 다른사람이 조종을 한다든지의 개인 프라이버시 침해가 발생 할 수있다는 것이겠지요. 그리고 또다른 문제점으로는 비용이 많이 든다는 겁니다. 이 점도 무시를 할 수없겠지요. 조그마한 장비라도 여기저기 붙여야하고 그 기기를 연결도 시켜야하고 쉬운 문제는 아닐 듯합니다.언젠가는 대중화 되는 날이 있겠지요?저도 기대해봅니다.이상 크몽 개발자 SEAN이었습니다.#크몽 #개발자 #개발팀 #팀원소개 #기업문화 #조직문화
조회수 2826

Radix? Redis!

얼마전부터 antirez twitter에서 radix tree 관련 트윗이 올라왔습니다. 얼마 지나지 않아 antirez가 radix tree를 구현한 rax 프로젝트를 공개하고 redis의 cluster hash_slot의 저장구조를 radix tree로 수정 되는것을 보았습니다.그동안 antirez의 코드 읽으면서 배우는 게 많았고, 자료구조에 관심이 많아서 살펴보기 시작했습니다. radix tree를 왜 구현 했는지, 어떻게 구현쟀는지 알아보고 radix tree를 redis에 어떻게 적용하였는지도 알아보겠습니다.antirez는 redis의 hash-slot -> key 구조에서 중복으로 인한 메모리 사용을 줄이기 위해 radix tree 를 만들었다고 합니다. 이 포스트에선 rax를 적용시킨 redis cluster로 이야기를 진행 하겠습니다.“현재는 hash-slot -> key에만 사용되지만 추후에는 다양한 곳에 사용 예정”이라는 트윗redis cluster?redis에는 cluster 기능이 있습니다.6대 이상의 redis 노드를 cluster 구성하면(최소 leader 3대, follower 3대 구성해야 cluster 가능) 16384개의 hash_slot이 노드 갯수에 맞게 분배가 됩니다. 즉 3대의 leader로 cluster 구성하면 각각의 leader는 0 ~ 5460, 5461 ~ 10922, 10923 ~ 16383 hash_slot을 나눠 가집니다.cluster 구성 후 client가 데이터 저장/삭제/조회 명령어를 redis server에 전송할 때 마다 key의 hash값을 구하고 어떤 leader hash_slot에 포함되는지 찾습니다.# example 127.0.0.1:7000> set hello world # hash_slot = crc16("hello") & 0x3FFF 계산된 값이 현재 접속한 leader의 hash_slot 범위에 있다면 그대로 실행 되지만 다른 leader의 hash_slot 이라면 에러를 발생하고 다른 leader로 이동하라고 힌트를 줍니다.cluster 구성 후에 노드를 추가 하거나 제거 할 경우 각 leader의 hash_slot을 재분배 하고, hash_slot에 맞게 key도 재분배 되어야 합니다. 단순하게 생각하면 leader의 hash_slot 재분배한 후 모든 key를 재계산하고 hash_slot에 맞는 leader에 할당 하는 겁니다.[현재까지 저장된 keys].forEach(v => { hash_slot = crc16(v) & 0x3FFF // leader에 할당된 hash_slot에 맞게 분배 }) 하지만 antirez는 redis Sorted set 데이터 타입의 구현체인 skiplist 을 이용하여 문제를 풀었습니다. skiplist는 member와 score를 저장하고, score를 기준으로 정렬합니다. skiplist의 member에는 key를 저장하고 score에는 key의 hash_slot을 저장합니다.(변수명 slots_to_keys)slots_to_keys 정보는 cluster 구성된 모든 노드가 저장합니다. 이후 재분배가 필요해지면 16384개 hash_slot을 leader 갯수에 맞게 재분배 하고 slots_to_keys에 저장된 “key:hash_slot” 정보를 가지고 해당 hash_slot의 key를 조회 및 재분배 합니다. 즉 slots_to_keys에 이용하여 재분배시 발생하는 계산을 없앤것입니다.잘 했구만 뭐가 문제냐?redis에 key가 추가/삭제 될때마다 slots_to_keys에 데이터가 저장되고 지워집니다. redis에 저장되는 key 갯수가 증가 할수록 slots_to_keys의 크기도 커짐을 의미 합니다.(※ 메모리 사용량)또한 leader 갯수에 맞게 16384개 hash_slot을 leader에 재분배하고, 각 hash_slot에 맞는 key를 찾고 할당 합니다. 예를들어 slots_to_keys에서 score 0인(hash_slot 0을 의미) member를 조회해서 0번 hash_slot에 할당, score 1인 member를 조회해서 1번 hash_slot에 할당 하는 방식으로 0 ~ 16383 hash_slot을 진행합니다.앞에서 말한 hash_slot에 속한 key를 조회 하는 GETKEYSINSLOT 명령어가 있는데 여기에 이슈가 있습니다.cluster GETKEYSINSLOT slot count # slot: hash_slot 번호 # count: 특정 hash_slot에서 조회할 key 갯수 # example 127.0.0.1:7000> cluster GETKEYSINSLOT 0 3 # 0번 hash_slot의 key를 3개 조회한다. "47344|273766|70329104160040|key_39015" "47344|273766|70329104160040|key_89793" "47344|273766|70329104160040|key_92937" 사용자가 특정 hash_slot에 몇개의 key가 저장 되었는지 모르기때문에 count에 Integer.MAX 를 대입하는데, redis는 hash_slot에 실제로 저장된 key 갯수와는 상관없이 client가 전달한 count만큼의 메모리를 할당합니다.} else if (!strcasecmp(c->argv[1]->ptr,"getkeysinslot") && c->argc == 4) { /* cluster GETKEYSINSLOT */ long long maxkeys, slot; unsigned int numkeys, j; robj **keys; // ... 명령어의 4번째 인자를 maxkeys에 할당, 즉 사용자가 입력한 count if (getLongLongFromObjectOrReply(c,c->argv[3],&maxkeys,NULL) != C_OK) return; // ... keys = zmalloc(sizeof(robj*)*maxkeys); numkeys = getKeysInSlot(slot, keys, maxkeys); addReplyMultiBulkLen(c,numkeys); for (j = 0; j < numkeys>zmalloc maxkeyscluster GETKEYSINSLOT unnecessarily allocates memory그래서 메모리도 적게 차지하면서(압축 가능) key와 key의 hashslot을 효율적으로 저장 및 조회가 가능한 자료구조가 필요했고 antirez는 radix tree를 선택합니다.※ 뜬금 없는데 2012년, redis 자료형에 Trie를 추가한 P/R이 생각났습니다.radix tree 구현한 rax 알아보기시작하기전 radix tree (Wikipedia) 위키 페이지의 그림을 보고 감을 잡은 후에 아래를 보시면 잘 읽힙니다.자! 이제부터 rax의 주석과 코드를 보면서 어떻게 구현됐는지 알아보겠습니다.Noderax의 노드 구성은 다음과 같습니다.typedef struct raxNode { uint32_t iskey:1; /* Does this node contain a key? */ uint32_t isnull:1; /* Associated value is NULL (don't store it). */ uint32_t iscompr:1; /* Node is compressed. */ uint32_t size:29; /* Number of children, or compressed string len. */ unsigned char data[]; } raxNode; 노드의 정보를 담고있는 32 bit(iskey, isnull, iscompr, size)와 key/value 그리고 자식 노드의 포인터를 저장하는 unsigned char data[]가 있습니다. 특이한 점은 key/value를 동일한 노드에 저장 하지 않고 key가 저장된 노드의 자식 노드에 value를 저장합니다.※ 사진 출처위 그림을 예로 32 bit 정보가 어떤걸 의미하는지 알아보겠습니다.iskey는 노드가 key의 종착역(iskey:1)인지 중간역(iskey:0)인지 나타내는 flag입니다. 1, 3 노드는 iskey:0 이고 2, 4, 5, 6, 7 노드는 iskey:1이 됩니다.isnull은 value의 null 여부를 표시합니다. unsigned char data[]에 key/value 그리고 자식 노드의 포인터를 저장하므로 value를 찾으려면 계산이 들어갑니다. 불필요한 연산을 줄이기 위해 만든 필드 같습니다.Trie는 각 노드에 한글자씩 표현 하지만 Radix는 압축을 통해 한 노드에 여러 글자 표현이 가능합니다. 이를 나태내는 플래그 iscompr 입니다. 노드가 압축된 노드(iscompr:1)인지 아닌지(iscompr:0)를 나타냅니다.size는 iscompr 값에 따라 의미가 다릅니다. iscompr이 1이면 저장된 key의 길이를 의미하고 iscompr이 0이면 자식노드의 갯수(저장된 key의 갯수)를 의미합니다.위 4개 정보를 이용해서 한 노드의 크기를 구하는 코드는 아래와 같습니다.#define raxNodeCurrentLength(n) ( \ sizeof(raxNode)+(n)->size+ \ ((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \ (((n)->iskey && !(n)->isnull)*sizeof(void*)) \ ) ※ 노드에 value 주소를 저장하거나, 마지막 자식 노드 포인터를 알고 싶을때 사용합니다.FindraxLowWalk 함수를 이용해 key가 존재 하는지 판단합니다.size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) rax에 “ANNIBALE” -> “SCO” -> [] 로 저장 되어있을때 어떤 값을 리턴하는지 알아보겠습니다.*s 가 “ANNIBALESCO”이고 len이 11 인 경우# splitpos: 0, return value: 11 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode *s가 “ANNIBALETCO”이고 len이 11인 경우# splitpos: 0, return value: 9 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode *s의 길이 len과 return value가 같다면 rax에 key가 존재하는 것입니다. *s의 길이 len과 return value가 다른 경우 어디까지 매칭됐는지 보여주는 return value와 어떤 노드에 어디까지 일치했는지 표현하는 *stopnode, splitpos를 통해 추가 정보를 얻을수 있습니다.InsertraxLowWalk 함수를 이용해서 저장할 위치를 찾습니다. (*stopnode, splitpos, return value)1번에서 구해진 데이터를 이용해서 새로운 노드 생성 및 링크를 연결합니다.rax에 “ANNIBALE” -> “SCO” -> [] 상태에서 “ANNIENTARE”를 저장하는 과정입니다.1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 4, return value: 4 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode 2. *stopnode, splitpos 데이터를 이용하여 노드 분리 "ANNI" -> "B" -> "ALE" -> [] 3. iscompr: 0인 노드 "B"를 기준으로 새로운 key 저장 ("B"와 "E"는 같은 노드) |B| -> "ALE" -> [] "ANNI" -> |-| |E| -> "NTARE" -> [] RemoveraxLowWalk 함수를 이용해서 저장할 위치를 찾습니다. (*stopnode, splitpos, return value)1번에서 구해진 데이터를 이용해서 노드 제거 및 compress가 가능다면2가지 경우가 있습니다.마지막 노드만 iskey: 1이고, 연속으로 iscompr:1인 노드가 된 경우마지막 노드만 iskey: 1이고, iscompr:1 -> iscomplr:0 -> iscomplr:1 노드 구조가 된 경우입니다.첫번째 경우를 알아 보겠습니다. rax에 “FOO” -> “BAR” -> [] 상태에서 “FOO”를 지우는 과정입니다.1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 3, return value: 3 "FOO" -> "BAR" -> [] ^ | *stopnode 2. 해당 key 삭제, 여기서는 자식노드가 있으므로 노드 삭제는 하지 않고 노드의 iskey: 0으로 세팅 "FOO" -> "BAR" -> [] 3. compress가 가능한 경우 진행 "FOOBAR" -> [] 두번째 경우를 알아 보겠습니다.0. "FOOBAR"와 "FOOTER"가 저장된 상황입니다. FOOTER를 지우는 경우입니다. |B| -> "AR" -> [] "FOO" -> |-| |T| -> "ER" -> [] 1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 0, return value: 6 |B| -> "AR" -> [] "FOO" -> |-| |T| -> "ER" -> [] ^ | *stopnode 2. 해당 key 삭제 "FOO" -> "B" -> "AR" -> [] 3. compress가 가능한 경우 진행 "FOOBAR" -> [] cluster 정보는 어떻게 저장되나?기존 skiplist 자료구조를 이용했던게 어떻게 변경 되었는지 알아보겠습니다.server.cluster->slots_keys_count[hashslot] += add ? 1 : -1; if (keylen+2 > 64) indexed = zmalloc(keylen+2); indexed[0] = (hashslot >> 8) & 0xff; indexed[1] = hashslot & 0xff; memcpy(indexed+2,key->ptr,keylen); if (add) { raxInsert(server.cluster->slots_to_keys,indexed,keylen+2,NULL,NULL); } else { raxRemove(server.cluster->slots_to_keys,indexed,keylen+2,NULL); } 먼저 slots_keys_count 변수를 이용하여 각 hash_slot의 key 갯수를 저장합니다.그리고 key는 hash_slot(2 byte) + key, value는 NULL로 rax에 저장하여 특정 hash_slot에 속한 key 조회를 쉽게 만들었습니다.마치며rax 구현과 rax가 어떻게 redis에 적용됐는지 보면서 오랜만에 재밌게 코드를 읽은것 같습니다. 개인적으로 데이터 관련 유용한 무언가를 만드는게 목표인데, 이런 좋은 코드들을 하나 둘씩 제것으로 만드는것도 과정이라 생각하며 진행했습니다.앞으로 rax가 redis에서 어떻게 쓰일지 흥미롭고, Redis를 Saas 형태로 제공하는 업체들이 언제 적용할지도 궁금합니다.긴 글 읽어주셔서 감사합니다.cluster, rax 관련 antirez twitterRedis cluster Insertion cluster Issuesame amount data hash table vs radix treehashset + ziplist -> radix tree + listpack 1/5replace Hashset with Radix treeraxNode에서 사용한 flexible memberflexible memberrax 를 이용한 Redis Streams(2017.12.17일 업데이트)Redis Stream#잔디 #토스랩 #JANDI #기술스택 #도입후기 #Redis #인사이트
조회수 1837

Genius? Jininus!

나는 인생을 살면서 많은 "천재"들을 만났다. 스타트업에 있다보면 더더욱 "영재""천재"로 불리는 수 많은 사람들을 보게 된다. 그들은 학문적으로 놀라운 성과와 스펙을 보유하고 있었다. 아마 당신이 한 회사를 운영하는 사람이거나 인사 담당자라면 분명 혹할 것이다. 하지만 정작 나는 같이 일하고 싶었던 사람이 단 한 명도 없었다. 주변에서는 천재들과 같이 일하면 성공할 것이라고 생각하지만, 사업적 결과물과 두뇌는 별개의 문제라고 나는 생각한다. 대단한 능력을 가지고도 빛 없이 사라진 사람들을 얼마나 많이 보았는가. 물론 나도 대단한 사람과 일하고 싶다. 그러나 그 기준을 "영특함"에 국한시키고 싶지는 않다. 사업적으로 혹은 사회적으로 더 나은 미래를 후손에 물려주기 위해서는 그 이상의 "무언가"가 필요하다. 지금부터 나에게 그 "무언가"를 가르쳐 준 "진짜 천재"에 대한 이야기를 하고자 한다. 그에 대한 이야기를 하기 전에 나에 대한 이야기를 가볍게 하고자 한다. 5년 전만 해도 나는 비전과 목표가 없었다. 어려서 부터 돈 욕심만 많았다. 대학교를 다니면서도 돈을 벌 수 있는 방법이면 수단과 방법을 가리지 않았다. 한 일화로 당시에 학원 강사 아르바이트를 하고 있었는데 도매시장에서 트렌디한 문구류를 사와 수업을 가르쳤던 중/고등학생에게 팔았다. 시간과 행동에 제약이 있는 학생들은 수업 시간에 벌어지는 소소한 쇼핑에 돈을 지불했다. 그러나 끝이 좋지 않았다. 학생의 부모님에게 알려져 결국 학원에서 해고 조치 되었다. 지금의 내가 돌이켜보면 엄청나게 창피한 일이다. 학생들에게 단순한 편리와 재미를 줄 순 있었지만, 돈 말고는 남는게 없었다.20대의 대부분은 가치 없는 돈벌이의 연속이었다. 혹자는 말한다. 우선 돈 벌고 가치 있는 곳에 쓰면 된다고. 그러나 이런 식의 무의미한 접근은 내가 가야할 길이 아니라고 느꼈다. 인생에서 가치 있는 일을 찾아야 했다. 그때 발견했다. 혁신, 도전, 열정이 정말 실천되고 있는 세계가 있다는 것을. 스타트업이라는 단어조차 생소했던 시기였다. 심지어 IT라는 분야를 그 전까지 제대로 공부해 본 적도 없었다. 스타트업의 "ㅅ"도 모르던 내가 이 세계에 적응할 수 있는 방법은 뛰어난 사람들과 함께 시작하는 것 뿐 이었다. 온갖 미사여구로 괜찮은 연봉과 복지를 내세우는 기업도 꽤 있었다. 그러나 나에게 가장 중요한 건 "내가 성장할 수 있는지"와 “구성원”이였다. 꽤나 당연한 조건으로 기업을 찾았음에도 불구하고 찾을 수가 없었다. 그러다가 첫 스타트업으로 선택한 게 라우드소싱 이라는 작은 팀이었다. (찾게 된 과정에 대해서는 다른 글을 통해 소개하겠다) 안정적인 연봉도 없고, 확실한 미래도 없었지만 내가 이 팀과 같이 해야겠다 결정한 건 "권진" 이라는 단 한 사람 때문이었다. 모든 기업이 그렇지만 누구나 회사에 합류하면 3개월간의 수습기간을 거친다. 스타트업이라고 예외는 아니다. 오히려 더 냉정하게 자신을 되돌아 보는 시간을 가져야 한다. 나는 내 스스로를 입증하고 싶었다. “제가 3달 안에 이 회사가 성장할 수 있는 계약들을 가져오겠습니다. 그 정도 능력도 발휘 못한다면 제 발로 나가겠습니다” 3달 동안 권진은 일에 대해서 전혀 간섭하지 않았다 . 팀워크에 있어서 가장 중요한 부분은 신뢰라고 생각한다. 하지만 신뢰라는 부분이 친하다고 해서 혹은 비전과 목표가 같다고 해서 생기는 것이 아니다. 각자의 위치에서 최고의 성과를 목표로 내고, 한계를 뛰어넘어 성장하는 모습을 보여줄 때 강력한 신뢰가 생긴다. 서로가 같이 일하고 싶은 마음을 만들어 주는 것.이게 팀워크의 핵심이다. 나는 나대로 권진은 권진대로 각자가 맡은 일들을 완벽하게 수행했고, 우리는 그 일들을 하나의 사업으로 만들어 갔다. 그는 나에게 따로 주저리 주저리 피드백을 하지 않았다. 하지만 행동으로 결과물의 중요성을 보여주었고, 나는 3달동안 7건의 B2B 계약을 성사시켰다.애초에 같이 할 사람을 정할 때는 모든 부분을 면밀히 살피고 고민해야 하지만, 내가 같이 하기로 결정 했다면 상대가 최고의 결과물을 낼 수 있도록 믿어주는 것. 내가 배운 첫번째 교훈이었다.실력을 보여주었다고 환상적인 Fit일까? 누구든 본인이 만들어 내는 결과물을 혼자만의 능력이라고 오판하기 쉽다. 내가 영업처를 설득하고, 계약서를 체결해 왔기 때문에 내가 없었으면 이 계약도 없었을 것이다. 감각적이고 환상적인 디자인을 뽑아냈는데 이건 순전히 나의 재능에 의한 것이다. 팀원들이 이런 생각들을 하기 시작한다면 그 팀은 단시간 내에 모래성처럼 무너질 것이다. 권진은 개인이 만들어 내는 결과물도 팀원들이 각자의 분야에서 해 온 노력들의 최종산출물이라고 생각한다.영업처를 설득할 수 있었던 건, 우리 팀이 환상적인 서비스를 만들어 주었기 때문이다.나의 디자인은 기획팀과 마케팅팀의 노력을 하나로 담은 것 뿐이다.톱니바퀴처럼 팀원들이 맞물려 돌아가며 서로의 존재에 대해 감사함을 느낄 때 놀라운 일이 벌어진다. 내가 배운 두번째 교훈이다.권진이 지켜온 2가지 요건이 계속 좋은 사람을 팀으로 영입할 수 있었던 강력한 요소였다고 생각한다. 나의 실력을 우리 팀에 입증하는 것. 나의 결과물은 우리 팀 노력의 산물 이라는 것.권진과 함께 일하며 느낀 그의 주요한 능력은 개발도 디자인도 아니었다. (물론 이 2가지도 잘한다)팀 내의 균형을 맞추고 팀원들이 끊임없이 성장하게 도와주는데 있다. 개성 넘치는 팀원들을 하나의 비전으로 묶어서 성장할 수 있게 하는 사람을 나는 살면서 권진 이외에는 아직 본 적이 없다. 장담컨데, 만약 현재 더팀스 대표가 권진이 아니라 다른 사람으로 바뀐다면 팀원들은 전부 팀을 나갈 것이다. (연봉이 대폭 인상된다 할지라도)그래서 나는 이걸 Jin in Us 라고 명칭했다. 권진이라는 확실한 구심점 안에 개성넘치는 팀원들이 한 몸처럼 목표로 향해가는. 나는 앞으로 대표라는 역할을 할 생각이 없다. 권진 이라는 사람보다 대표의 역할을 충실히 수행할 자신이 없어졌기 때문이다.리더십이라는 분야가 있다면 그는 천재가 아닐까?내가 우리 팀에 합류시키고 싶은 사람이 있을 때면 하는 단골멘트로 이 글의 마무리를 짓는다.“우리 팀의 권진을 만나보세요. 분명히 함께 하고 싶을 겁니다”#더팀스 #THETEAMS #천재디자이너 #풀스택개발자 #CEO #리더십 #경험공유 #팀원자랑 #팀원소개 #회사의자랑
조회수 1047

[사람이 서비스다] #4 JD, 안드로이드앱 개발 담당

셀잇은 기존 중고거래 시장에서 이용자들이 겪는 불편과 불안감을 해소하기 위해 등장한 서비스라는 자부심을 가지고 구매자와 판매자를 잇는 접점이 되고자 합니다. 이를 위해 서비스를 기획하고 실행하는 저희 구성원들에 대한 이야기를 간간히 들려드리고자 합니다. 좋은 서비스든 아이디어든 결국 사람이 하는 일이니까요-저희가 어떤 생각을 품고 어떤 마음가짐으로 살아가는지에 대해 진솔하게 풀어보고자 합니다. 이 청년들의 이야기, 한 번 들어보실래요? Interviewee: JD (제이디, 개발팀 / 안드로이드앱 개발 담당)Interviewer: Austin (오스틴, 마케터)  우선 자기소개부터 간단히 해주시죠. 흔해 빠진 소개일랑 집어치우고! 최대한 자신을 우리에게 알려봐요! 정~ 뭐라고 쓸지 모르겠으면 자기 이름으로 삼행시라도 해보세요. 우선 저에게 이런 귀찮은 일을 안겨준 브라이언에게 감사의 인사를 전하는 바입니다. 덕분에 독무대에 이어 다시 한번 불면증에 시달리게 되었어요. 그건 브라이언에게 개인적으로 앙갚음(?)을 해주시고, 본인 소개부터 해주세요. 저도 바쁘답니다. 안녕하십니까? 저는 전남 해남의 작은 시골 마을에서 2남 중 장남으로 태어나 안드로이드 개발을 하고 있는 JD라고 합니다. 원래는 게임 개발이 하고 싶어서 프로그래밍 공부를 시작하였지만 어쩌다 보니 앱을 개발하고 있네요. (뭐, 뭐지? 이 ‘신입사원의_패기.wav’ 같은 느낌은?) 그럼 현재 셀잇에서 개발자로 일하시겠군요. 그럼 본인이 하는 일 중에서 이건 나만의 스페셜티다! 하는 부분은 무엇인가요? 당연히 안드로이드 개발입니다. 우리 회사에서 저 밖에 못하는 거죠~(찡긋) (찡...찡긋?) 하하하;; 네네 그렇군요. (셀잇이 잘 되는 이유가 이거였군. 정상적인 놈이 없는...) 그게 다인가요? 개발하시다가 잘 안풀리거나 열 받을 때는 어떻게 하나요? 자세한 건 ‘영업비밀’이니까- 전 안풀리면... 음- (한참을 생각한다)잠을 잡니다. (역시 오늘도 산으로 가는건가…) 아…(포기한 듯) 얼마나 자나요? 한 20분 정도 짧게 자요. 사실 잔다기보다는 자는 척을 하면서 생각을 하는거죠. 읭? 굳이 자는 척을 해야 될 필요가 있나요? 그냥 대놓고 생각하면 안되는건가요? 안됩니다! 온전한 집중을 위해서 자는 척을 해야 해요. (정적) 인터뷰 하는 중에 월드시리즈까지 끝나버렸네요... 올해 모든 야구가 끝나버렸어요 ㅠ (후우... 내가 이걸 왜 시작했을까...) 그럼 일 얘긴 그만하고(더 할 수도 없겠어;;) 업무 외의 시간에는 주로 뭘 하시나요? 듣자하니 야구를 좋아하는 것 같은데- 야구를 봅니다. 한국 야구는 기아를 응원하고, 메이저리그는 한국 선수들이 진출한 팀들을 응원하고 있어요. 주말에는요? 주말이면 아침에 일어나서 메이저리그 두 경기 정도 보고 오후에는 한국 야구를 보면서 하루를 보냅니다. 이제 야구 시즌도 다 끝나서 다가오는 겨울이 두렵습니다ㅠ 차라리 야구선수로 전향하시는게- 만약 실력이 문제라면 사회인 야구팀이라도 해보시는건요? 그건 돈도 많이 들고, 일단 귀찮고-부상 위험도 크고, 일단 귀찮고-그냥 친구랑 캐치볼 하는 것으로 만족합니다. 그리고 일단 귀찮고- 커피나 한 잔 하실래요? 커피나 마시면서 다른 얘기로 넘어가죠~ 괜찮습니다. 저는 카페인 마시면 안되서- 아, 그럼 그냥 계속 하죠. (여자랑은 술 마시고 나랑은 커피도 안 마시냐?-_- 쳇, 근데 이해되네...) 중고에 대해서 어떻게 생각하세요? 중고를 바라보는 가치관 같은게 있으시면 말씀해 주세요. 제가 환경 문제에 관심이 많습니다. 중고거래가 보편적으로 활성화 된다면 상대적으로 공산품의 생산량이 줄어들게 되고, 이는 지구의 자연 환경에 도움이 되지 않을까 합니다. (응? 뭔가 익숙한데?) 제가 예전에 쓴 글을 보신건가요?… 네~ 꼭 중고 거래가 활성화되서 지구 환경을 지켜주세요… 그럼 마지막으로 셀잇에서 이루고 싶은 것은 무엇인가요? 주로 컴퓨터 부품들을 중고 거래를 이용해 구매했던 적이 있는데요. 항상 직거래를 했지만 정상 작동하는지 불안했던 기억이 있습니다. 집에 와서 컴퓨터에 장착해 보고서야 안심을 하곤 했었는데, 셀잇을 이용하면 최소한 이런 걱정 없이 믿고 안심하며 거래할 수 있는 서비스로 자리 잡을 수 있었으면 합니다. 아니 이건 셀잇이 나아갈 방향이고~ 저는 제이디 본인 개인의 목표에 대해서 물은거예요. 셀잇이 곧 저입니다. 화, 화이팅...! (후우...) 이런 자리가 부끄럽죠? 가슴 속에 뜨거운 뭔가가 있는게 보이지만 굳이 밝히지 않으시겠다면 앞으로 안드로이드 앱을 통해 그 뭔가를 제가 찾아보겠습니다. (빨리 끝내려 애쓴다;;) 인터뷰는 이 정도로 마치는 것으로 하고~ 셀잇에서 칭찬하고 싶은 사람 한 명만 꼽아주세요. 이유도 함께 말해주세요. 전 네이쓴을 칭찬하고 싶습니다. 특유의 친화력과 유머러스함으로 주변 사람들을 기분 좋게 만들어주는 아주 훌륭한 팀원이기 때문입니다. 로봇입니까? 네? 아닙니다. 그럼 오늘 수고하셨습니다. 아! 최근에 셀잇 앱 2.0이 배포됐는데 감회가 남다를 것 같 같은~ 어떠세요? 딱히 이렇다할 소감은 없습니다만 이용자분들이 이전보다 더 편하게 서비스를 이용할 수 있었으면 하는 바람입니다. (로봇 맞네...) 넵- 수고하셨습니다. (하아... 네이쓴이라... 다음엔 우주로 가겠구만...)#셀잇 #번개장터 #인터뷰 #팀소개 #팀인터뷰 #팀원소개 #기업문화 #조직문화 #회사문화 #사내문화

기업문화 엿볼 때, 더팀스

로그인

/