스토리 홈

인터뷰

피드

뉴스

조회수 933

비트윈의 HBase 스키마 해부 - VCNC Engineering Blog

비트윈에서는 HBase를 메인 데이터베이스로 이용하고 있습니다. 유저 및 커플에 대한 정보와 커플들이 주고받은 메시지, 업로드한 사진 정보, 메모, 기념일, 캘린더 등 서비스에서 만들어지는 다양한 데이터를 HBase에 저장합니다. HBase는 일반적인 NoSQL과 마찬가지로 스키마를 미리 정의하지 않습니다. 대신 주어진 API를 이용해 데이터를 넣기만 하면 그대로 저장되는 성질을 가지고 있습니다. 이런 점은 데이터의 구조가 바뀔 때 별다른 스키마 변경이 필요 없다는 등의 장점으로 설명되곤 하지만, 개발을 쉽게 하기 위해서는 데이터를 저장하는데 어느 정도의 규칙이 필요합니다. 이 글에서는 비트윈이 데이터를 어떤 구조로 HBase에 저장하고 있는지에 대해서 이야기해 보고자 합니다.비트윈에서 HBase에 데이터를 저장하는 방법Thrift를 이용해 데이터 저장: Apache Thrift는 자체적으로 정의된 문법을 통해 데이터 구조를 정의하고 이를 직렬화/역직렬화 시킬 수 있는 기능을 제공합니다. 비트윈에서는 서버와 클라이언트가 통신하기 위해 Thrift를 이용할 뿐만 아니라 HBase에 저장할 데이터를 정의하고 데이터 저장 시 직렬화를 위해 Thrift를 이용합니다.하나의 Row에 여러 Column을 트리 형태로 저장: HBase는 Column-Oriented NoSQL로 분류되며 하나의 Row에 많은 수의 Column을 저장할 수 있습니다. 비트윈에서는 Column Qualifier를 잘 정의하여 한 Row에 여러 Column을 논리적으로 트리 형태로 저장하고 있습니다.추상화된 라이브러리를 통해 데이터에 접근: 비트윈에서는 HBase 클라이언트 라이브러리를 직접 사용하는 것이 아니라 이를 래핑한 Datastore라는 라이브러리를 구현하여 이를 이용해 HBase의 데이터에 접근합니다. GAE의 Datastore와 인터페이스가 유사하며 실제 저장된 데이터들을 부모-자식 관계로 접근할 수 있게 해줍니다.트랜잭션을 걸고 데이터에 접근: HBase는 일반적인 NoSQL과 마찬가지로 트랜잭션을 제공하지 않지만 비트윈에서는 자체적으로 제작한 트랜잭션 라이브러리인 Haeinsa를 이용하여 Multi-Row ACID 트랜잭션을 걸고 있습니다. Haeinsa 덕분에 성능 하락 없이도 데이터 무결성을 유지하고 있습니다.Secondary Index를 직접 구현: HBase에서는 데이터를 Row Key와 Column Qualifier를 사전식 순서(lexicographical order)로 정렬하여 저장하며 정렬 순서대로 Scan을 하거나 바로 임의 접근할 수 있습니다. 하지만 비트윈의 어떤 데이터들은 하나의 Key로 정렬되는 것으로는 충분하지 않고 Secondary Index가 필요한 경우가 있는데, HBase는 이런 기능을 제공하지 않고 있습니다. 비트윈에서는 Datastore 라이브러리에 구현한 Trigger을 이용하여 매우 간단한 형태의 Secondary Index를 만들었습니다.비트윈 HBase 데이터 구조 해부페이스북의 메시징 시스템에 관해 소개된 글이나, GAE의 Datastore에 저장되는 구조를 설명한 글을 통해 HBase에 어떤 구조로 데이터를 저장할지 아이디어를 얻을 수 있습니다. 비트윈에서는 이 글과는 약간 다른 방법으로 HBase에 데이터를 저장합니다. 이에 대해 자세히 알아보겠습니다.전반적인 구조비트윈에서는 데이터를 종류별로 테이블에 나누어 저장하고 있습니다. 커플과 관련된 정보는 커플 테이블에, 유저에 대한 정보는 유저 테이블에 나누어 저장합니다.각 객체와 관련된 정보는 각각의 HBase 테이블에 저장됩니다.또한, 관련된 데이터를 하나의 Row에 모아 저장합니다. 특정 커플과 관련된 사진, 메모, 사진과 메모에 달린 댓글, 기념일 등의 데이터는 해당 커플과 관련된 하나의 Row에 저장됩니다. Haeinsa를 위한 Lock Column Family를 제외하면, 데이터를 저장하기 위한 용도로는 단 하나의 Column Family만 만들어 사용하고 있습니다.각 객체의 정보와 자식 객체들은 같은 Row에 저장됩니다.또한, 데이터는 기본적으로 하나의 Column Family에 저장됩니다.이렇게 한 테이블에 같은 종류의 데이터를 모아 저장하게 되면 Region Split하는 것이 쉬워집니다. HBase는 특정 테이블을 연속된 Row들의 집합인 Region으로 나누고 이 Region들을 여러 Region 서버에 할당하는 방식으로 부하를 분산합니다. 테이블을 Region으로 나눌 때 각 Region이 받는 부하를 고려해야 하므로 각 Row가 받는 부하가 전체적으로 공평해야 Region Split 정책을 세우기가 쉽습니다. 비트윈의 경우 커플과 관련된 데이터인 사진이나 메모를 올리는 것보다는 유저와 관련된 데이터인 메시지를 추가하는 트래픽이 훨씬 많은데, 한 테이블에 커플 Row와 유저 Row가 섞여 있다면 각 Row가 받는 부하가 천차만별이 되어 Region Split 정책을 세우기가 복잡해집니다. RegionSplitPolicy를 구현하여 Region Split 정책을 잘 정의한다면 가능은 하지만 좀 더 쉬운 방법을 택했습니다.또한, 한 Row에 관련된 정보를 모아서 저장하면 성능상 이점이 있습니다. 기본적으로 한 커플에 대한 데이터들은 하나의 클라이언트 요청을 처리하는 동안 함께 접근되는 경우가 많습니다. HBase는 같은 Row에 대한 연산을 묶어 한 번에 실행시킬 수 있으므로 이 점을 잘 이용하면 성능상 이득을 얻을 수 있습니다. 비트윈의 데이터 구조처럼 특정 Row에 수많은 Column이 저장되고 같은 Row의 Column들에 함께 접근하는 경우가 많도록 설계되어 있다면 성능 향상을 기대할 수 있습니다. 특히 Haeinsa는 한 트랜잭션에 같은 Row에 대한 연산은 커밋시 한 번의 RPC로 묶어 처리하므로 RPC에 드는 비용을 최소화합니다. 실제 비트윈에서 가장 많이 일어나는 연산인 메시지 추가 연산은 그냥 HBase API를 이용하여 구현하는 것보다 Haeinsa Transaction API를 이용해 구현하는 것이 오히려 성능이 좋습니다.Column Qualifier의 구조비트윈은 커플들이 올린 사진 정보들을 저장하며, 또 사진들에 달리는 댓글 정보들도 저장합니다. 한 커플을 Root라고 생각하고 커플 밑에 달린 사진들을 커플의 자식 데이터, 또 사진 밑에 달린 댓글들을 사진의 자식 데이터라고 생각한다면, 비트윈의 데이터들을 논리적으로 트리 형태로 생각할 수 있습니다. 비트윈 개발팀은 Column Qualifier를 잘 정의하여 실제로 HBase에 저장할 때에도 데이터가 트리 형태로 저장되도록 설계하였습니다. 이렇게 트리 형태로 저장하기 위한 Key구조에 대해 자세히 알아보겠습니다.Column Qualifier를 설계할 때 성능을 위해 몇 가지 사항들을 고려해야 합니다. HBase에서는 한 Row에 여러 Column이 들어갈 수 있으며 Column들은 Column Qualifier로 정렬되어 저장됩니다. ColumnRangeFilter를 이용하면 Column에 대해 정렬 순서로 Scan연산이 가능합니다. 이 때 원하는 데이터를 순서대로 읽어야 하는 경우가 있는데 이를 위해 Scan시, 최대한 Sequential Read를 할 수 있도록 설계해야 합니다. 또한, HBase에서 데이터를 읽어올 때, 실제로 데이터를 읽어오는 단위인 Block에 대해 캐시를 하는데 이를 Block Cache라고 합니다. 실제로 같이 접근하는 경우가 빈번한 데이터들이 최대한 근접한 곳에 저장되도록 설계해야 Block Cache의 도움을 받을 수 있습니다.비트윈에서는 특정 커플의 사진이나 이벤트를 가져오는 등의 특정 타입으로 자식 데이터를 Scan해야하는 경우가 많습니다. 따라서 특정 타입의 데이터를 연속하게 저장하여 최대한 Sequential Read가 일어나도록 해야 합니다. 이 때문에 Column Qualifier가 가리키는 데이터의 타입을 맨 앞에 배치하여 같은 타입의 자식 데이터들끼리 연속하여 저장되도록 하였습니다. 만약 가리키는 데이터의 타입과 아이디가 Parent 정보 이후에 붙게 되면 사진 사이사이에 각 사진의 댓글 데이터가 끼어 저장됩니다. 이렇게 되면 사진들에 대한 데이터를 Scan시, 중간중간 저장된 댓글 데이터들 때문에 완벽한 Sequential Read가 일어나지 않게 되어 비효율적입니다.이렇게 특정 타입의 자식들을 연속하게 모아 저장하는 묶음을 컬렉션이라고 합니다. 컬렉션에는 컬렉션에 저장된 자식들의 개수나 새로운 자식을 추가할 때 발급할 아이디 등을 저장하는 Metadata가 있습니다. 이 Metadata도 특정 Column에 저장되므로 Metadata를 위한 Column Qualifier가 존재합니다. 이를 위해 Column Qualifier에는 Column Qualifier가 자칭하는 데이터가 Metadata인지 표현하는 필드가 있는데, 특이하게도 메타데이터임을 나타내는 값이 1이 아니라 0입니다. 이는 Metadata가 컬렉션의 맨 앞쪽에 위치하도록 하기 위함입니다. 컬렉션을 읽을 때 보통 맨 앞에서부터 읽는 경우가 많고, 동시에 Metadata에도 접근하는 경우가 많은데, 이 데이터가 인접하게 저장되어 있도록 하여 Block Cache 적중이 최대한 일어나도록 한 것입니다.Datastore 인터페이스비트윈에서는 이와 같은 데이터 구조에 접근하기 위해 Datastore라는 라이브러리를 구현하여 이를 이용하고 있습니다. HBase API를 그대로 이용하는 것보다 좀 더 쉽게 데이터에 접근할 수 있습니다. GAE의 Datastore와 같은 이름인데, 실제 인터페이스도 매우 유사합니다. 이 라이브러리의 인터페이스에 대해 간단히 알아보겠습니다.Key는 Datastore에서 HBase에 저장된 특정 데이터를 지칭하기 위한 클래스입니다. 논리적으로 트리 형태로 저장된 데이터 구조를 위해 부모 자식 관계를 이용하여 만들어 집니다.Key parentKey = new Key(MType.T_RELATIONSHIP, relId); Key photoKey = new Key(parentKey, MType.T_PHOTO, photoId); // 특정 커플 밑에 달린 사진에 대한 키 Datastore는 Key를 이용해 Row Key와 Column Qualifier를 만들어 낼 수 있습니다. Datastore는 이 정보를 바탕으로 HBase에 새로운 데이터를 저장하거나 저장된 데이터에 접근할 수 있는 메서드를 제공합니다. 아래 코드에서 MUser 클래스는 Thrift로 정의하여 자동 생성된 클래스이며, Datastore에서는 이 객체를 직렬화 하여 HBase에 저장합니다.MUser user = new MUser(); user.setNickname("Alice"); user.setGender(Gender.FEMALE); user.setStatus("Hello World!"); Key userKey = new Key(MType.T_USER, userId); getDatastore().put(userKey, user); user = getDatastore().get(userKey); getDatastore().delete(userKey); 또한, Datastore는 Key를 범위로 하여 Scan연산이 할 수 있도록 인터페이스를 제공합니다. Java에서 제공하는 Try-with-resource문을 이용하여 ResultScanner를 반드시 닫을 수 있도록 하고 있습니다. 내부적으로 일단 특정 크기만큼 배치로 가져오고 더 필요한 경우 더 가져오는 식으로 구현되어 있습니다.try (CloseableIterable> entries = getDatastore().subSibling(fromKey, fromInclusive, toKey, toInclusive)) { for (KeyValue entry : entries) { // do something } } Secondary Index 구현 방법HBase는 데이터를 Row Key나 Column Qualifier로 정렬하여 저장합니다. 이 순서로만 Sequential Read를 할 수 있으며 Key값을 통해 특정 데이터를 바로 임의 접근할 수 있습니다. 비트윈에서는 특정 달에 해당하는 이벤트들을 읽어오거나 특정 날짜의 사진들의 리스트를 조회하는 등 id 순서가 아니라 특정 값을 가지는 데이터를 순서대로 접근해야 하는 경우가 있습니다. 이럴 때에도 효율적으로 데이터에 접근하기 위해서는 id로 정렬된 것 외에 특정 값으로 데이터를 정렬할 수 있어야 합니다. 하지만 HBase에서는 이와 같은 Secondary Index 같은 기능을 제공하지 않습니다. 비트윈 개발팀은 이에 굴하지 않고 Secondary Index를 간단한 방법으로 구현하여 사용하고 있습니다.구현을 간단히 하기 위해 Secondary Index를 다른 데이터들과 마찬가지로 특정 타입의 데이터로 취급하여 구현하였습니다. 따라서 Index에 대해서도 Column Qualifier가 발급되며, 이때, Index에 해당하는 id를 잘 정의하여 원하는 순서의 Index를 만듭니다. 이런 식으로 원하는 순서로 데이터를 정렬하여 저장할 수 있으며 이 인덱스를 통해 특정 필드의 값의 순서대로 데이터를 조회하거나 특정 값을 가지는 데이터에 바로 임의 접근할 수 있습니다. 또한, Index에 실제 데이터를 그대로 복사하여 저장하여 Clustered Index처럼 동작하도록 하거나, Reference만 저장하여 Non-Clustered Index와 같이 동작하게 할 수도 있습니다. Datastore 라이브러리에는 특정 데이터가 추가, 삭제, 수정할 때 특정 코드를 실행할 수 있도록 Trigger 기능이 구현되어 있는데, 이를 통해 Index를 업데이트합니다. 데이터의 변경하는 연산과 Index를 업데이트하는 연산이 하나의 Haeinsa 트랜잭션을 통해 원자적으로 일어나므로 데이터의 무결성이 보장됩니다.못다 한 이야기각 테이블의 특정 Row의 Column들에 대한 Column Qualifier외에도 Row에 대한 Row Key를 정의 해야 합니다. 비트윈에서는 각 Row가 표현하는 Root객체에 대한 아이디를 그대로 Row Key로 이용합니다. 새로운 Root객체가 추가될 때 발급되는 아이디는 랜덤하게 생성하여 객체가 여러 Region 서버에 잘 분산될 수 있도록 하였습니다. 만약 Row Key를 연속하게 발급한다면 특정 Region 서버로 연산이 몰리게 되어 성능 확장에 어려움이 생길 수 있습니다.데이터를 저장할 때 Thrift를 이용하고 있는데, Thrift 때문에 생기는 문제가 있습니다. 비트윈에서 서버를 업데이트할 때 서비스 중지 시간을 최소화하기 위해 롤링 업데이트를 합니다. Thrift 객체에 새로운 필드가 생기는 경우, 롤링 업데이트 중간에는 일부 서버에만 새로운 Thift가 적용되어 있을 수 있습니다. 업데이트된 서버가 새로운 필드에 값을 넣어 저장했는데, 아직 업데이트가 안 된 서버가 이 데이터를 읽은 후 데이터를 다시 저장한다면 새로운 필드에 저장된 값이 사라지게 됩니다. Google Protocol Buffer의 경우, 다시 직렬화 할 때 정의되지 않은 필드도 처리해주기 때문에 문제가 없지만, Thrift의 경우에는 그렇지 않습니다. 비트윈에서는 새로운 Thrift를 적용한 과거 버전의 서버를 먼저 배포한 후, 업데이트된 서버를 다시 롤링 업데이트를 하는 식으로 이 문제를 해결하고 있습니다.
조회수 1920

Docker, NodeJS, Nginx! 너로 정했다!

편집자 주아래와 같이 용어를 표기하기로 저자와 협의함Docker, NodeJS, NginxOverview안녕하세요. 칼 같은 들여쓰기에 희열을 느끼는 브랜디 개발자 강원우입니다! 서버를 운영해본 개발자라면 Fatal 에러, 아웃오브메모리 에러, 또는 전날 흡수한 알코올로 인해 손을 떨다가 한 번쯤 서버를 요단강 너머로 보내봤을 겁니다. 만약 테스트 서버였다면 잠시 마음을 가다듬으면 되지만, 현재 상용 서비스 중인 서버라면 얘기는 달라집니다.님아, 그 강을 건너지 마오!이런 간담이 서늘해지는 경험은 저 하나로 족합니다. 그래서 고군분투했던 지난 날을 되돌아보면서 빠르고 안정적이며, 죽어도 죽지 않는 좀비 같은 서버 구축 방법을 쓰려고 합니다.준비물서비스를 운영할 때 가장 중요하게 여겨야 하는 건 역시 안정성입니다. 이번 글에서는 오래 전부터 개발 세계의 뜨거운 감자였던 Docker와, 단일 스레드와 이벤트 루프로 태생적으로 심플하고 민첩한 NodeJS, 마지막으로 고성능을 목표로 개발된 Nginx를 활용하겠습니다.1. DockerDocker는 컨테이너 기반의 오픈소스 가상화 플랫폼입니다. 대표적으로 LXC(Linux Container)가 있습니다. 화물 컨테이너처럼 어떠한 일련의 기능을 완전히 격리된 소프트웨어 환경에서 작동하게 만드는 기술을 말합니다.OS 가상화와 별반 다를 게 없는 것 같지만 소프트웨어적으로 작동한다는 차이가 있습니다. 다시 말해, 현재 OS의 자원을 그대로 사용하기 때문에 하이퍼 바이저가 가상환경을 위해 가상의 커널을 만드는 오버헤드가 거의 없다는 것이죠.이미지와 속도도 차이를 보입니다. 완벽하게 구성한 세팅을 그대로 이미지화할 수 있고, 해당 이미지는 Docker 위에서 완벽히 동일하게 동작하는 걸 보장합니다. 해당 이미지로 컨테이너를 제작할 땐 1~2초면 새로운 컨테이너가 생겨날 정도로 엄청나게 빠른 속도도 자랑합니다. 1)또한 Docker는 자주 사용되는 다양한 이미지를 퍼블릭 레포지토리에 공유해 사용할 수 있기도 합니다. 양파도 아닌데 특징이 계속 나오죠? 다음 글에서 Docker의 특징을 더 자세히 다루겠습니다.Docker는 리눅스만 지원했었지만, 요즘은 Docker for Windows와 Docker for Mac으로 거의 모든 OS에서 사용할 수 있습니다. 2) Docker 설치 링크는 윈도우와 맥으로 나뉘어져 있습니다. 리눅스는 아래를 참고하세요.curl -fsSL https://get.docker.com/ | sudo sh 2. NodeJSNodeJS는 구글이 구글 크롬에 사용하려고 제작한 V8 오픈소스 자바스크립트 엔진을 기반으로 제작된 자바스크립트 런타임입니다. NodeJS에는 몇 가지 특징이 있습니다.단일 스레드입니다.비동기 방식입니다.이벤트 루프를 사용합니다NPM이라는 끝내주는 동반자가 있습니다.비유하자면 예전엔 낡은 곡괭이로 큰 돌을 캐내려고 수십 명의 인부가 달라 붙었는데, 지금은 육중한 포크래인으로 거대한 돌을 쑥! 뽑아버리는 것과 비슷합니다. 굉장히 효율적이죠. NodeJS는 단일 스레드의 장점을 극대화하려고 이벤트 루프를 통해 모든 처리를 비동기로 수행합니다. 서버 사이드의 묵직한 CPU들이 빠르게 일을 처리하고 이벤트 루프에 등록된 일을 감지해 다음 작업을 빠르게 수행하는 방식입니다.마지막으로 NPM(Node Package Manager)은 NodeJS에서 사용할 수 있는 다양한 모듈을 관리해주는 프로그램입니다. 도커와 상당히 유사합니다. NodeJS에서는 무언가 기능을 만들기 전에 NPM을 먼저 뒤져보라는 말이 있을 정도로 풍부한 모듈 생태계가 구성되어 있습니다. 이는 로깅이나 날짜 계산 등 생각보다 까다로운 것들을 가져다 사용할 수 있게 도와주기 때문에 개발이 빨라집니다. NodeJS 설치링크는 여기를 클릭하세요. 이 글의 예제에서는 NodeJS의 현재시점 LTS인 codename Carbon버젼을 사용합니다!8.x 버젼이 Active LTS 상태입니다.LTS은 Long Term Support의 약자로 가장 오랜기간 지원하는 버전입니다.우선 서비스 구성을 위해 간단한 NodeJS 어플리케이션을 작성해보겠습니다.첫째, packge.json를 작성합시다.{   "name": "nodejs_tutorial_server",   "version": "0.0.0",  "private": true,   "scripts": {     "start": "node nodejs_tutorial_server.js"   },   "description": "NodeJS Tutorial Server",   "author": {     "name": "WonwooKang"   },   "dependencies": {     "express": "^4.16.3",     "uuid": "^3.2.1"   } } nodejs_tutorial_server.js 파일을 메인으로 실행합니다. HTTP Request를 처리하려면 express를 사용해야 하며, 서버를 구분하려면 uuid모듈이 필요합니다.둘째, package.json의 의존 파일들을 설치합시다.npm install npm install 전npm install 후셋째, 간단한 웹 어플리케이션을 작성합시다.var express = require('express'); var app = express(); const port = 3000;  var server = app.listen(port, function () {     console.log("Express server has started on port : "+port);  });  app.get('/', function (req, res) {     res.send('Hello?');  }); 넷째, package.json의 script start 구문을 실행하여 서버를 로드합시다.npm start 3000번 포트로 서버가 시작되었습니다!접속해볼까요?잘 접속됩니다.그런데 수정할 때마다 서버를 매번 다시 띄우면 귀찮을 겁니다. 이럴 땐 nodemon 모듈을 사용합시다. nodemon은 Nodejs의 파일이 수정되는 걸 감지해 자동으로 리로드해주는 편리한 도구입니다.nodemon설치npm install nodemon -g package.json script 변경"scripts": {     "start": "nodemon nodejs_tutorial_server.js"   }, nodemon 실행확인을 위해 약갼의 수정//nodejs_tutorial_server.js 수정 app.get('/', function(req, res) {     res.send('Hello Nodemon');  }); nodemon을 통해 어플리케이션이 실행된 모습파일수정 후 저장했을 때 자동 감지한 모습서버 잘 떴습니다!성공적으로 단 하나의 GET 요청을 처리할 수 있는 심플한 NodeJS 기반 웹 어플리케이션을 완성했습니다. 이제 웹 어플리케이션을 Docker Container위에서 구동해봅시다!3. Docker로 NodeJS Express 서버 구동하기이제 Docker Container위에서 NodeJS서버를 구동할 건데요. 그러려면 우선 Dockerfile을 작성해야 합니다. 물론 Docker의 이미지를 당겨 받고, 컨테이너를 생성하고, 또 컨테이너를 실행해서 Attach하고, 필요한 파일들을 밀어넣는 등 귀찮은 방법도 있습니다. 하지만 개발자에게 이것은 힘든 작업이므로 Dockerfile을 적극 활용합시다. (Dockerfile의 D는 대문자여야 합니다! 꼭이요)Node 도커 이미지에 어플리케이션 파일을 추가해 실행하는 Dockerfile 작성하기FROM node:carbon MAINTAINER Wonwoo Kang [email protected] #app 폴더 만들기 - NodeJS 어플리케이션 폴더 RUN mkdir -p /app #winston 등을 사용할떄엔 log 폴더도 생성 #어플리케이션 폴더를 Workdir로 지정 - 서버가동용 WORKDIR /app #서버 파일 복사 ADD [어플리케이션파일 위치] [컨테이너내부의 어플리케이션 파일위치] #저는 Dockerfile과 서버파일이 같은위치에 있어서 ./입니다 ADD ./ /app #패키지파일들 받기 RUN npm install #배포버젼으로 설정 - 이 설정으로 환경을 나눌 수 있습니다. ENV NODE_ENV=production #서버실행 CMD node nodejs_tutorial_server.js Dockerfile 내용은 node:carbon에서 :carbon이 NodeJS의 이미지 버전 Tag 입니다.Dockerfile을 통해 docker image 빌드하기docker build –tag 레포지토리명: 태그 Dockerfile 경로docker build --tag node_server:0.0.1 [Dockerfile이 위치하는 경로] 호오... 게이지가 마구마구 차오르는군요?build가 완료된 화면입니다. Dockerfile의 내용 순서가 각 Step별로 진행된 것을 알 수 있습니다.빌드 결과 생성된 이미지 확인하기docker images 빌드 명령어에서 입력했던 버전 태그까지 잘 입력된 것을 알 수 있습니다.NodeJS Carbon 이미지를 기반으로 한 node_server 이미지를 제작했습니다. 사이즈는 둘이 합쳐 1Gb가 넘을 것 같지만 실제로는 변경된 부분만 저장됩니다. 그러므로 node_server 이미지의 크기는 6~10Mb 정도입니다.생성된 이미지로 컨테이너 만들기컨테이너 생성 명령어는 아래와 같습니다.docker create --name [서버명] -p [외부 포트:컨테이너 내부포트] [이미지명:버전태그] 주의할 점이 있습니다. 포트번호 바인딩 중 왼쪽은 우리가 접속할 실제 포트이고, 오른쪽은 컨테이너 내부의 NodeJS서버 할당 포트가 된다는 것입니다. 공유기의 포트포워딩 설정과 같습니다.docker create --name NODE_SERVER_0 -p 3000:3000 node_server:0.0.1 알 수 없는 코드가 생성되었습니다. 응?컨테이너 확인하기생성한 컨테이너를 확인해볼까요?docker ps 어.. 없잖아?옵션을 추가합니다.docker ps -a 나타났다!docker ps 명령어는 현재 실행 중(STATUS:Up)인 컨테이너의 목록을 보여줍니다. -a 옵션은 실행하지 않는 모든 컨테이너를 보여줍니다. 위의 이미지에서 node_server:0.0.1이미지로부터 NODE_SERVER_0 이라는 이름으로 2분 전에 생성되었다는 걸 알 수 있습니다. 3)컨테이너 실행하기docker start NODE_SERVER_0 다시 확인하기docker ps 19초 전에 Up상태가 되었다는 걸 알 수 있다.외부 3000번 포트 -> 내부 3000번 포트로 연결되었습니다. 서버도 실행되었고요! 이제 접속해볼까요?내용도 안 바꾸고 새로고침도 빨라서 뜬 건지 잘 모르겠군요. 내용을 수정해서 다시 확인하겠습니다.//nodejs_tutorial_server.js 수정 app.get('/', function (req, res) {     res.send('Hello I\'m In Docker Container Now!');  }); 파일 변경해서 다시 확인하기//버전 태그도 0.0.2로 업해주고 docker build --tag node_server:0.0.2 [Dockerfile위치] 잘 생성되었습니다.//이미지가 잘 생성되었는지 확인하고 docker images 0.0.2가 나타났습니다.//기존 컨테이너를 삭제합니다. -f 옵션은 실행중인 컨테이너도 강제로 삭제하겠다는 뜻입니다.  docker rm -f NODE_SERVER_0 // 잘지워졌나 확인하고  docker ps -a 잘 지워집니다.//0.0.2 버젼 이미지로 컨테이너를 다시 생성합니다.  docker create --name NODE_SERVER_0 -p 3000:3000 node_server:0.0.2   //서버를 실행합니다. docker start NODE_SERVER_0 잘 실행됩니다.이제 다시 접속해봅시다.안녕! 나 지금 Docker 안에 있어!이제 Docker로 여러 개의 서버를 띄우겠습니다. NodeJS는 싱글 스레드이기 때문에 하나의 CPU를 여럿이 나눠 갖는 건 비효율적입니다. 따라서 CPU 숫자에 맞춰서 서버를 띄워보겠습니다.제 맥북엔 CPU가 4개뿐입니다.CPU수에 맞춰 추가로 생성하기추가로 컨테이너를 생성하고, 서버를 실행합니다. 서버 목록도 확인해야겠죠.서버 생성서버 실행서버 목록 확인포트번호는 같은 포트를 쓸 수 없기 때문에 3001, 3002, 3003으로 매핑합니다. 브라우저로 접속해서 확인해보겠습니다.각 포트별 접속 화면미리 만들어둔 이미지 덕분에 서버 3대를 띄우는 데에 5분도 안 걸렸습니다. 하지만 Docker 서버를 여러 개 띄워도 결국 사람의 손이 닿아야 합니다. 따라서 이번에는 NodeJS의 Cluster를 활용해 적은 수의 Docker Container를 이용하면서도 다수의 CPU를 사용하겠습니다. 또 죽은 워커를 다시 살려 서버가 다운되는 것을 막아 안정적인 서비스도 구축해보겠습니다.4. 멀티코어대응 NodeJS Cluster 구성2컨테이너용 NodeJS Cluster서버 어플리케이션 작성하기var cluster = require('cluster'); var os = require('os'); var uuid = require('uuid'); const port = 3000; //키생성 - 서버 확인용 var instance_id = uuid.v4();  /**  * 워커 생성  */ var cpuCount = os.cpus().length; //CPU 수 var workerCount = cpuCount/2; //2개의 컨테이너에 돌릴 예정 CPU수 / 2  //마스터일 경우 if (cluster.isMaster) {     console.log('서버 ID : '+instance_id);     console.log('서버 CPU 수 : ' + cpuCount);     console.log('생성할 워커 수 : ' + workerCount);     console.log(workerCount + '개의 워커가 생성됩니다\n');        //CPU 수 만큼 워커 생성     for (var i = 0; i < workerCount>         console.log("워커 생성 [" + (i + 1) + "/" + workerCount + "]");         var worker = cluster.fork();     }        //워커가 online상태가 되었을때     cluster.on('online', function(worker) {         console.log('워커 온라인 - 워커 ID : [' + worker.process.pid + ']');     });        //워커가 죽었을 경우 다시 살림     cluster.on('exit', function(worker) {         console.log('워커 사망 - 사망한 워커 ID : [' + worker.process.pid + ']');         console.log('다른 워커를 생성합니다.');                 var worker = cluster.fork();     });  //워커일 경우 } else if(cluster.isWorker) {     var express = require('express');     var app = express();     var worker_id = cluster.worker.id;         var server = app.listen(port, function () {         console.log("Express 서버가 " + server.address().port + "번 포트에서 Listen중입니다.");     });        app.get('/', function (req, res) {         res.send('안녕하세요 저는 워커 ['+ cluster.worker.id+'] 입니다.');     });  } CPU 숫자를 받아 CPU 수(4)를 컨테이너 수(2) 로 나눠 워커를 생성하는 NodeJS 클러스터 구성입니다. 이렇게만 해도 운영에는 무리가 없지만 컨테이너 2개의 구분이 안 되서 확인할 수가 없습니다.그러므로 마스터와 워커의 통신을 이용해 마스터의 uuid를 얻겠습니다. (워커와 마스터 간의 데이터 이동은 통신 말고는 메모리DB 등의 데이터 저장소밖에 없습니다)마스터의 아이디를 알아오는 로직이 추가된 어플리케이션 작성var cluster = require('cluster'); var os = require('os'); var uuid = require('uuid'); const port = 3000; //키생성 - 서버 확인용 var instance_id = uuid.v4();  /**  * 워커 생성  */ var cpuCount = os.cpus().length; //CPU 수 var workerCount = cpuCount/2; //2개의 컨테이너에 돌릴 예정 CPU수 / 2  //마스터일 경우 if (cluster.isMaster) {     console.log('서버 ID : '+instance_id);     console.log('서버 CPU 수 : ' + cpuCount);     console.log('생성할 워커 수 : ' + workerCount);     console.log(workerCount + '개의 워커가 생성됩니다\n');         //워커 메시지 리스너     var workerMsgListener = function(msg){                    var worker_id = msg.worker_id;             //마스터 아이디 요청             if (msg.cmd === 'MASTER_ID') {                 cluster.workers[worker_id].send({cmd:'MASTER_ID',master_id: instance_id});            }      }        //CPU 수 만큼 워커 생성     for (var i = 0; i < workerCount>         console.log("워커 생성 [" + (i + 1) + "/" + workerCount + "]");         var worker = cluster.fork();                //워커의 요청메시지 리스너         worker.on('message', workerMsgListener);     }        //워커가 online상태가 되었을때     cluster.on('online', function(worker) {         console.log('워커 온라인 - 워커 ID : [' + worker.process.pid + ']');     });        //워커가 죽었을 경우 다시 살림     cluster.on('exit', function(worker) {         console.log('워커 사망 - 사망한 워커 ID : [' + worker.process.pid + ']');         console.log('다른 워커를 생성합니다.');                 var worker = cluster.fork();         //워커의 요청메시지 리스너         worker.on('message', workerMsgListener);     });  //워커일 경우 } else if(cluster.isWorker) {     var express = require('express');     var app = express();     var worker_id = cluster.worker.id;     var master_id;        var server = app.listen(port, function () {        console.log("Express 서버가 " + server.address().port + "번 포트에서 Listen중입니다.");     });        //마스터에게 master_id 요청     process.send({worker_id: worker_id, cmd:'MASTER_ID'});     process.on('message', function (msg){         if (msg.cmd === 'MASTER_ID') {             master_id = msg.master_id;         }     });        app.get('/', function (req, res) {         res.send('안녕하세요 저는 ['+master_id+']서버의 워커 ['+ cluster.worker.id+'] 입니다.');    });  } Docker Container에 올리기 전 로컬 테스트를 먼저 진행합니다. 서버 구동!두 개의 워커가 실행되었습니다.똑같은 localhost:3000번 접속이지만 워커의 번호가 다릅니다.이제 워커로 CPU 수만큼 워커를 생성할 수 있게 되었습니다. 이제 워커가 어떻게 안정적으로 서비스되는지 테스트하겠습니다. 워커 킬링 테스트하기워커 킬러 로직 작성//워커 킬링 테스트     app.get("/workerKiller", function (req, res) {         cluster.worker.kill();         res.send('워커킬러 호출됨');     }); 실험에 앞서 똑같은 상황 재연 마스터 아이디를 유심히 봐주세요. 워커 킬러를 실행하겠습니다.워커 킬러 호출아래는 호출된 결과입니다. 하나의 워커가 죽자마자 곧장 다른 워커가 태어나(?) 3000번을 Listen하기 시작했습니다. 워커 킬러가 호출된 화면이제 워커 킬러를 여러 번 호출해보겠습니다. CMD+R을 꾸욱 눌러 연속으로 킬링해봤는데 아래 화면처럼 바로 살아납니다.접속해서 현재 워커를 확인합니다.위의 화면처럼 마스터의 UUID가 그대로인데 워커만 교체되었습니다. 준비는 끝났습니다. 이제 Docker를 이용해 2명의 워커를 가진 2개의 NodeJS서버를 실행하고, 4개의 귀여운 CPU를 불살라봅시다! 5. Docker로 NodeJS Cluster 서버 실행하기docker build --tag node_server:0.0.3 /Users/kww/eclipse-workspace/nodejs-for-article docker create --name NODE_SERVER_0 -p 3000:3000 node_server:0.0.3 docker create --name NODE_SERVER_1 -p 3001:3000 node_server:0.0.3 docker start NODE_SERVER_0 docker start NODE_SERVER_1 cluster가 적용된 2개의 컨테이너 start0.0.3번 이미지로 생성된 2개의 컨테이너 서버가 무사히 로드되었습니다. 이제 접속해서 확인해볼까요?cluster가 적용된 2컨테이너 4서버 구동화면WOW! 2개의 URL, 2개의 UUID, 각 2명의 워커까지. 완벽한 2.2.2입니다. 마치 홍진호를 보는 듯한 서버 현황입니다. 이제 워커 킬러로 습격해보겠습니다.워커 킬러 습격 후위의 이미지를 보면 3000번 포트서버에서 13명, 3001번 포트서버에서 22명의 워커가 사망했습니다. UUID를 통해 2개의 서버에서 일정량의 워커가 매우 안정적으로 서버를 지키고 있는 걸 알 수 있었습니다.지금까지 2개의 컨테이너로 4개의 서버를 구성해보았습니다. CPU 숫자와 나눠지는 수에 따라 컨테이너의 수, NodeJS 클러스터 서버의 수를 유동적으로 조정할 수 있습니다. 전에 운영하던 API서버는 16코어 서버였고, 로드벨런서 및 기타 작업용 1코어의 여분을 남기고 15코어 / 3 으로 5개의 워커를 가진 3개의 NodeJS서버를 도커 컨테이너로 운영했었습니다.여기서 문제점이 생깁니다. 우리는 어떤 서비스를 할 때 하나의 도메인을 쓰는데 포트번호가 2개죠? 어떻게 해야 할까요. 여기서 바로 한참을 기다렸던 불곰국의 Nginx가 등장합니다.6. Nginx로 로드밸런싱 하기Nginx은 “더 적은 자원으로 더 빠르게”를 지향합니다. 러시아의 이고르 시쇼브(Игорь Сысоев)는 Apache에서 10,000개의 접속을 동시에 다루기 힘든 걸 해결하려고 Nginx를 개발합니다.Nginx는 NodeJS와 유사하게 싱글 스레드 방식에 이벤트 드리븐 구조 사용하는 오픈소스 HTTP서버로 최근 아파치의 점유율을 상당히 뺏고 있는 서버입니다. 다운로드 링크를 아래에 써두었습니다.Nginx 설치WindowNginx 다운로드Macbrew install nginx Linuxapt-get install nginx or yum install nginx Nginx 설치 성공Nginx 기본 접속 화면서버 조작방법서버 시작 : nginx 서버 중지 : nginx -s stop 서버 재시작 : nginx -r reload (맥에선 이건 안되는듯?) 기본 설정은 8080포트로 되어있습니다. 원하는 포트르 로드벨런싱 설정을 해보겠습니다. Nginx 로드밸런싱 설정아래는 Nginx의 로드밸런싱입니다.#http블럭 내부에 추가     #NodeJS 서버 로드밸런싱     upstream nodejs_server {         #least_conn;         #ip_hash;         server localhost:3000 weight=10 max_fails=3 fail_timeout=10s;         server localhost:3001 weight=10 max_fails=3 fail_timeout=10s;     }        #3333번 포트 NodeJS 서버로 연결     server{         listen               3333;         server_name  localhost;                location / {             proxy_pass http://nodejs_server;         }     } 로드밸런싱이 잘 적용되었는지 확인해보겠습니다. 로드밸런싱 적용 이후모든 브라우저에서 3333번으로 접속했는데 서로 다른 2개의 서버가 번갈아 접속되고, 워커가 가끔 바뀌는 걸 확인할 수 있습니다. 이번엔 로드밸런서로 워커 킬러를 호출하겠습니다.로드밸런싱 포트인 3333번 포트로 여러 번 호출결과 확인Nginx 로드밸런서가 확실하게 작동하는 걸 확인할 수 있었습니다. 위의 이미지에서 서버가 자꾸 바뀌는 모습을 볼 수 있는데, 이는 세션이 유지되지 않기 때문입니다. 실제 서비스에서는 세션의 유지를 위해 ip_hash 옵션이 꼭 필요합니다.ip_hash : 동일한 IP의 접속은 같은 서버로 접속하도록 하는 옵션입니다.  least_conn : 가장 접속이 적은 서버로 접속을 유도하는 옵션으로 ip_hash와 같이쓰입니다. Conclusion자, 고생하셨습니다. 여기까지 Docker와 NodeJS, Nginx를 이용해 관리하기 쉽고, 일부러 죽여도 죽지 않는 안정적인 서비스 환경을 구축해봤습니다. 한 가지 주의할 점이 있습니다. NodeJS의 Cluster는 죽은 워커를 바로 살리는데 싱글스레드여서 그런지 그 속도가 정말 어마어마합니다. 따라서 NodeJS Cluster를 사용할 땐 여러 핸들링에 신중하세요. 모든 promise에 반드시 catch를 달아 핸들링하고, 오류가 날 것 같은 로직엔 반드시 try - catch를 달아 핸들링을 해야 합니다. 그렇지 않으면 다시 살아나는 워커에 의해 서버의 자원이 고갈될 수 있습니다.예전에 16코어 서버를 운영할 땐 서버 자원에 비해 사용자가 적어서..(눈물) 5워커 2개의 서버만 구동하고 여유를 두었습니다. 그리고 서버 패치가 있을 때 3번째 서버를 대기시켰습니다. 앱에서 업데이트가 완료되는 시점에 Docker Container를 바꿔치기 하는 방식으로 Non-Stop서비스를 운영했죠. 혹시 코어가 빵빵한 여유 서버가 있는데 재빠르고 좀비 같은 서비스를 구성해야 한다면 위와 같은 환경 구축을 강력히 추천합니다. 지금까지 긴 글을 읽어주셔서 감사합니다.ps. 글 쓰다 보니 해가 떴네요. 하하.참고1) 가상 머신은 작은 이미지라도 기가바이트 단위의 사이즈와 Load되기까지 상당한 시간이 소요된다.2) 그러나 Windows의 경우, Hiper-v위에 리눅스를 띄워 도커를 구동한다. Mac에서도 가상 머신 위에서 구동된다. 따라서 성능적인 강점은 리눅스에만 적용된다.3) 도커에서는 NAME 속성을 지어주지 않으면 알아서 이름을 지어주는데 romantic한 단어가 많다.글강원우 과장 | R&D 개발2팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발팀 #개발자 #개발환경 #업무환경 #인사이트 #경험공유
조회수 2848

Retrofit2 로 전환

Android 와 NetworkAndroid 에서 Network 라이브러리들은 다양하지만 근 1년 사이에 주로 사용되는 라이브러리들이 점차적으로 적어지고 있습니다.오늘은 그 중에서 Retrofit 에 대해 이야기 하고자 합니다.토스랩의 Android Network Library1. Spring-Android, Retrofit 그리고 Retrofit2토스랩은 총 3개의 네트워크 라이브러리를 사용하였습니다. 초창기에는 AndroidAnnotations 에 연동되어 있는 Spring-Android 를 사용하였습니다. 하지만 다중 쓰레드 환경에서 동일한 Request 객체를 사용하면서 저사양 단말에서 문제로 두각되기 시작하였습니다.그래서 Retrofit 으로 2015년 중순쯤 전환을 하였습니다. 그러다 2016년 초 Retrofit2 가 정식 배포가 되면서 자연스럽게 Retrofit2 로의 전환이 대두되기 시작하였습니다. 전환의 이유는 내부의 네트워크 모듈에 대한 Refactoring 이었는데 그와 동시에 Retrofit2 로의 전환도 함께 진행되었습니다.2. 이슈들What the CALL기존의 Retrofit 은 200~399 에러에 대해서는 정상적인 Body 를 반환하고 400 이상의 경우에는 Typed Exception 형태로 로직을 진행하였습니다. 하지만 이정도로는 Response Status 나 Header 정보를 알기에는 추가적인 로직이 필요로 하였습니다. 물론 Success 케이스에도 마찬가지이긴 하였습니다.이는 Retrofit 의 기본적인 목적에 부합되지 않는다는 문제가 있었습니다. Retrofit 의 가장 기본적인 목적은 Okhttp 의 상위 구현체로써 쉽게 Request 와 Response 를 구현한다는 것입니다. 손쉬운 구현이 필요한 정보를 제외시킨다는 것은 별개의 문제이기 때문입니다.그래서 Retrofit2 에서는 Call 객체를 통해서 Request 와 Response 에 적용된 Header, StatusCode, Body 등을 직접 접근 할 수 있도록 인터페이스를 추가하였습니다.이 객체는 불변성을 가지고 있기 때문에 Getter 만이 존재하며 Request 에 필요한 정보는 다른 부분에서 적용되어야 함을 명시하셔야 합니다.Call 객체의 적용Call 객체를 적용하는 과정에서 2가지의 이슈가 있었습니다.Interface 의 모든 Return Value 를 Call 로 전환할 것Request Error 를 직접 핸들링 하도록 수정해야 함이 2가지 때문에 여러가지가 연쇄적으로 수정되어야 했습니다.먼저 수정과정을 설명하기 앞서 Jandi 앱의 Network 통신 전제조건에 대해서 설명해드리도록 하겠습니다.Jandi 앱은 모든 Network 통신은 Current Thread 에서 한다는 것을 전제로 합니다. 이는 MainThread 에서의 통신이 아니라 호출자의 Thread 를 따라간다는 것을 전제로 하고 있습니다. 또한 이를 위해 Reponse 반환, Error Handling, 세션 자동 갱신을 위해 Generic 으로 선언된 Facade 용도의 Wrapper Class 를 별도로 두고 있습니다.따라서 수정해야할 1,2 번을 위해 아래와 같은 수정을 하였습니다.Facade Class 내에서 성공여부를 직접 파악한다.성공시 Return Value 를 직접 반환할 수 있도록 한다.실패시 Status, Response 정보를 이용하여 throw Exception 을 한다. (세션 정보를 갱신 로직은 당연히 포함되어 있습니다.)그래서 아래와 같은 코드 형태가 되었습니다.Response response = apiExecutor.execute(); if (response.isSuccessful()) { RESULT object = response.body(); retryCnt = 0; return object; } else { // 400 이상 오류에 대해 처리 return handleException(apiExecutor, response, null); } Network 통신 과정에서의 Exception 이 나는 경우는 2가지 입니다.기기의 Network 자체가 끊겨 있거나 비정상인 경우Response 의 Parsing 과정에서 오류가 발생한 경우Annotation 의 변화Annotation 의 가장 큰 변화는 DELETE 였습니다. 기존의 Retrofit 에서는 DELETE 요청은 GET 방식으로 가능하였습니다. 즉 POST 처럼 Body 를 설정할 수 없게 되어 있었습니다. 따라서 DELETE 를 쓰기 위해서는 별도의 Custom HTTP Annotation 을 설정 할 적용하여야 했습니다.Retrofit2 에서는 이런 경우에 대비하기 위해 @HTTP 를 개방하였습니다. @HTTP(path = "{url}", method = "DELETE", hasBody = true) 와 같이 사용해야만 Custom HTTP Method 를 적용하실 수 있습니다.Jackson2-Converter 대응Jackson2-Converter 의 이슈는 최근에서야 알게 되었습니다. Jandi 앱은 그동안 Jackson 1.x 를 사용하였고 최근에서야 Jackson2 로 전환을 하였습니다.그 과정에서 Retrofit2 의 converter-jackson 라이브러리를 사용하려 하였으나 중대한 문제가 있었습니다.Retrofit2 에서 Reqeust Body 의 Serialize 는 메소드의 참조변수로 선언된 클래스만 지원하며 상속한 자녀클래스를 넣어도 부모 클래스의 결과만을 리턴 하는것이었습니다. (gson 과 여타 converter 에 대해는 해당 이슈에 대해 파악해보지 않았습니다).이를테면 아래와 같은 경우입니다.interface Api { @PUT("/profile") Call modifyProfile(@Body Profile profile); } public class Profile {} public class NameProfile extends Profile{ String name; } public class PhoneProfile extends Profile{ String phone; } // using case api.modifyProfile(new NameProfile("Steve")); 허나 아래와 같은 상황이 펼쳐집니다.// expect {"name":"Steve"} // actual {} 해당 문제는 Converter-Jackson 의 이슈이기 때문에 위와 같은 상황이 예상된다면 별도의 Converter.Factory 를 선언하여 사용하시기 바랍니다.OkHttpClient 생성 이슈Okhttp 에 여러가지 기능이 추가되었습니다. 그중 잔디가 사용 중인 목록입니다.okhttp-logging-interceptorauthenticatorCutome SSL이런 이유 때문에 OkHttpClient 를 직접 생성하여 사용 하고 있습니다.처음에는 OkHttpClient 를 모든 API 호출시 새로 생성하도록 하였습니다. 헌데 TestCode 가 200회가 넘어가면 File IO 를 너무 많이 사용했다는 오류가 계속적으로 발생하였습니다.이 오류가 단순히 File IO 가 많아서 라는 메세지 때문에 처음에는 Database 에 대한 오류인 줄 알고 Memory Cache 작업과 테스트코드 개선작업을 하였으나 정상 동작이 되지 않았습니다. (테스트 코드 1회에 평균 2번의 API 통신과 2회의 DB 처리를 합니다.)그 와중에 기존의 테스트 코드는 정상 동작하는 것을 보고 Retrofit2 작업을 진행한 branch 만의 문제임을 깨달았습니다.현재는 OkhttpClient.Builder 를 통해 생성한 1개의 OkhttpClient 만을 재사용하도록 변경하였습니다.Network Retry 시 동작 변경Retrofit2 는 Call 객체를 이용하여 동일한 정보로 재요청을 할 수 있도록 지원하고 있습니다. 하지만 이에 대한 제약이 하나 있습니다. 이미 Network IO 가 끝난 경우 Retrofit2 는 Call 객체를 복사하여 재사용할 것을 가이드 하고 있습니다. 그래서 재요청시 다음과 같이 코드를 작성하셔야 합니다.Call call = action0.call(); if (!call.isExecuted()) { return call.execute(); } else { return call.clone().execute(); } OkHttp3 의존성Okhttp 를 사용하는 타 라이브러리가 있다면 Okhttp3 의존성을 가지고 있기 때문에 이에 유념하셔야 합니다.3. 정리Retrofit1 -> Retrofit2 로 변경하는 과정에서 다양한 이슈를 발견하였습니다.Return Value 수정Exception 처리 강화Annotation 수정Request-Response Converter 수정OkhttpClient 재사용 정의재요청 처리에 대한 validation 추가OkHttp3 의존성Retrofit2 로 변경에 있어서 가장 큰 핵심은 Call 이라는 객체라고 할 수 있다는 것입니다.이 객체는 Request 에 대한 동작 제어(cancel, retry 등), Request-Response 의 독립성 보장, 그에 따라 각각의 정보에 대한 접근 등을 보장하게 됩니다.Retrofit2 는 그외에도 Okhttp3 와 다양한 플러그인 지원하고 있습니다. 요청-응답에 필요한 Body 의 변환툴 (Converter-xxx), EndPoint 에서 접근하는 Call 객체에 대한 다양한 툴 (CallAdapter-xxx)현재 Retrofit1 에서 잘 동작하고 있고 의도대로 흐름제어를 하고 있다면 Retrofit2 로 옮겨갈 이유는 없습니다. 하지만 변경을 하고자 한다면 이러한 영향도가 있을 것임을 공유해드렸습니다.참고하면 좋은 Slidehttps://speakerdeck.com/jakewharton/simple-http-with-retrofit-2-droidcon-nyc-2015Jake Wharton’ Retrofit2Presentation 영상#토스랩 #잔디 #JANDI #개발 #개발자 #인사이트 #경험공유
조회수 1256

vulcan과 buildpack을 이용한 Heroku 바이너리 배포

vulcan과 buildpack을 이용한 Heroku 바이너리 배포안녕하세요. 스포카 개발팀에서 서버 관련 개발 업무를 담당하고 있는 문성원입니다. 오늘은 저희가 사용하는 PasS(Platform as a service)인 Heroku에 직접 바이너리를 빌드하여 올리는 방법을 함께 알아보겠습니다.Why?________________________________________지난주 저희 개발팀은 새로운 상점 사진을 출력하기 위해 한 사진을 비율이 다른 이미지로 바꿔서 저장하는 작업을 해야 했습니다. 다행히 이 문제는 Seam carving, 혹은 Liquid rescaling으로 불리는 방법, 그리고 이를 구현한 ImageMagick과 그 Python 바인딩인 wand로 쉽게 해결할 수 있을 것 같았습니다. (Seam carving과 wand에 대해서는 이 글을 읽어보시는 것을 권합니다.)그런데 막상 서비스에 배포하려니 한가지 문제가 있었습니다. 저희는 최근 서비스를 Heroku에서 운영 중인데, 이 Heroku에 ImageMagick 라이브러리는 깔렸었지만, liblqr이 없어 Liquid rescalig이 불가능한 상태였던 겁니다. 개발자의 로컬에서 테스트할 때야 소스를 받아서 직접 빌드라도하면 되지만 이 고지식한 PasS에서 그건 무리였죠.결국, 저희는 Heroku의 배포 도구인 buildpack과 바이너리를 빌드하기 위한 서버인 Vulcan에 대해서 조사했습니다.Workflow________________________________________Heroku 앱에 사용할 바이너리를 만드는 데는 크게 2가지 과정이 필요합니다. 먼저 빌드 서버인 Vulcan을 통해 필요한 바이너리를 Heroku(정확히는 아마존 EC2)용으로 빌드해야하며, 이를 buildpack을 통해 새로 만들거나 운영 중인 앱에 적용해야 합니다.재미있는 점은 Vulcan 서버 역시 Node.js로 작성된 Heroku 앱이기때문에 buildpack을 적용할 수 있습니다. 즉 위와 같은 상황이라면 먼저 liblqr을 빌드한 뒤 이를 Node.js 용 buildpack에 적용해서 Vulcan에 올린 뒤 ImageMagick을 빌드해야 합니다.I am a Vulcan, bred to peace________________________________________우선 Vulcan부터 깔아보겠습니다. (Ruby와 Heroku 계정이 필요합니다. 경우에 따라선 sudo가 필요할 수 있습니다.)$ gem install vulcan그다음 빌드에 사용할 서버 애플리케이션을 vulcan 커맨드를 통해 만듭니다. (눈치채신 분도 계시겠지만 앱 이름은 적당히 바꿔서 지으셔야 에러가 안 납니다.)$ vulcan create vulcan-dodo-dev혹시 모르니 만들어진 서버의 업데이트를 한번 해줍시다.$ vulcan update --app vulcan-dodo-devIf I could change to liquid…________________________________________이제 본격적으로 빌드를 해봅시다. 먼저 필요한 건 liblqr입니다. 소스를 적당한 디렉터리에 내려받아 풀어둡니다.$ wget http://liblqr.wikidot.com/local--files/en:download-page/liblqr-1-0.4.1.tar.bz2$ tar xzf liblqr-1-0.4.1.tar.bz2최신 소스를 원하신다면 git 저장소를 복제하셔도 됩니다.$ git clone git://repo.or.cz/liblqr.git편하신 대로 소스를 다 내려받으셨다면 이제 앞서 생성한 Vulcan을 통해 이를 빌드해봅시다.$ cd liblqr$ vulcan buildVulcan은 현재 디렉토리의 소스를 모두 묶어서 EC2상의 서버로 올린 뒤 그 서버에서 빌드한 바이너리를 다시 사용자의 컴퓨터로 내려줍니다. 이제 이를 buildpack을 통해 Vulcan 서버(vulcan-dodo-dev)에 적용해야 합니다.Buildpack is ready________________________________________buildpack을 직접 만들어 적용하는 건 아주 쉽습니다. 우선 다음 명령어로 Node.js용 buildpack을 복제합니다.$ git clone git://github.com/heroku/heroku-buildpack-nodejs.git그다음에는 Heroku용으로 빌드된 liblqr을 Heroku 앱 빌드시 포함시키기 위해 bin/compile파일의 마지막에 다음 코드를 추가합니다. (앞서 빌드한 liblqr을 외부에서 접근할 수 있게끔 적당한 장소(ex. Amazon S3, 혹은 Dropbox의 Public 디렉터리등)에 올려둬야 합니다.)# liblqr                                                                                  LIBLQR_BINARY="https://dl.dropbox.com/u/55786385/liblqr-1-0.4.tgz"                        SPOQA_VM_VENDOR="vendor/spoqa/liblqr"                                                    mkdir -p $1/SPOQA_VM_VENDOR                                                            curl $LIBLQR_BINARY -o - | tar -xz -C $1/$SPOQA_VM_VENDOR -f -이제 buildpack을 커밋(commit)한뒤 적당한 공개 저장소(ex. github) 등에 올려(push)둡니다. 그리고 나선 아까 만든 Vulcan 앱(vulcan-dodo-dev)의 buildpack을 다음 명령어로 지정합니다.$ heroku config:set BUILDPACK_URL=https://github.com/spoqa/heroku-buildpack-nodejs.git --app vulcan-dodo-dev마지막으로 Vulcan 앱을 업데이트하여 새 buildpack을 반영시킵니다.$ vulcan update --app vulcan-dodo-dev확인을 위해서 Vulcan 앱에 들어가 보는 것도 좋습니다.$ heroku run bash --app vulcan-dodo-devheroku run bash --app vulcan-dodo-devRunning `bash` attached to terminal...~ $ ls vendor/ls vendor/spoqa  gemsIt’s a kind of magic________________________________________이제 liblqr을 이용해서 ImageMagick을 빌드해보죠. 기본적으로는 liblqr을 빌드할때와 다르지 않지만 ./configure를 통해 옵션을 줘야 하기에 build 커맨드가 좀 복잡해집니다.vulcan build -p /tmp/ImageMagick -c "export PKG_CONFIG_PATH=/app/vendor/spoqa/liblqr/lib/pkgconfig && export CFLAGS=-I/app/vendor/spoqa/liblqr/include/lqr-1 && LD_LIBRARY_PATH=/app/vendor/spoqa/liblqr/lib && ./configure --prefix=/tmp/ImageMagick --with-lqr && make install" -v조금만 자세히 살펴보면, -p 옵션으로 내려받을 경로를 지정하고 -c 옵션으로 실제 빌드에 사용할 커맨드를 지정합니다.(-v는 짐작하시다시피 확인을 위한 verbose 옵션입니다.) 앞서 수정한 buildpack에서 liblqr은 /app/vendor/spoqa/liblqr 밑에 설치되게끔 되어있기에 PKG_CONFIG와 CFLAGS 설정을 추가해주고 --with-lqr을 줘서 LQR 딜리게이트(Delegate)를 활성화 시킵니다.On your mark________________________________________이렇게 만들어진 ImageMagick 바이너리와 liblqr 바이너리를 실 서버에 적용할 buildpack에 추가해주면 이 험난한 여정도 끝입니다. 앞서 했던것처럼 대상 서버에 맞는 buildpack을 똑같이 복제합니다. (여기서는 Python을 사용합니다.)$ git clone git://github.com/heroku/heroku-buildpack-python.gitbin/compile을 고치는 것도 추가해야 할 라이브러리가 2개라는 점만 빼면 거의 같습니다.# ImageMagick with lqr                                                                                                                  LQR_BINARY="https://dl.dropbox.com/u/55786385/liblqr-1-0.4.tgz"IMAGE_MAGICK_BINARY="https://dl.dropbox.com/u/55786385/ImageMagick-6.8.tgz"IMAGE_MAGICK_WITH_LQR_DIR="vendor/ImageMagick+lqr"mkdir -p $1/$IMAGE_MAGICK_WITH_LQR_DIRcurl $IMAGE_MAGICK_BINARY -o - | tar -xz -C $1/$IMAGE_MAGICK_WITH_LQR_DIR -f -curl $LQR_BINARY -o - | tar -xz -C $1/$IMAGE_MAGICK_WITH_LQR_DIR -f -똑같이 고친 buildpack을 커밋, (적당한 저장소에) 푸시하고 대상 서버의 BUILDPACK_URL을 바꿔줍니다.$ heroku config:set BUILDPACK_URL=https://github.com/spoqa/heroku-buildpack-python.git --app dodo-dev바뀐 buildpack을 적용하기 위해서 빈 커밋을 만들어 새로 배포해보겠습니다.$ git commit --allow-empty -m "empty commit"$ git push heroku master마지막으로 대상 서버의 설정을 바꿔줍니다.$ heroku config:set MAGICK_HOME=/app/vendor/ImageMagick+lqr LD_PRELOAD=/app/vendor/ImageMagick+lqr/lib/libMagickCore.so --app dodo-dev#스포카 #개발 #개발자 #개발팀 #개발팁 #꿀팁 #인사이트
조회수 4008

리디북스 서비스 장애 복구 후기

지난 8월 26일에는 약 21분간 리디북스 서비스 전체가 중단되는 장애가 있었습니다.사실 서버 스택 일부에만 영향을 주는 장애는 눈에 잘 띄지 않지만 꽤 흔하게 발생하는 일입니다. 기기 1대당 외부적인 요인으로 인한 장애가 평균 2년에 1번 발생한다고 가정하면, 서버가 100대 있을 때는 대략 1주일에 1번꼴로 장애가 발생하는 셈입니다.이런 형태의 장애는 서버 스택의 한 곳에서만 발생하므로, 이중화 혹은 클러스터링을 통해서 극복하곤 합니다. 또한 원인이 명확하므로 해당 기술에 대한 이해도가 높다면 비교적 빠른 시간 내에 복구가 가능합니다.그러나 이번에 리디북스가 경험한 장애는 달랐습니다. 현재 리디북스는 2개의 데이터센터와 클라우드에 인프라가 분산되어 있는데, 이 중에서 1차 데이터센터의 전원 공급에 문제가 생겨 특정 서버 랙에 있는 서버 17대가 동시에 내려간 것입니다. 즉, 소프트웨어나 머신의 물리적인 장애가 아닌, 데이터센터의 장애였습니다. AWS로 비유를 하자면 가용 영역(Availability Zone)의 장애라고 할 수 있겠습니다.원인에 대해이번 장애의 근본적인 원인은 데이터센터가 전원을 정상적으로 공급해주지 못한 것입니다. 물론 데이터센터 혹은 클라우드 서비스(IaaS)는 고객사에게 전원과 네트워크를 안정적으로 제공해주어야 하는 의무가 있습니다.하지만 이들 역시 천재지변이나 사람의 실수에 대한 대비가 100% 완벽할 수는 없습니다. 따라서 이러한 점을 사전에 고려하고 인프라를 설계하지 못한 것이 2차적인 원인입니다.이번 계기를 통해 데이터센터 이중화를 계획하게 되었고, 사용 중인 클라우드 역시 지역(Region) 전체에 장애가 생길 경우에 대한 대비가 되어있지 않아, 이번 계기로 복제 계획(Geo-Replication)을 세우게 되었습니다.구체적인 상황당시 전원이 차단되어 강제 종료된 서버들은 아래와 같습니다.데이터베이스 프록시 x 2메인 리버스 프록시 x 1읽기 분산용 MySQL 슬레이브 x 1서점용 웹 서버 x 3추천 알고리즘 API 서버 x 1알림센터 API 서버 x 2메인 스토리지 서버 x 2출판 플랫폼용 데이터베이스 x 2테스트 및 배치 작업용 서버 x 3그림으로 표현해 보자면, 대략 아래와 같은 상황에서… 아래와 같은 상황이 된 셈입니다.서버 스택의 여러곳에 순간적으로 장애가 발생한 상황공인 IP가 할당된 메인 프록시 서버 중 1대가 내려갔지만, 실제로는 아래와 같이 가상 IP로 구성을 한 상태였기 때문에 대기 중인(stand-by) 프록시가 동작하여 곧 서점에 장애 공지를 띄울 수 있었습니다.[이미지 출처: DigitalOcean™]공지 이후의 움직임우리는 데이터센터의 복구 시점을 명확히 알 수 없어서 신규 구축(provisioning)을 시작함과 동시에, 서버들의 물리적인 위치 이동을 고려하고 있었습니다. 그러나 다행히 10분이 지난 시점에서 전원 문제는 해결되었고, 서버들은 순차적으로 부팅이 완료되었습니다.일부 서버들은 부팅 과정에서 예상치 못한 지연이 발생하기도 하였지만, 모든 서버의 부팅이 완료된 이후에도 서비스는 완전히 정상으로 돌아오지 않았습니다. 당시 우리가 겪었던 문제와 해결책은 아래와 같습니다.A. 읽기 분산용 MariaDB 슬레이브의 복제 지연(replication lag) 문제슬레이브 서버의 부팅이 완료되자 데이터베이스 프록시(HAProxy)는 해당 서버를 정상으로 간주하여 라우팅 대상에 포함하게 되었고, 애플리케이션 서버들은 정상적으로 커넥션을 맺기 시작하였습니다. 하지만 해당 슬레이브는 수십 분간 마스터를 따라잡지 못한 상태였기 때문에 최신 데이터가 보여지지 않는 문제(stale data)가 있었습니다. 우리는 즉시 해당 슬레이브를 제거하였고 지연이 사라진 이후에 다시 서비스에 투입하였습니다.B. 읽기 분산용 슬레이브의 웜업(warm-up) 문제복제 지연은 사라졌지만 서버의 CPU 사용량이 크게 높은 상태가 한동안 유지되었고, 응답속도는 정상적인 슬레이브에 비해서 많이 느렸습니다. 왜냐하면 캐시가 비워진 상태에서 바로 서비스에 투입되어, 캐시 미스가 휘몰아치는 현상(cache stampede)이 발생하였기 때문입니다. 따라서 간단한 쿼리도 평소보다 오래 걸렸고, 그대로 둔다면 커넥션풀이 꽉 차는 현상이 발생할 것으로 예상되었습니다.곧 우리는 HAProxy로 해당 서버의 가중치를 10%로 낮추어 인입되는 쿼리의 양을 조절하였으며 응답속도는 정상 수치로 돌아오게 되었습니다. 이후 스크립트를 작성하여 수동으로 캐시를 채워나감과 동시에 점차 가중치를 높여 처리량을 정상화하였습니다.프로덕션에서 사용하는 서버는 innodb_buffer_pool 이 100G 이상으로 매우 크게 설정되어 있으며, 재시작 시 캐시가 날아가는 현상을 해결하기 위해 innodb_blocking_buffer_pool_restore 옵션을 적용하고 있습니다. 하지만 지금처럼 메모리를 덤프하지 못하고 비정상 종료가 된 상황에서는 해당되지 않았습니다.C. 인메모리 데이터의 보존 문제알림센터는 다양한 프로모션과 개인화된 정보를 전달해주는 공간입니다. 알림센터의 특징은 데이터의 영구 보존(persistency)이 필요하지 않고, 매일 수백만 건의 개인화된 메시지가 기록된다는 것입니다. 이러한 특징은 인-메모리 데이터베이스에 적합하므로 우리는 Redis를 마스터/슬레이브로 구성하여 저장소로 사용하고 있었습니다.어떠한 이유로든 Redis를 재시작해야 할 경우가 생기면, 메모리 상의 데이터가 날아가는 것을 방지하기 위해 주기적으로 스냅샷을 남기고 있습니다만, 이번에는 로그가 마지막까지 기록되지 못한 상태에서 메모리의 데이터가 날아가 버렸습니다.다행히 알림 발송과 관련된 메타정보는 모두 MariaDB에 기록하고 있으므로, 우리는 이를 기반으로 소실된 시점부터의 알림을 순차적으로 재발송할 수 있었습니다. 물론 모든 알림이 신규 상태로 간주되어 아이콘이 잘못 노출되는 문제가 있었지만, 고객님들은 너그럽게 이해해 주신 것 같습니다. 😅그래서 앞으로는?리디북스 DevOps 멤버들은 이번 데이터센터 장애를 통해 현재 인프라의 한계점을 실감하였고, 앞으로의 개선 방향에 대해 고민하게 되었습니다.몇 가지를 정리하면 다음과 같습니다.랙 단위로 장애가 발생할 수 있음을 인지하고 대비하자.같은 기능을 하는 서버를 하나의 랙이나 같은 가용 영역에 두지 말자.2차 데이터센터는 더 이상 옵션이 아닌 필수다.낙뢰나 지진으로 인해 데이터센터에 문제가 생길 수도 있다.긴급하게 프로비저닝이 필요한 상황에 대비하자.문서화가 되어 있더라도 경험이 없다면 동일한 구성에 많은 시간이 소요된다.모든 구성요소들에 대한 Ansible 스크립트를 작성하여두자.캐시 웜업 스크립트도 작성하여 두자.백엔드 구성요소들 간의 불필요한 의존 관계를 끊자.단 한 줄의 코드라도 참조하고 있다면 이는 독립적인 것이 아니다.언제나 서비스 지향적인 설계를 추구하자.Uptime을 관리하자.최대 180일을 기점으로 무조건 리부팅을 하자.재시작 과정에서 다양한 문제와 개선점이 발견될 것이다.커널 패치, 보안 패치를 할 수 있는 것은 덤이다.아래와 같은 긍정적인 면도 발견하였습니다.장애 상황이 실시간으로 Slack 채널을 통해 전파되었음진행 상황에 대해 모두가 동일한 수준으로 이해할 수 있었다.모니터링 연동(integration) 기능 때문에라도, Slack은 유료로 구매할만한 값어치가 충분하다.같은 기능을 하는 서버들이 다른 랙에 많이 분산되어 있었다.인프라가 확장될 때마다 빈 공간에 필요한 서버를 추가했을 뿐이지만, 자연스럽게 물리적인 위치가 분산되는 효과가 있었다.이 외에도 특정 클러스터를 구성하는 노드들을 분산하여 배치시키자.서버별로 오너쉽이 부여되어 있어서 빠르게 복구가 된 점여러 명의 백엔드 개발자들이 병렬적으로 복구를 진행할 수 있었다.마지막으로넷플릭스의 엔지니어들은 무질서한 원숭이(Chaos Monkey)라는 프로그램을 만들어서 운영한다고 합니다. 이 원숭이는 서비스 인스턴스들을 무작위로 중단시키는 역할을 합니다. 다소 황당하게 들리지만, 넷플릭스에는 일부 서비스에 장애가 발생하더라도 나머지 부분은 문제없이 운영되어야 한다는 원칙이 있으므로, 이를 수시로 시뮬레이션하는 과정을 통해 복구 능력을 높여둔다는 것입니다.실제로 이렇게 급진적인 아이디어를 실천할 수 있는 회사는 매우 드물 것입니다. 하지만, 우리는 이번 계기를 통해 무질서한 원숭이의 필요성을 절감하였고, 이로 인해 서버를 주기적으로 리셋하는 정책을 만들게 되었으며 모든 단일 장애점(SPoF)에 대한 대비를 시작하게 되었습니다.장애를 단순히 피해라고만 생각한다면, 서로를 비난하고 책임을 전가하는 상황이 펼쳐질 것입니다. 하지만 고객의 불편함과 맞바꾼 매우 비싼 경험이라고 생각한다면, 보다 튼튼하고 회복탄력적인 시스템을 갖추기 위해 노력하게 될 것입니다. 그러다 보면 언젠가는 데이터센터 전체에 문제가 생겨도 버틸 수 있는 모습으로 진화할 것이라고 생각합니다.#리디북스 #장애복구 #역경돌파 #개발 #개발후기 #개발자 #서버개발 #서버
조회수 1534

코인원 마이페이지가 더욱 더 새로워졌습니다 :) - 유저플로우셀 팀터뷰

웹서비스에서 나만의 서비스 이용내역과 개인정보를 확인할 수 있는 공간을 ‘마이페이지'라고 하죠. 유저들은 마이페이지를 통해 나의 상태를 체크하며 해당 서비스에 좀 더 애착을 갖기도 합니다. 이번에 코인원 마이페이지도 더욱 더 새로워지면서 애정이 가득해졌다는 유저들의 제보가 속속 들어오고 있어요!오늘은 코인원 마이페이지를 새롭게 탄생시킨 유저플로우셀 예은님, 정유님, 현진님, 종헌님과 함께 마이페이지의 모든 것을 파헤쳐보겠습니다.코인원 유저플로우셀은 트레이딩 영역을 제외한 전반적인 서비스 영역을 담당하고 있습니다. 각 서비스에 대한 유저 경로 동선을 만들고 서비스를 제공하며, 누구나 거래를 하고 싶은 코인원을 만들고 있답니다. :-)Q. 안녕하세요, 유저플로우셀 여러분. 자기소개와 함께 현재 업무를 소개해주세요!예은 : 유저플로우셀에서 서비스 기획자로 일하고 있는 지예은입니다. 저는 코인원 유저들이 겪는 문제상황과 UX트렌드 분석을 통해 기존의 서비스를 개선하고 고도화하고 있어요.정유 : 프로덕트 디자이너로 일하고 있는 이정유입니다. 유저플로우셀은 유저와 거래소를 이어주는 모든 페이지를 담당하고 있어요. 저는 기획자들과 함께 유저의 니즈를 페이지에 UI(User Interface)적으로 어떻게 반영할지 고민하고, 이를 디자인 시스템에 녹여 시각적 일관성을 전달합니다.  현진 : 프론트엔드 개발자로 불철주야 개발 중인 박현진입니다. 프론트엔드는 한마디로 코인원 프로덕트에서 실제로 유저들에게 보여지는 웹화면이에요. 저는 유저들에게 보이는 영역을 책임지며 프로그래밍하고 있습니다.종헌 : 웹 API를 담당하고 있는 백엔드 개발자 김종헌입니다. 프론트엔드가 유저에게 보이는 영역을 담당한다면, 저는 보이지 않는 곳인 백엔드에서 입출금 서비스, 거래기록, 개인정보 등 코인원의 다양한 서비스와 유저를 연결하고 있어요.Q. 이번에 마이페이지 개선이 대대적으로 진행되었습니다. 어떤 계기와 방향성으로 개선하게 되었나요?예은 :  마이페이지 개선은 유저의 고충을 파악하기 위한 코인원 고객센터 인터뷰에서 시작되었습니다. 거래소 이용에 필요한 인증, 계정 보안에 대한 관리가 익숙하지 않은 유저들의 ‘페인 포인트(Pain Point)’를 발견했거든요. 서비스 기획자, 디자이너, 개발자가 함께 모여 UI나 정보로 사용자에게 도움을 주고 CS비용을 최소화 할 수 있는 방법을 고민하기 시작했습니다. 우선, ‘마이페이지'는 코인원 서비스를 이용하는 유저 개개인을 챙겨주는 공간이라고 생각합니다. 이번 개선 과정에서 가장 중점을 둔 부분도 ‘고객을 챙겨주는 마이페이지' 경험을 전달하는 것이었어요. 이렇게 설정된 방향성에 따라 유저들의 상태별로 필요한 상황을 안내하도록 구성했습니다. 한마디로 ‘유저 맞춤형 마이페이지’로 진화한겁니다!▲ 더욱 더 새로워진 코인원 마이페이지정유 : 이전의 마이페이지는 엉켜있는 플로우로 인해, 유저가 어떤 상태인지, 어떤 인증과정을 거치고 있는지 인지하기가 힘들었습니다. 목적을 달성하기 위해 마이페이지에 접속했지만 목적 달성을 끝마칠 수 없었죠. 먼저 흩어져 있는 기능, 정보, 구조들을 그룹핑하며 플로우를 개선하는 작업을 시작했어요. 아이데이션 과정을 거치면서 마이페이지를 ‘내 서랍, 내 방' 등 나만의 정체성을 확인할 수 있는 키워드로 정의했습니다. 그리고 키워드를 확장시켜 ‘나의 데이터'를 한 눈에 관리할 수 있는 대시보드 형태의 디자인을 지향하게 되었어요. 결과적으로 현재 마이페이지에는 나의활동, 개인정보관리, 인증단계 총 3 개의 탭으로 위계를 설정했습니다. :D▲ 코인원 거래소 인증단계가 훨씬 간편해졌습니다!Q. 기술적으로는 어떤 변화가 있었을까요?현진 : 마이페이지를 포함해서 코인원 웹 프로덕트에 기술부채(Technical Debt)가 조금씩 쌓여 있었어요. 이 부분을 덜어내기 위해 마이페이지를 개선하면서 ‘기획/디자인/개발’ 삼박자로 변화를 주는 리빌딩(Re-building)을 진행했습니다. 덕분에 기술적으로 관리 포인트가 많이 줄었어요. 이제는 웹 유지/보수가 좀 더 용이하게 되었답니다.종헌 : 그 동안 코인원 웹은 하나의 비대한 서비스로 운영되었습니다. 하나의 서비스가 덩치가 점점 커지다 보니 개발자가 서비스 로직을 온전히 이해하기 어려웠어요. 웹을 유지하고 보수하거나, 새로운 기능을 추가하는 것도 쉽지 않았습니다. 그래서 하나의 비대한 서비스를 여러 개의 작은 서비스로 나누는 작업인 리빌딩을 진행했어요. 여러 작은 서비스로 분리하고 책임 영역을 나누면서 서비스 로직에 대해 제대로 이해하고 체계적으로 코드를 작성할 수 있게 되었습니다.    Q. 마이페이지 개선 전과 후, 달라진 점을 말씀해주세요.예은 : 코인원 마이페이지는 이전보다 유저들에게 더욱 친근하게 다가가고 있습니다. 마이페이지의 콘텐츠가 유저의 상태에 맞춰 변화하며, 유저마다 다음 인증 과정이나 활동 내역을 다르게 안내합니다. 유저가 기능을 먼저 찾지 않아도, 마이페이지가 길을 찾아주는 가이드의 형태를 띄고 있어요.또한 인증단계 별로 수수료나 회원등급이 달라지는데, 유저들이 하나하나 가이드를 보며 찾아볼 수는 없다고 생각해요. 한눈에 자신의 상태를 파악할 수 있도록 UI를 활용하는 것이 중요한 부분이죠. 마이페이지의 개선된 UI로 유저가 코인원의 서비스 정책을 한층 더 깊게 이해하는데 도움이 되었으면 해요.정유 : 유저가 코인원 프로덕트와의 관계성을 인지할 수 있는 디테일들이 추가되었습니다. 가장 대표적인 예시로는 ‘코인원과 함께한 지 000일째 입니다.’라는 문구가 있겠네요. 코인원 유저들에게 ‘챙겨준다'라는 느낌을 전달하기 위해 정말 많은 회의와 아이데이션을 거쳤습니다. 그 과정 중 나왔던 아이디어인데 이번에 반영하게 되었어요. ‘제품’보다는 ‘서비스'로서 느껴질 수 있도록, 대화하는 느낌을 잘 살려주는 포인트이기에 매우 뿌듯했죠.▲ 심...심쿵....!!!!!현진 : 개발자 입장에서 바라봤을 때, 페이지 애니메이션이 가장 좋았어요. 페이지 애니메이션은 웹페이지가 다른 웹페이지로 이동할 때 발생하는 애니메이션을 말합니다. ‘툭' 하고 넘어가는 것이 아니라 ‘sha~(?)’ 하게 넘어가는 느낌이라고 할까요. 페이지와 페이지 사이가 하나의 관계성을 가지고 넘어가게 됩니다. 유저들은 ‘암호화폐 거래소에서 마이페이지에 이런 디테일한 부분까지 신경쓰고 있구나’를 느낄 수 있을거에요. 또한 에러메시지, 경고메시지와 같은 피드백 인터랙션도 정교해졌어요. 사용자와 교감할 수 있는 쪽에 코인원만의 감성이 잘 버무려졌습니다.종헌 : 이전의 코인원 프로필 서비스는 사용빈도가 높지는 않았어요. 그라바타(Gravatar)라는 외부서비스를 사용했는데, 이것을 사용하지 않는 유저들에게 친숙하지 않았거든요. 이제는 코인원에서 프로필 이미지를 정해두고 원하는 이미지로 클릭해서 쉽게 변경할 수 있게 설정했어요. 참고로 프로필 이미지를 설정하는 것이 보안측면에서도 좋습니다. 예를 들어, 은행에서는 프로필 이미지를 설정하면 바로 내가 사용하는 계정인지 아닌지를 알 수 있어요. 코인원에서도 프로필 이미지를 설정하면 내가 가입한 계정인지 아닌지 식별이 가능합니다.▲ 프로필 사진 설정 기능도 많이 이용해주세요 :)Q. 마이페이지의 개선 작업 과정에서 많은 고민이 있으셨을 것 같아요. 가장 중점적으로 생각했던 부분이 있었나요?정유 : 가장 중점이 되었던 부분은 서비스를 이용하는 유저 개개인의 상태를 반영하는거였어요. 유저별로 동일한 정보가 아닌 맞춤형 정보를 제공하기 때문에 한 페이지 안에 들어가는 정보의 위계가 상태값에 따라 계속 변하는 것이 관건이었습니다. 예를 들어, 마이페이지에는 나의 정보를 업데이트하기 위한 많은 버튼들이 들어갑니다. 그럼 유저 케이스별로 중요한 정보를 바꿔보면서 어떤 버튼이 가장 위계가 높은지 고민하고 계산해요. 이러한 과정을 거치면서 유저의 상태값을 쉽게 알려주고 변경할 수 있는 디자인이 완성되었습니다. 예은 : 기존부터 유저 인터뷰를 진행하며 ①신규 유저 ②타사 이용 유저 ③거래소 이용에 문제를 겪고 있는 유저 ④코인원을 오래 이용해준 고마운 유저 케이스까지 다양한 상황에 놓여있는 유저들에게 만족스러운 UX 경험을 드리기 위해 고민해왔습니다. 특히 운영지원셀과 코인원 고객센터 CS로 인입되는 주요 인터뷰들을 중점적으로 수집하여 인증과정에 문제가 되는 것들을 모아서 개선회의를 해왔어요. 이외에 마케팅, 프로덕트쪽도 함께 서비스를 제공하는 공급자 입장에서의 니즈도 취합해 마이페이지에 반영할 수 있었습니다.▲ (절대 설정샷 아니에요) 훈훈하게 회의중인 유저플로우셀!Q. 혹시 개선된 마이페이지를 이용한 코인원 고객들의 후기도 있었나요?예은 : 개선된 마이페이지로 바뀐 지 얼마되지 않아, 유저의 피드백을 직접적으로 접하지는 못했어요. 대신 정량적인 부분에서 여러 수치들이 올라간 것을 확인할 수 있었습니다. 대략적으로 재방문자의 UV(Unique Visitor)수가 개선 전과 대비해서 약 70%정도 크게 증가했습니다. 이전에는 회원가입을 끝마치고 인증과정 중에 페이지를 이탈한 유저도 보였지만, 개선된 후에는 마이페이지 탭 이용빈도가 크게 올라갔습니다. 마이페이지가 좀 더 원활한 거래소 서비스 이용을 위한 가이드 역할을 해주길 기대하면서, 지속적으로 니즈를 관찰하고 개선해 나갈 예정입니다.Q. 마이페이지 이외에도 기억에 남는 유저플로우셀의 프로젝트가 있나요?예은 : 코인원의 수익현황을 한 눈에 볼 수 있는 자산탭이 기억에 남아요. 그 동안 코인원 유저들이 수익률을 확인할 수 있는 기능을 많이 요청했었는데, 팀원들이 함께 고민하여 새로 개편한 기능이라서 그 의미가 컸어요.정유 : 저는 실질적으로 프로젝트에 돌입하기 전에 진행했던 코인원 유저 인터뷰가 가장 기억에 남아요. 인터뷰 내용이 개선점으로 가득찰 줄 알았는데, 응원의 목소리를 전달해주셨거든요. 더 열심히 UI 디자인을 해야겠다는 의욕을 불타오르게 해주었어요!현진 : 코인원 웹프로덕트를 사용하시는 분들이 눈치 채셨는지 모르겠지만, 마이페이지 이전부터 진행해왔던 리빌딩 프로젝트(랜딩, 거래소, 프로차트, 코인원 톡 등)들이 기억에 남아요. 사실 마이페이지 이전 리빌딩 프로젝트들은 기술적으로만 접근하다보니 우여곡절이 많았어요. 그래도 마이페이지 리빌딩은 업무적으로도 많이 배우고, 기술 뿐만 아니라 전체적으로 변화한 것이 보여 저 또한 성장하는 시간이었습니다.종헌 : 이외에도 유저플로우셀은 UX개선을 여러 프로젝트와 함께 진행하고 있습니다. 정신없긴 하지만 개발요소도 새롭고 다이나믹한 것이 많아서 즐겁게 하고 있습니다!▲ 화기애애하게 UI 시안을 보고 있는(?) 유저플로우셀Q. 코인원에서 디자이너 그리고 개발자로 일하는 큰 장점은 무엇인가요?예은 : 코인원에선 셀마다 다른 직무의 인원들이 빠르게 소통하여 의사결정하는 목적조직 형태로 일합니다. 중간중간 기획리뷰, 디자인리뷰 과정을 거치면서 더 꼼꼼하게 일하고, 다른 직무에 계신 분들의 작업도 공유하고 있어요. 거래소에서 일어날 수 있는 다양한 문제 상황을 긴밀하게 대응하고 있죠.정유 : 현재 코인원은 ‘셀(Cell)’이라는 목적조직 형태입니다. PM, 개발자, 디자이너가 한 조직에 속하다보니 Output 나오는 속도가 매우 좋아졌습니다. 또한 여러 직군이 함께 팀웍을 맞추다보니 서비스를 다양한 각도에서 바라볼 수 있고, 이는 디자이너로서 서비스 이해도를 높이는데 굉장히 좋은 환경이라고 생각해요.  종헌 : 코인원은 개발자도 기획 단계부터 적극적으로 참여하여 프로젝트를 설계하고 있습니다. 이로 인해 개발을 하다 예기치 않은 변수가 생기는 일이 거의 발생하지 않아요. 또한 정기적으로 회고를 하며 프로세스의 문제점을 도출해내고, 개선을 위해 다양한 시도를 해볼 수 있다는 것도 장점입니다. 현진 : 현재 코인원 기술본부는 트렌디한 기술을 곳곳에 사용하고 있어요. 기술에 민감하게 반응하는 프론트엔드 개발자분이 코인원에 온다면 기술적으로 매우 만족하실거에요. Q. 앞으로 이루고 싶은 목표는 무엇인가요?예은 : 암호화폐 거래소는 UX를 기획하기에 매우 도전적인 분야입니다. 블록체인 기술이 곳곳에서 화제가 되고 있지만, 아직 업계의 워딩이나 사용에서의 유저 친화적 성숙도가 높지 않은것 같아요. 앞으로의 목표는 누구나 쉽게 거래할 수 있는 암호화폐 거래소를 만드는 것입니다. 점점 더 발전하는 코인원의 모습을 많이 기대해주세요!정유 : 코인원 UI에는 아직 블록체인 공급자적 시선이 많이 담겨있어요. 예를들어, 개발자가 아니면 이해하기 어려운 용어나 UI가 남아있는 부분이 있거든요. 이를 디자인적으로 해소하고 싶습니다. 유저가 갖고 있는 암호화폐 거래 장벽을 낮추고, 코인원의 가치가 잘 반영된 프로덕트를 만드는 것이 목표에요. 종헌 : 코인원에서는 트레이딩 이외에도 여러가지 서비스들을 유저에게 제공하는 다양한 시도를 하고 있어요. 저는 다양한 서비스들을 연결하면서 서비스의 안전장치를 견고하게 쌓아올리고 싶네요. 장애 발생에도 끄떡없는 안정적인 코인원을 유저에게 선보이고 싶습니다.현진 : 대한민국에서 적어도 사용성 1위 암호화폐 거래소를 만들거에요. 유저플로우셀에서 마이페이지 이후에도 많은 프로젝트를 준비하고 있거든요. 매주(?) UX가 점차적으로 개선되는 코인원 거래소의 모습을 확인할 수 있을 거에요. 마지막으로 꼭 하고싶은 말이 있는데, 코인원에 많은 개발자분들이 지원해주셨으면 좋겠어요. 아직 업계에 부정적인 인식이 강하지만, 블록체인이 발전하는 과정을 보며 점차 해소될거라고 믿어요. 기술적으로 발전할 가능성이 무궁무진한 곳이니 기술적인 욕심을 채우고 싶은 분들, 함께 성장하고 싶으신 분들 코인원으로 오세요!▲ 코인원 유저플로우셀 많이 기대해주세요!무엇보다도 긍정적인 에너지로 가득찼던 유저플로우셀의 인터뷰를 들어봤어요.코인원 마이페이지에 큰 변화를 가져온 활기찬 에너지, 다들 느끼셨나요?마이페이지 이후에도 다양한 프로젝트를 준비하고 있는 유저플로우셀. 곧 코인원 웹 거래소를 사용하면서 UX적으로 편리한 사용성을 경험할 수 있을겁니다.끝으로, 특별한 문화를 경험할 기회! 코인원 채용에 함께하는 것도 잊지 마세요 :-)
조회수 2057

출시의 기록 - #1 랜딩페이지

이 글은 "친구끼리 쓰는 라이브 스트리밍 앱, 라이비오(LIVEO)"의 앱 출시 과정을 담는 글입니다. 어디까지나 현재 겪고 있는 과정을 기록하는 것으로, 최선의 방법이 아닐 수도 있으니 더 좋은 방법이 있다면 언제든지 소개 부탁드립니다.앱을 출시하게 되면서 가장 먼저 준비하게 되는 것 중에 하나. 웹사이트이다.지난 사업인 위제너레이션이나 오드리씨 모두 웹 사이트 자체가 중심이 되는 사업이었기에, 팀 내에 웹 개발자가 있었고 직접 사이트 제작을 건드려야 할 일은 따로 없었다.그러나 라이비오라는 앱 서비스를 준비하게 되면서, 팀 내 개발자들은 앱 서비스 개발에 바쁘고 웹 사이트는 기본적인 소개의 역할만 담당하면 되기 때문에, 직접 사이트를 만들게 되었다.이렇게 가장 기본적인 소개의 역할만을 담당하는 한 페이지짜리 웹 사이트를Promotional Landing Page, 혹은 랜딩 페이지라고 줄여서 부른다.우리는 총 세 가지 과정을 거쳐 웹 사이트를 만들어왔는데, 순서대로 아래와 같다.[1] 시중에 떠도는 HTML5 템플릿을 활용해 앱 개발자분께 부탁하여 간단하게 직접 만들었다[2] IMXPRS 라는 서비스를 이용하여 직접 만들었다[3] Instapage 라는 서비스를 이용하여 직접 만들었다결론만 말하자면 IMXPRS 는 내가 어떻게 알았는지 모르지만 완전 비추인 서비스이다.직접 만드는 것도 돈은 들지 않지만 그 때 그 때 커스텀이 안되기 때문에 불편하다.알아본 결과 랜딩페이지 제작으로는 주로 wix(바로가기) 나 Instapage(바로가기)를 추천하는데, 두 서비스가 유사하지만 개인적으로 Instapage 의 디자인이 더 마음에 들어서 선택하게 되었다.*wix의 경우 한글 버전이 있고, 이후 결제를 붙이는 것이 좀 더 용이하다고 알고있다.각각의 템플릿과 기능을 보고 적절한 것으로 선택하면 될 것이다.Instapage 사용 경험의 경우 개인적으로 10점 만점에 9.5점을 줄 정도로 아주 높다.당연히 직접 개발하는 것 만큼이야 커스텀이 안되겠지만, 매우 쉽게, 꽤 높은 수준으로 커스텀이 가능하다.예를 들어, 애초에 사용한 템플릿은 위의 템플릿이었는데, 아래와 같이 커스텀했다                                                  애초의 템플릿                                                   최종 결과물거의 다른 모습임을 알 수 있는데 그만큼 커스텀이 정말 쉽다는 뜻이다.- 기본적인 디자인은 모두 템플릿에서 제공하며- 핵심이 되는 Headline 및 본문 글꼴을 수정할 수 있고- 원하는 이미지 등을 손쉽게 원하는 위치에 삽입하고, 요소를 원하는 위치에 원하는 크기로 넣는다- 배경 사진 또한 유료 사진을 즉석에서 보고 어울리는 것을 쉽게 결제할 수 있다- 모바일 페이지도 자동 생성되며 별도로 변경할 수 있다(!)이러한 기능들 덕택에 개발자나 디자이너가 아니더라도, 30분~1시간만에 어느 정도 수준의 랜딩페이지를 손쉽게 완성할 수 있다.가장 마음에 들었던 부분은 외부 서비스와의 연계인데, 특히 이메일 주소를 받는 등의 추가기능이 필요한 경우 Integration 탭에서 정말 쉽게 넣을 수 있다. (라이비오의 경우 현재 이메일 주소를 받는 부분은 Mailchimp 라는 타 서비스와 연결되어있다.)                        Edit > Integration 탭에 가면 볼 수 있는 수많은 서비스들향후에는 좀 더 공식 사이트스러운 것들이 필요하겠지만, 초반 몇 달간 사용하기에 손색이 없는 서비스라고 생각한다. 일정 기간동안 무료로 제공되며, 향후 이용료를 낸다. (위의 사이트 수준이면 월 $29 정도)완성된 홈페이지: http://liveo.me랜딩 페이지는 이 정도로 하고, 이후 스마트 앱 배너를 추가할 계획이다.모바일로 랜딩페이지에 접속하면 앱 설치로 유도하는 배너이다.이 부분은 SDK 연동 등도 필요해서 개발자분들의 바쁨이 조금 잦아들면 출시 직전이나 직후에 넣으려고 한다. 관련 서비스는 branch.io 등이 있다.                                Smart App Banner 사례: 맨 위에 저거...사실 처음에는 랜딩 페이지(Promotional Landing Page)니, 스마트 앱 배너(Smart App Banner)니 하는 용어 자체를 몰라서 관련 서비스를 찾기가 어려웠다. 하지만 일단 용어를 알고나니 관련하여 이용할만한 좋은 서비스들이 많았다.혹시 앱 출시를 처음 해 보는 팀이 있다면 앱 출시 마케팅 자체에 대한 조사를 먼저 하고 큰 그림을 그려둔 후 가지를 쳐가며 준비하기를 추천한다. 개인적으로 어떤 부분을 모르는지, 어떤 부분을 알아야 할지를 알 수 있어 훨씬 수월했던 것 같다.하나 하나 완성된 모습으로 채워가는 과정이 왠지 괴롭고도(?) 재미있다.앞으로 소셜미디어와 프레스킷을 만들어가는 과정도 담아보기로 한다.+ 여담: 배경색 선정은 페이스북 '포토샵 완전정복' 디자이너 그룹의 힘을 빌었다.  투표의 힘!정말 많은 분들이 투표에 참여해주셨고 그 중 아는 언니가 준 의견 덕분에 지금의 검은 색상 옵션을 추가하게 되었다.사실 내가 처음 밀었던 색상은 아래의 보라색이었고 우리 팀도 대표님 제외하고 모두 보라색을 택했다 ㅋㅋㅋ 그러나 디자이너들의 의견은 가차없이,검은색 > 민트색 > 보라색 이었다.역시 기술만 있는 나에게 디자이너의 안목을 기르기란 끝없는 과제이다.이 글은 "친구끼리 쓰는 라이브 스트리밍 앱, 라이비오(LIVEO)"의 앱 출시 과정을 담는 글입니다. 어디까지나 현재 겪고 있는 과정을 기록하는 것으로, 최선의 방법이 아닐 수도 있으니 더 좋은 방법이 있다면 언제든지 소개 부탁드립니다.#라이비오 #경험공유 #출시 #업무프로세스 #인사이트
조회수 3461

Good Developer 1 | 좋은 개발자의 5가지 기준

좋은 개발자 소개해주세요.많은 기업 관계자분들을 만나면서 항상 듣는 말이다. 스타트업에 있어서 인재 채용이 항상 문제기는 하지만, 이것은 비단 스타트업에만 국한되지는 않은 것 같다. 지난 코드스테이츠 데모데이 때는 카카오와 SK텔레콤 같은 대기업과 더불어 스마트스터디, 데일리호텔 기업 관계자분도 참여해 주셨다. 이것을 보면 대기업이든, 규모가 꽤 있는 기업이든 좋은 개발자를 찾는 것은 어려운 것 같다.기업들이 이런 말을 하는 것을 보면 개발자를 찾는 수요는 빠르게 증가하고 있는데, 기업들의 입맛을 맞추면서 개발을 할 수 있는 '좋은 개발자'는 많이 없는 듯하다. 이런 상황에서 코딩 교육 스타트업 코드스테이츠가 많은 기업 관계자분과 개발자분들을 만나고 코딩 교육을 하면서 느낀 점을 통해 어떤 개발자가 좋은 개발자인지에 대하 포스팅을 하려 한다.이것을 통해 좋은 개발자라는 개념을 구체화할 것이다. 좋다는 개념을 명확히 해서 어떤 것들이 좋아야 좋은 개발자인지, 또 소위 말하는 좋은 개발자가 되기 위해서 어떤 노력들을 해야 하는지 글로 풀어갈 것이다. Good Developer 시리즈 첫 번째 포스팅, 좋은 개발자의 5가지 기준좋은 개발자의 5가지 기준좋은 개발자에 대한 생각은 개인마다 또 기업마다 다를 것이다. 아래의 기준들은 많은 기업 관계자분들과 개발자분들을 만나고, 코드스테이츠가 교육을 하면서 느낀 좋은 개발자의 기준들이다. 아래의 조건들이 좋은 개발자의 충분조건이라고 할 수는 없지만, 필요조건이라고는 할 수 있을 것 같다. 코드, 생산성, 커뮤니케이션, 학습, 관리 능력 이 5가지 관점을 통해 어떤 개발자가 좋은 개발자인지 알아보자.1. 코드의 리딩과 라이팅좋은 코드를 짤 수 있는 역량은 좋은 개발자가 되기 위한 필수적인 기준이다. 하지만, 대부분의 개발자들에게 어떻게 하면 좋은 코드를 짤 수 있는지 물어보면 쉽게 답하는 사람은 많지 않다. 그래서 구체적으로 어떤 능력이 있어야 좋은 코드를 짤 수 있는지, 코드의 리딩과 라이팅의 관점에서 살펴보고자 한다.많은 주니어 개발자들이 처음 회사에 입사해서 해야 하는 것 중 하나는 코드의 리딩(reading)이다. 자신이 처음으로 개발을 시작하지 않는 이상 이미 개발된 소스들을 보고 어떻게 동작하는지 또 변수, 함수, 메서드들의 네이밍(Naming)은 어떤 식으로 하고 있는지 파악해야 한다.코드의 리딩 능력은 업무 환경에 적응하는 능력과는 별개로 자신의 업무를 파악하고 또 다른 사람과 커뮤니케이션할 때 매우 중요하다.  그리고 코드를 잘 읽으면 어디가 잘못되어 있는지, 어떻게 고쳐야 하는지 쉽게 파악할 수 있다. 그리고 이것이 코드를 잘 짤 수 있는 역량으로도 직결된다.리딩 능력과 더불어서 중요한 것이 바로 코드 라이팅(writing) 능력이다. 라이팅은 코드를 잘 짜는 것과 별개로 네이밍(Naming)을 잘하고 이해하기 쉽게 코드를 쓰는 것을 의미한다. 코드 리딩 능력이 뛰어나지 않은 개발자라도 잘 정돈되고 직관적으로 네이밍 되어 있는 코드들을 보면 쉽게 읽을 수 있다.코드 라이팅 능력은 협업하고 코드를 구조화하는 과정에서 매우 중요하다. 코드 라이팅 능력이 떨어진다면 다른 사람이 자신의 코드를 이해하는데 오랜 시간을 소모하게 만들 뿐만 아니라 나중에 가서는 자신조차 자신의 코드를 이해하는데 오랜 시간이 걸릴 수 있다. 이렇기 때문에 안정된 코드, 돌아가는 코드를 짜는 것과 별개로 다른 사람과 자신이 이해하기 쉬운 코드를 짜는 능력은 매우 중요하다.좋은 코드를 짜기 위해서는 다른 사람이 어떤 코드를 짰는지 알아야 하고 내 코드를 다른 사람들이 쉽게 읽을 수 있도록 해야 한다. 개발자는 결국 코드로 말한다. 코드 라이팅 능력이 떨어진다는 것은 코드로 '잘' 말하지 못한다는 것을 의미한다. 또 코드 리딩 능력이 떨어진다는 것은 다른 개발자가 코드로 말하는 것을 '잘' 듣지 못한다는 것을 뜻한다. 좋은 개발자의 조건으로 항상 따라붙는 좋은 코드를 짜는 방법은 코드 리딩과 라이팅 능력이 선행되었을 때 가능할 것이다.2. 빠른 생산성좋은 코드를 짜는 것이 좋은 개발자가 되는데 중요한 조건이기는 하지만 유일한 조건은 아니다. 개발은 필연적으로 시간과의 싸움이다. 그래서 좋은 개발자의 조건 중 하나가 바로 생산성이다. 우리나라의 많은 개발자들이 야근에 시달리는 것도 결국은 생산성과 연결되어 있다.(물론 조직문화도 크게 작용한다. 그리고 CEO의 마인드도...)안정적이고 완벽한 코드를 짜는 것도 중요하지만 때로는 시간과 타협해서 돌아가는 코드를 짜는 것만으로 만족해야 할 때가 있다. 특히, 리소스가 부족한 스타트업에서는 시간이 생명이다. 환상적인 코드를 짤 수 있는 개발자라 할지라도 그 시간이 천년만년 걸린다면 당장 돌아갈 수 있는 코드를 돌릴 수 있는 개발자 보다 좋은 개발자라고 하기 힘들 것이다.투입한 시간 대비 얼마만큼의 코드 생산성이 나오는가? 시간이 생명인 많은 스타트업에서는 안정적이고 완성도 높은 코드를 짜는 개발자보다 생산성 높은 개발자를 선호할 가능성이 크다. 첫 번째 기준인 코드 리딩과 라이팅 능력에서 자신이 없다고 걱정할 것 없다. 자신의 코드 생산성이 좋다면 좋은 개발자로서의 중요한 기준을 하나를 충족한 셈이니까.3. 원활한 커뮤니케이션위의 두 가지 기준이 개발 자체에 대한 능력이었다면, 커뮤니케이션 능력은 다른 사람과 협업하는 능력에 대한 기준이다. 혼자서 개발하는 개발자는 극히 드물다. 코딩 = 개발이 아니다. 코딩은 개발의 한 과정이며 개발을 할 때에는 다른 구성원들과 수많은 상호작용을 해야 한다. 왜냐하면 개발자는 결국 사람들과 일하기 때문이다.그래서 많은 기업들이 개발자를 채용하는 기준에서 '원활한' 커뮤니케이션을 내세운다. 개발과 관련 없을 것 같은 커뮤니케이션은 사실 엄청나게 중요하다! 커뮤니케이션 문제로 발생하는 비용 문제(단순히 돈이 아니다.)는 상당하다.어느 정도 개발 경험이 있는 사람은 누구나 공감할 수 있을 것이다. 같이 일하고 싶은 개발자와 아닌 개발자가 있다는 사실을 말이다. 단지 사람이 좋고 나쁨을 떠나서, 대화를 하는데 숨이 턱 막히는 사람이 있고 대화를 하면 할수록 막혔던 부분이 풀리거나 새로운 아이디어를 떠오르게 만다는 사람이 있다.원활한 커뮤니케이션은 사실 어느 직군에나 해당되는 말이지만, 개발처럼 한 가지 테스크에 여러 사람이 집중적으로 달려드는 업무에 있어서 그 중요성이 더 부각된다. 당신은 원활한 커뮤니케이션 능력을 가지고 있는가?4. 업무 관리, 사람 관리 능력업무 관리와 사람 관리는 사실 개발자 직군에 국한된 역량이 아니라 모든 직군에서 필요로 하는 역량이다. 개발에 치중해야 할 개발자가 좋은 개발자가 되기 위해 이런 것들까지 신경 써야 할 이유는 무엇일까? 위에서도 언급했지만, 개발 = 코딩이 아니다. 개발을 한다는 것은 테스크를 나눠 할당하고 기간에 맞춰 완성시키는 일이다. 이 과정에서 필요한 상호작용, 업무 관리, 생산성이 모두 개발의 과정이다.업무 관리와 사람 관리를 잘 하는 사람은 막말로 그냥 일 잘 하는 사람이다. 좋은 코더가 아니라 좋은 개발자가 된다는 것은 일을 잘하는 사람이 되어야 한다는 뜻이다. 업무 관리는 테스크를 나누고 할당하고 데드라인을 설정하는 일이 아니더라도 나에게 주어진 테스크에 대해 스스로 관리하는 능력까지 포함한다. 결국 자신의 업무 관리를 잘하는 사람은 생산성에서 두각을 나타내리라.주니어 때 좋은 개발자로 인정받고 연차가 쌓이면 시니어가 되고 관리자 직급으로 올라갈 가능성이 크다. 이때 주니어 때 좋은 개발자였다고 시니어 개발자일 때도 좋은 개발자일 거란 보장은 없다. 시니어가 돼서도 좋은 개발자가 되고 싶다면 업무 관리와 사람 관리하는 능력이 필수적이다. 특히, 한국에서는 개발자의 종착지는 관리자일 정도로 연차가 많은 사람이 개발을 하고 있는 경우는 극히 드물다. 이런 상황에서 좋은 개발자로 인정받아 마지막까지 살아남기(?) 위해서는 이 두 가지 능력이 필수적이다.5. 지속적인 학습위에서 제시한 네 가지 능력이 모두 없다고 실망할 것 없다. 좋은 개발자가 되기 위하 마지막 조건, 지속적인 학습이 있기 때문이다. 지속적인 학습은 좋은 개발자가 계속해서 좋은 개발자로 남을 수 있게 만들어주고 일반 개발자가 좋은 개발자가 될 수 있게 만들어주는 중요한 조건이다.개발은 빠르게 변한다. 모든 직군 중에서 가장 학습을 많이 해야 하는 직군을 뽑으라면 자신 있게 개발자라 말할 수 있다. 빠르게 변화하는 환경 속에서 지금 좋은 개발자라 해서 몇 년 후에도 좋은 개발자라고 단정 지을 수 없다. 개발자는 숙명적으로 끊임없이 배워야만 한다. 좋은 개발자가 되기 위해서는 더더욱.지속적으로 배운다는 것이 단순히 새로운 것을 익히고 지식의 지평을 확대해 나간다는 것만을 의미하지 않는다. 지금 현재 소위 나쁜 개발자(코드 퀄리티, 생산성, 커뮤니케이션, 관리능력 모두 떨어지는 개발자)가 블록체인 신기술을 배운다고 해서 좋은 개발자가 되겠는가? 즉, 코딩 지식에 대한 고민뿐만 아니라 위에서 언급한 네 가지 기준에 대한 학습도 필요하다.학습에 측면에서 많은 분들이 간과하고 있는 것이 지식의 질이다. 단순히 지식의 양적인 측면에만 매몰되면 깊이 있는 지식을 얻기 힘들기 때문이다. 물론, 현재의 시대적 흐름을 읽고 최신 트렌드 기술을 습득하는 것은 중요하다. 하지만 그보다 더 중요한 것은 자신이 알고 있는 지식들을 깊이 있게 아는 것이다. 끊임없는 학습, 그리고 깊이 있는 학습만이 좋은 개발자를 계속해서 좋은 개발자로 만들어 준다.좋은 개발자를 위해지금까지 좋은 개발자를 위한 5가지 조건에 대해 알아 보았다. 코드 리딩과 라이팅, 생산성, 커뮤니케이션, 사람과 업무 관리 그리고 지속적인 학습. 이외에도 중요한 조건들이 많지만 많은 개발자를 만나고 교육해오면서 가장 필요하다고 생각하는 5가지 조건을 적어보았다.개발자가 되는 것은 쉽지 않다. 좋은 개발자가 되는 것은 더더욱 쉽지 않다. 좋은 개발자를 양성하기 위해 노력하는 교육 스타트업으로써 어떤 개발자가 좋은 개발자인지 파악하기 위해 항상 노력 중이다. 이 노력을 코드스테이츠만 알고 있는 것이 아니라 다른 분들에게도 공유드리고 싶다. Good Developer 포스팅을 통해 어떤 개발자가 좋은 개발자인지 또 좋은 개발자가 되기 위해서는 어떻게 해야 하는지 이야기할 예정이다. 좋은 개발자의 길은 멀지만 Good Developer를 통해 한층 쉽게 걸어갈 수 있었으면 좋겠다.
조회수 1000

VCNC 개발팀 워크숍을 소개합니다. - VCNC Engineering Blog

VCNC 에서는 최근에 모빌리티 서비스 이동의 기본 타다를 출시했습니다. 신규 서비스를 준비하면서 팀도 새롭게 구성되고 새로운 멤버들이 팀에 합류했습니다. 이러한 변화 속에서도 좋은 개발 문화를 유지하기 위해서 VCNC 개발팀은 큰 노력을 하고 있습니다. 그중에서도 모두가 자랑하고 싶어 하는 VCNC 개발팀 워크숍을 소개합니다.VCNC 개발팀 워크숍최근 VCNC 개발팀 워크숍은 2018년 12월 19일 수요일에 진행되었습니다. 2016년 12월 처음 시작해서 최근까지 총 6번의 워크숍이 열렸습니다. VCNC 가 SOCAR에 인수되어 타다 서비스를 바쁘게 준비했던 2018년 8월을 제외하고 1년에 3번씩(4, 8, 12월) 꾸준히 개최되고 있습니다.VCNC 개발팀 워크숍은 개발팀 멤버들이 업무 외적으로 가지고 있던 각자의 관심사들을 공유하고 개발자들이 할 수 있는 고민을 같이 나눠보기 위한 욕구에 의해 처음 제안되었습니다. 포맷을 어떻게 할지 논의한 끝에 아래와 같은 포맷으로 워크숍을 진행하기로 했고 최근까지 이 포맷으로 워크숍을 진행하고 있습니다.오전 시간에는 모든 멤버가 각자의 관심사에 대해 5~10분 정도로 가벼운 라이트닝 톡을 하자.오후 시간에는 토의 주제를 정해서 몇 가지 깊은 토의를 나눠보자.회사의 업무에서 완전히 벗어나서 집중하기 위해 프로젝터 사용이 가능한 외부 카페를 대관하자.고기 회식을 하자!2018년 12월 제 6회 VCNC 개발팀 워크숍 단체 사진라이트닝 톡라이트닝 톡은 위에 언급했던 대로 모든 멤버가 5~10분 정도의 시간 동안 각자의 관심사에 대해서 다른 멤버들에게 소개하는 시간입니다. 발표 주제는 처음에는 개발로 한정 지었다가 더 폭넓게 관심사를 공유하기 위해 자유 주제로 변경했습니다. 다들 워크숍 전날까지는 어떤 발표를 해야 할지 걱정하며 투덜대지만, 막상 워크숍 당일이 되면 굉장히 흥미로운 주제들을 가지고 참여를 합니다. 라이트닝 톡이라는 의미에 맞게 1회 워크숍에서는 타이머를 켜고 시간 체크를 하면서 간단하게 발표를 했습니다. 그런데 기대했던 것보다 훨씬 좋은 발표들이 나오면서 발표 시간을 유동적으로 해서 발표의 퀄리티를 더 높이기로 했는데, 바로 다음 워크숍에 1시간 10분짜리 장대한 강의가 등장하는 바람에 절제의 중요성을 다시금 느끼면서 다시 타이머를 켜기로 했습니다…2017년 12월 워크숍에서는 PB팀이 상품 협찬을 해줘서 (PB팀 감사합니다!) 최고의 발표를 선정해 밀크 미니 인형을 지급했습니다. 영예의 수상자는 욕망의 흐름 이라는 발표를 정말 욕망의 흐름대로 발표한 Max로 선정되었습니다.<iframe src="https://docs.google.com/presentation/d/e/2PACX-1vQChBaARqlj8XfZx75MtkcejwupwBPt9tgD47sL99L1mHceYnPR2yDJnVAKFq8nFHXG9Pc9QbWBA5Eb/embed?start=false&loop=false&delayms=10000" frameborder="0" allowfullscreen="true" mozallowfullscreen="true" webkitallowfullscreen="true"> 지금까지 워크숍을 6회나 진행했기 때문에 상당한 양의 라이트닝 톡 발표자료들이 모였습니다. 그중에서 몇 가지 발표의 슬라이드를 공유합니다.Glitches of Mario by PrinceOrigami - 종이접기와 수학 by PrinceLattice-based Cryptography by BradTADA-Android 회고 by David기반 작업들을 무엇을 했는가? + RIB 간단 설명Contract by DoogieAd Fraud by HughBB84 - 양자 역학을 이용한 절대적으로 안전한 키 분배 프로토콜 by James불완전성 정리 by James삼단논법 by JamesGAN by MaxReinforcement Learning based on AlphaGo by NelsonSteganography by Nelson재귀의 폭풍 by TedUBER: COSTS & REVENUES by TerryProbabilistic Filter by Youngboom다음 워크숍부터는 발표를 녹화해서 슬라이드와 함께 공유해보도록 하겠습니다.최고의 발표로 선정된 Max종이접기로 각의 3등분선 구하기 실습필자의 발표를 경청하는 멤버들디스크의 위험성을 온몸으로 표현 중 심층 토의VCNC 개발팀 워크숍에서는 회사의 주요 결정사항 혹은 공통으로 관심이 있는 이슈들을 선정해서 모두의 의견을 듣고 공감대를 형성하거나 액션 플랜을 세우는 토의를 진행합니다. 토의의 주제는 발전적이고 열린 커뮤니케이션을 지향하는 멤버들의 특성상 회사 생활 과정에서 자연스럽게 형성됩니다. VCNC 에서는 평소에도 서로의 의견을 공유하는 자리를 자주 가집니다. 그 예로는 매 달 진행하는 매니저와의 1:1 개인 리뷰 제도, 각 팀별 주간 회고 회의, 제품 피쳐 개발 단위로 진행하는 회고 회의 등이 있습니다. 이러한 의견 공유 과정에서 멤버 각자가 생각하는 불만, 문제점, 희망 사항들이 자연스럽게 워크숍의 토의 주제로 발전됩니다. 토의는 특별한 절차 없이 모든 구성원이 자연스럽게 끼어들면서 자신의 의견을 펼치며 진행됩니다. 모두의 의견을 듣는 것이 중요하기 때문에 특별한 주제가 아니라면 적은 인원으로 조를 구성해서 토의한 뒤 의견을 취합합니다. 정리한 내용은 제품팀 및 HR 담당자에게 전달되며 그 후 우리가 해볼 수 있는 시도들을 하거나 새로운 회사의 정책들이 생겨나기도 합니다.둘러앉아서 토의에 집중하는 멤버들 (편안한 자세 가능)아래의 항목들은 실제로 진행했던 토의의 주제들입니다.순수 개발 관련점차 높아지는 개발 복잡성을 어떻게 해결할까?서버-클라 간 프로토콜 문서화 문제제품 개발 프로세스 관련제품 개발 프로세스를 스프린트에서 칸반으로 변경하고 지금까지 겪었던 느낀 점, 문제점 및 해결 방안은?이슈 관리가 잘 안 되는데 원인 및 해결책은?QA가 필요한가? 제품 품질을 높이기 위해선 무엇을 해야 하는가?회사의 문화, 복지 등 전반회사에서 팀 간 커뮤니케이션을 원활하게 하기 위해 Manager 제도가 도입되는데 Manager 는 어떠한 역할을 맡아야 하는가?Manager 제도의 후기 공유 및 개선 방향.어떠한 모습의 회사를 원하는가?필요한 사내 문화 및 복지는 무엇이 있을까?개인의 발전 관련언제 동기부여가 되는가? 저하되게 만드는 요인은?어떠한 사람과 같이 일을 하고 싶은가?어떠한 모니터링 및 피드백을 받고 싶은가?VCNC 개발팀 워크숍의 토의 결과로 회사의 많은 부분이 발전하고 있습니다. QA 팀이 생겼고 해외 및 국내 콘퍼런스 지원 관련 복지 정책이 새로 생겼습니다. 제품 개발 프로세스는 새로운 시도를 거치면서 지속해서 발전해 나가고 있습니다.그 외우걱우걱워크숍에는 풍족한 먹을거리가 함께합니다. 카페를 대관하는 경우에는 무제한으로 음료가 제공되며 점심시간에는 배달을 시켜서 먹으면서 함께 이야기를 나눕니다. 마무리로 저녁에는 고기를 먹고 싶은 만큼 맘껏 먹으면서 역시 이야기꽃을 피웁니다.미니게임워크숍의 포맷이 라이트닝 톡 + 심층 토의 조합으로만 진행되어 느껴지는 지루함을 탈피하기 위해 2018년 4월 워크숍에서는 2인 1조로 팀을 구성해서 미니게임을 진행했습니다. 개발자 감성에 걸맞게 스크래치 게임인 Lightbot 2로 1시간 정도 플레이를 했습니다. 승패가 있는 대결은 아니었지만 다들 피로감을 호소할 정도로 엄청나게 집중하면서 시간을 보냈습니다.워크숍의 핵심은 고기를 굽는 것점심에는 피자를 시켜 먹으며 자유로운 대화를 나눕니다.집중해서 Lightbot 을 플레이하는 플레이어휴식 중에도 즐거운 대화는 계속됩니다. 마치며VCNC 개발팀 워크숍은 앞으로도 계속됩니다. 앞으로도 좋은 회사의 문화를 소개하는 기회를 자주 만들도록 노력하겠습니다. 저희와 함께 VCNC 를 발전시킬 좋은 분들을 기다리고 있으니 많은 지원 바랍니다!
조회수 3905

크몽 개발팀 문화와 구조 이야기

안녕하세요. 크몽 개발자들과 함께하고 있는 크레이그(a.k.a. 크알)입니다.크몽 개발자 그룹은 1년 내 그 규모가 3배로 커지고, Data Science, Growth Hacking 조직이 만들어지는 등 질적, 양적으로 급성장하고 있는 팀입니다.크몽 개발 부서에 계신 분들은 크몽에 대해 이렇게 이야기 합니다.(참고 : 크몽 개발팀원 더팀스 인터뷰 - '신뢰할 수 있는 동료와 함께 초고속 성장을 만들어가는 크몽 팀' )"제가 크몽에서 전반적으로 느낀 인상은 능동적인 분들이 많다는 거예요. 수동적인 업무를 책임감 있게 하는 것도 중요하지만 문제를 스스로 찾고, 동료들에게 제기하고, 문제를 해결했을 때 진심으로 기뻐하면서 행복감을 느끼시는 분들이 많아요. 그게 큰 조직에 있다가 온 저에게는 정말 많은 자극이 되었어요. "- 데이터분석 KM님"크몽이 저의 개발자 커리어에서 마지막 회사였으면 좋겠다고 생각해요. 실은 진심이고요. 그동안 회사의 성장을 지켜봤고 개발적으로도 많은 변화를 경험했어요"- BackEnd Sean님이렇게 개발자들이 행복하게 개발할 수 있는 환경을 우선시하고 있습니다. 그리고 크몽의 오픈 커뮤니케이션 문화를 지향함과 동시에 ‘Work Happy’와 'Freedom with Responsibility’ 란 가치 아래 최대한 자율성을 보장된 실무자 중심의 개발 문화를 추구합니다.크몽 개발 조직 구조위 핵심 가치 아래 크몽 개발 조직 구조는 크게 ‘Go’와 ‘Chapter’로 구성되어 있습니다.Go  ; 고우선 ‘Go’는 프로젝트 개발 팀 단위로 크몽 서비스를 개선하기 위한 목표 중심의 조직입니다. 다른 회사에서는 ‘Silo’, ‘Team'로 명칭 하기도 합니다. 물리적으로 한 공간에서 스크럼을 이루어 일할 수 있도록 자원을 갖추고 있습니다. Go 안에는 Go Leader(GL) 가 있어 팀 업무 관리 및 우선순위를 정합니다.현재 크몽 개발 파트의 Go는 아래와 같이 구성되어 있습니다.UX-Go크몽 서비스 UX를 개선하기 위한 목표로 데이터를 기반으로한 UX Iteration & Growth Mission 을 수행하는 팀Data-Go데이터 파이프라인을 구축, 활용하여 조직 내 필요한 데이터 자료를 공급하고, 크몽 서비스안에 머신러닝/딥러닝 등의 인공지능 기술 영역을 담당하는 팀Dasi-Go서비스 안정적인 운영 및 릴리즈,  CRM 기술 지원을 담당하는 팀Mobile-Go검색 서비스, 서비스 카테고리 개선 등 크몽 서비스 향상을 위한 모듈 개발팀크몽 라운지Chapter  ; 챕터'Chapter'는 직군별 조직 단위로 주 1회 정도의 커뮤니케이션 타임을 통해 업무 및 기술 동향을 교환합니다. 더불어 챕터 안에서 필요한 스터디, 외부 교육 등의 직군별 자기 능력 향상을 도모하고, 회사에선 이를 적극 지원합니다. 그리고 챕터 내 프로젝트를 통해 서비스 개선에 기여하기도 합니다.크몽 개발 파트는 아래와 같은 챕터가 있습니다.(참고 : 웹 프로트엔드 챕터의 'gulp 개선기' -  https://brunch.co.kr/@kmongdev/5 )**챕터 프로젝트는 챕터 내에서 개발자분들이 스스로 필요하다는 판단 하에 빌딩 된 프로젝트입니다. 챕터 내에는 CL(Chapter Leader)가 존재하며, Chapter 구성원 관리 및 의견을 모아 조직에 전파하는 역할을 담당합니다.Guild  ; 길드개발 파트 안에서의 'Guild'는 토이 프로젝트 같은 성격의 공통 관심 분야를 지닌 프로젝트 팀이라고 볼 수 있습니다. 길드 기획 단계에서 회사 전사적으로 적용되면서, 동호회 성격으로 피보팅(Pivoting) 되어 있지만, 기본적으로 공통의 관심 분야를 같이 학습하고 프로젝트에 적용하는 팀입니다. 매주 수요일 오후 2~3시 사이의 시간은 챕터(Chapter), 고(Go)를 떠나 본인이 원하는 길드에 들어가서 새로운 영역을 탐색하고 연구하는 시간입니다.크몽 개발 파트는 아래와 같은 길드가 있습니다.(참고 : 코틀린 길드의 코틀린 리서치 이야기  https://brunch.co.kr/@kmongdev/9 )정리모든 개발 조직은 '성과 중심' 또는 '성장 중심'의 문화를 가지고 있습니다. 균형을 꾀하는 게 이상적이긴 하지만 스타트업에선 쉽지 않은 일입니다.하지만 크몽 개발 부서에선 인적 성장 중심 문화를 고민하고, 끊임없이 시도하고 있습니다. 이를 위해 여러 전문 교육 기관과 협약을 맺고 교육 지원을 하고 있으며, 국내 정상급 권위자 분들로 구성된 외부 컨설턴트 그룹을 구성해 개발자 분들께 배움과 성장의 기회를 부여하려고 노력하고 있습니다. 1년의 기간 동안 이직률3%의 수치를 기록하고 있는 크몽 개발 파트에선 신규 인력 채용 시 제 1의 인사 기준은 '높은 학력'도, '화려한 커리어'도 아닌우리와 '오랫동안' 함께 '성장'할 수 있는가?입니다. 이를 위해선 개발자 성장을 돕기 위한 환경 구축 및 관리가 필수이고,  그것이 궁극적으로는 회사 및 팀원에게도 장기적인 발전을 가져올 꺼란 굳은 믿음이 있습니다.크몽 개발 그룹CTO#크몽 #개발팀 #개발자 #사내복지 #기업문화 #조직문화 #사내스터디 #CTO
조회수 444

컴공생의 AI 스쿨 필기 노트 ⑦합성곱 신경망

안녕하세요! 이번 주 수업에서는 합성곱 신경망에 대해서 배웠어요. 제가 읽은 한 기사에 의하면 대장 내시경 검사에도 딥러닝을 이용하면 종양 식별 능력을 더 높일 수 있다고 해요. 딥러닝을 이용한 검사는 전문가 분석을 통한 대장 내시경 검사보다 종양을 9개 더 많이 발견했고 진단 정확도는 96%인 것으로 나타났어요. (원문 링크) 이 대장 내시경에 우리가 배운 CNN(Convolutional Neural Network), 이미지 기반 딥러닝 모델을 사용했다고 하는데요. 이 대장 내시경에 사용된 CNN에 대해 알아볼까요? (Cover image : Photo by Paul Carmona on Unsplash)CNN(Convolutional Neural Network, 합성곱 신경망) CNN(합성곱 신경망)은 Convolution(합성곱)연산을 사용하는 인공신경망의 한 종류에요. 합성곱 신경망은 주로 이미지 데이터를 다루는 문제에서 사용돼요. 쉽게 말해 합성곱 신경망은 이미지의 특징을 추출하고 잘 조합하여 문제를 해결하는데요.  예를 들어 왼쪽 이미지가 고양이인지 컴퓨터가 알아맞히기 위해서 합성곱 신경망은 고양이가 가져야 할 특징을 한 번에 파악하는 것이 아니라 부분부분 판단하여 종합적으로 결론을 내요. 합성곱 신경망은 사진에 고양이의 특징이 기묘하게 분포되어 있어도 정확하게 고양이의 특징을 찾아내는 높은 적응도를 갖고 있어요.이제 합성곱 신경망의 구조에 대해 알아볼까요?CNN의 네트워크 구조1. 합성곱 층 (Convolutional Layer)합성곱은 두 함수 중 하나를 반전하고 이동시켜가며 다른 하나의 함수와 곱한 결과를 적분해나간다는 아주 어려운 뜻을 가지고 있어요. 다음 예시를 보도록 할게요.여기에 2차원 배열 픽셀을 넣으면 X 인지 O 인지 알아내는 합성곱 신경망이 있다고 해봐요.이 합성곱 신경망은 똑바로 된 X와 O를 넣으면 X 인지 O 인지 정확하게 구분하는데,이렇게 크기가 바뀌고 회전되어 모양이 변형된 이미지를 보고도 X 인지 O 인지 정확히 구분할 수 있을까요?합성곱 신경망은 합성곱 신경을 이용하여 이미지의 특징을 매칭 시킨 결과가 같으면 같은 이미지라고 인식해요.‘X’ 이미지의 특징을 추출하면 위와 같은 매트릭스, 합성곱 필터(Convolution filter(=커널))가 나와요. (세 특징을 잘 조합하면 X 형태가 나오죠?)이제 제일 왼쪽의 합성곱 필터를 가지고서 이미지가 X 인지 알아볼게요. 합성곱 필터와 원본 이미지를 비교할 때는 곱셈을 이용해요. 합성곱 필터의 크기만큼 원본 이미지와 차례차례 곱해서 값을 채워나가요.위의 합성곱 정의에서 두 함수를 하나는 이미지, 또 하나는 필터라고 생각하면, 필터를 이동시켜가며 이미지와 곱한 결과를 적분 즉, 덧셈해 나간다는 뜻이 돼요.합성곱 필터의 크기만큼 값을 다 계산한 후, 계산한 원소를 다 더해서 합성곱 필터의 크기만큼 나눈 평균값을 또 다른 새 매트릭스에 채우게 되는데 이를 특징 맵(Feature map)이라고 불러요. 즉, 특징 맵은 기존의 이미지에 필터를 곱한 결과로 각 픽셀에 쓰여있는 값이 클수록 그 특징을 가지고 있다는 뜻이에요.이렇게 원본 이미지와 합성곱 필터의 곱한 결과로 특징 맵이 나왔어요.나머지 두 개의 합성곱 필터와 곱한 결과로 두 개의 특징 맵을 가질 수 있어요.한 개의 합성곱 층(Convolutional layer)에는 여러 개의 합성곱 필터가 있어요. 합성곱 층에서 기존의 이미지와 필터들을 합성곱한 결과, 처음 이미지는 필터 된 이미지(특징 맵)로 쌓이게 돼요.2. 풀링 층(Pooling Layer)풀링은 가로/세로 방향의 공간을 줄이는 연산으로 합성곱 층의 특징을 압축한 특징 맵을 형성해요. 풀링에는 최대 풀링(Max pooling)과 평균 풀링(Average pooling)이 있는데 이미지 인식 분야에서 주로 사용하는 것은 최대 풀링이에요. 그래서 보통 풀링이라고 하면 최대 풀링이라는 의미로 사용한다고 보시면 돼요.위의 예시는 2x2 최대 풀링을 적용한 예시에요. 아까 구한 특징 맵에서 2x2 픽셀에서 가장 큰 원소 값을 새로운 맵을 채워나가는데 이를 활성화 맵(Activation map)이라고 불러요. 최대 풀링을 사용하면 노이즈가 감소하고 속도도 빨라지며 영상의 분별력이 좋아진다고 해요. 마지막 출력 층은 최대 풀링의 모든 뉴런과 연결되어 출력값이 어떤 클래스에 해당하는지 파악되는데 사용돼요.이렇게 CNN을 이용하면 변형된 이미지라고 하더라도 원래 이미지의 특징을 가지고 있다면 정확히 구분할 수 있어요.코드로 연습해보기아래는 간단한 인공신경망 코드예요.Layer 1 - input:1x28x28 , output : 64x28x28 + Activation function - reluLayer 2 - input: 64x28x28 output:1x28x28Layer 3 - input: 1x28x28=784 output:10class MNIST_Net(nn.Module):    def __init__(self):        super(MNIST_Net, self).__init__() # nn.Module 생성자 호출         # an affine operation: y = Wx + b        layers = []        layers.append(nn.Conv2d(1,64,3,1,1))         layers.append(nn.ReLU())         layers.append(nn.Conv2d(64,1,3,1,1))         layers.append(nn.ReLU())         self.main = nn.Sequential(*layers)        self.fc = nn.Linear(28*28, 10)    def forward(self, x):        # x.view함수는 주어진 인자의 크기로 해당 데이터의 크기를 반환합니다. 즉, (Batch_size,1,28,28) --> (Batch_size,28*28)로 변환합니다.        x = self.main(x)        x = x.squeeze().view(-1, 28*28)        x = self.fc(x)  # 10 으로 10개의 Class에 대한 logit 값을 호출합니다.         return x합성곱 인공 신경망의 내용은 정말 배울 것이 많아서 수업 시간 내에 다 배우기가 조금 벅찼지만 다른 인공 신경망에 비해 재밌어서 집중할 수 있었어요. 이제 앞으로 1번의 이론수업만을 남겨두고 있어서 아쉽기도 하고 또 뿌듯하기도 해요. 앞으로 조원들과 함께 프로젝트를 진행하면서 지금까지 배운 이론을 적용해보게 되는데요. 프로젝트 주제를 정하는 것부터 벌써 쉽지가 않아요. 하지만 열심히 프로젝트를 해서 리쿠르팅 데이 때 실력을 뽐낼 수 있다면 좋겠네요!* 이 글은 AI스쿨 - 인공지능 R&D 실무자 양성과정 7회차 수업에 대해 수강생 최유진님이 작성하신 수업 후기입니다.
조회수 4048

풀스택 개발자, 그것은 환상..

풀스택 개발자라는 용어가 가끔 등장한다. 죄송하지만, 한국에서는 이 용어가 정말 잘못 이해된 상태로 사용되고 있다. 처음에 만들어진 의미와 뜻이 한국에 들어오면서 변한 것을 보는 것이 이번만도 아니다.언제나처럼, 이 '단어'가 의미하는 뜻은 '귤이 회수를 건너면서 언제나 탱자가 되는' 한국적인 환경에서는 매우 이상하게 와전된 의미로 사용되고 있다. 특히나 비개발자들인 경영진들이 그러하고, 개발자들도 가끔 잘못된 의미로 사용한다.와전된 의미의 '풀스택 개발자(Full Stack Developer)'는 프런트엔드와 서버 엔드를 넘나드는 모든 것을 다 아는 전지전능한 개발자인 것처럼 쓰인다. 죄송하지만, 풀스택 개발자의 의미는 프런트-엔드부터 서버-엔드까지 모든 것을 다룰 줄 아는 개발자를 의미하는 것이 아니다.이 '용어'가 쓰이는 분야를 조금은 국한시켜야 할 필요가 있다.그것은 '웹'환경의 프론트 영역으로 국한시키는 것이 매우 현명할 것이다. 다음의 링크를 참조하기를 권한다.http://www.sitepoint.com/full-stack-developer/위의 사이트에 있는 이미지와 단어를 차용한다. 아래의 그림을 살펴보라.[이미지출처 : http://www.sitepoint.com/full-stack-developer/ ]OS부터 Database, WebServer, Server Side Code, Browser, Client Side Code를 아우르는 능력을 가진 사람을 Full-Stack Developer라고 부를 수 있다.좀 더 쉽게 이야기하자면, 'Web'환경은 서버사이드 코드와 클라이언트 사이드 코드를 모두 이해하고 작성되어야 한다. 브라우저( 특히나 변덕스러운 호환성 문제들.. )의 스크립트 환경이 효과적으로 가동되기 위해서는 웹서버의 API를 적절하게 디자인하고 구현된 상태에서 동작되어야 하며, 대부분의 코드들은 직접 Database에 영향을 주는 경우가 많다. 더군다나, 소프트웨어 개발을 하려면 형상관리부터 배포 처리를 위한 기술도 할 줄 알아야 한다.맞다. 'Web'개발 환경에서는 Full-Stack Developer가 되지 않으면 제대로 된 개발이 어렵다. 그래서, '웹'에서는 풀스택 개발자를 지향해야 하고, 매우 당연하게 해당 스킬들을 익숙하게 다루어야 한다.풀스택 개발자는 Web의 개발환경에서는 어쩔 수 없이 매우 당연한 기술적인 한계이고 해야 할 업무를 위해서는 필연적인 형태 인 것이다.이렇게 '웹 환경에서의 풀스택 개발자'는 한국에도 많이 존재한다. 상당수의 PHP개발자 분들이 그러한 '풀스택 개발자'인 경우가 많다.그렇지만, 이 풀스택 개발자의 용어는 '개발'이나 '소프트웨어'를 잘 모르는 경영자의 머릿속으로 잘못 들어가서 마치, iOS나 Android APP도 개발하고 Rest API 디자인이나 구현도 하면서, AWS의 분산 환경에 대한 이해나 개발도 모두 가능한 '전지전능한 개발자'와 같은 의미로 잘못 사용되기도 한다.( 더군다나, 디자인능력이 극도로 필요한 자바스크립트나 능동형 웹-UI를 만들어 내는 능력은 전혀 다른 능력이다 )원래 의미의 '풀스택 개발자'는 '혼자서 웹서비스 하나를 만들 수 있는 개발자'라는 좁은 의미로는 맞다. 하지만, 이를 과도하게 해석하거나 아전인수격으로 해석하는 것은 매우 곤란하다. 그것은 바로 한국적인 특수한 환경 때문에 그러하다.슬프지만, 한국적인 의미의 풀스택 개발자가 존재하기는 하고 있다.프로그래머가 기획도 하면서, 서버 구입부터 설치까지 다진 행하고, DB도 일부 다룰 줄 알면서, 웹이나 클라이언트 프로그래밍의 일부도 할 줄 아는 매우 한국적인 풀스택 개발자가 존재하기는 한다. ( 근데, 그런 개발자들을 풀스택 개발자라고 표현하지 않는다. 거의 기업의 잡부(?)처럼 부려지는 경우다. )노가다 - dokata, 土方 -'막일'을 하는 노가다를 하는 잡부가 한국형 풀스택 개발자라고 표현하겠다.하지만, 그런 테크트리로 형성된 한국형 풀스택 개발자들의 실력은 매우 볼품이 없는 경우가 대부분이다. 필자가 공공 SI현장에서 만난 수많은 한국형 풀스택 개발자들이 그러했다.그들은 컴파일러가 만들어내는 에러 메시지에 대한 이해는 없지만, 10년 넘게 업무를 배운 경험과 대충 Linux나 Windows Server의 기본적인 경험과 온통 스파게티 식으로 구성되어진 소스로 만들어진 더 이상 시장이 커지지 않는 한계가 다다른 시장에서 소프트웨어 개발을 하고 있다.태생적으로 '잡부'가 될 수밖에 없는 작업현장에서 진정한 의미의 풀스택 개발자는 거의 형성되기 어렵다. 이런 한국형 풀스택 개발자들은 실제 하나하나의 스킬들을 확인하거나 체크해본다면 거의 대부분 매우 부족하거나, 특정 기능에만 적합한 일반적으로 쓸모없는 기술들이 대부분일 가능성이 크다고 단언하겠다.이런 경향은 게임업계도 비슷하다. 한국형 풀스택 게임 개발자는 게임 기획부터 스프라이트의 2D부터, 포토샵이나 일러스트레이트도 다룰 줄 알며, 3D Max로 3D도 만들고, Auto-Cad로 도면 데이터도 다루고, DirectX에 Unity도 다루며, 서버나 iOS의 앱까지 만들 줄 안다고 하지만, 정작 그 어느 하나도 제대로 못 다루는 경우가 태반이다.물론, 전부 다루는 사람이 없는 것은 아니다. 있기는 있지만... 그분들 굉장히 유명하거나 특정 기술하나 가 대가의 수준이기 때문에 자신이 가진 다른 기술들을 포함해서 자신을 '풀스택 개발자'라고 포장하지 않는다.하지만, 한국에서 유독 '개발자 구인 광고'를 보면 '풀스택 개발자'를 찾는 곳이 많은 이유는 무엇 때문일까?그것은, 무지한 경영진이나 무지한 비즈니스 모델, 무지한 리소스 활용이 난무하는 헬게이트의 주인들이나 그런 단어들을 주로 사용한다고 보면 된다.100% 단언컨대 한 사람의 개발자가 완벽한 풀스택 개발자라고 하더라도, 요구사항이 발생하고 유지보수업무가 존재하는 업무를 하드웨어적인 서버 관리부터 서버 API, 앱 프로그래밍, 웹 프로그래밍을 하기 위한 스킬은 알 수 있다고 하더라도 그 복잡하고 어지러운 업무량은 모두 다룰 수 없다.만일 그런 것이 가능하다고 이야기하는 경영진이 있거나 무지한 영업맨이 있다면 정신 차리라고 조언해주자. 심지어 그렇게 만들 수 있는 서비스는 존재하지 않고, 존재한다고 하더라도.. 어마어마한 '기술적 부채'가 존재하며, 대부분의 가장 비싼 개발자의 리소스를 그 기술적 부채를 해결하기 위해서 사용되고 있을 것이라고.물론, 그렇게 동작하는 허접하고 쓰레기 같은 코드라고 하더라도, 특정 조건과 특정 환경에서는 서비스가 가능한 경우가 한국에는 많이 존재한다. 경영진이나 영업, 기획은 고객들을 설득하고 고객들이 해당 제품과 서비스를 사용하기 위해서 일부를 희생할 것이다. 그리고, 분명 다른 영역에서 누수가 발생하거나 희생되고 있는 것을 잊지 말자.특히나 경쟁이 없는 제품이거나 더 이상 리소스를 투입하기 어려운 소프트웨어나 서비스의 경우에는 이런 형태로도 동작은 할 것이다. 하루에 한두 번 서버의 Oracle 커넥션을 모두 종료하는 유지보수 행위를 하는 전산실의 업무가 그러한 경우 때문에 벌어진다.중견기업이거나 제조업체, 병원의 전산실에 '야간 당직'업무가 있고, 시스템 모니터링에 민감하다면 대부분 '기술적 부채'를 안고 허접하게 만들어진 것뿐이라고 판단하면 된다.말 그대로, 헬조선의 헬게이트, 헬(!)한 업무환경으로 소프트웨어 개발자로서 비전이 없는 영역이라고 생각하면 된다. 하지만, 그럼에도 불구하고... 스타트업 경영진이나 대기업, 중소기업 경영진들은 '풀스택 개발자'의 환상에 대해서 이야기한다.'모든 것을 다 하는 개발자'가 있으면, 복잡한 커뮤니케이션 비용도 안 들고, 인건비도 적게 들것이라는 착각을 한다. 다만, 이 부분만큼은 명쾌하게 이야기하겠다. '그런 회사 가지 말라'는 것이다.'풀스택 개발자'를 구인하고 있는 회사는 개발자의 무덤이라는 것이다. 대부분 그러하다. 그 이유를 다음과 같이 정리하겠다. 그들이 '풀스택 개발자'를 뽑고 싶은 이유는 간단하다. '돈'이 없어서다. 그리고, 다음의 이유들이 있는 경우이다.하나. 경영진이 요구사항 정의도 제대로 못하므로 개발자와 의사소통에 자신이 없다. 그래서, 풀스택 개발자를 구하려고 한다. 한 명 하고만 이야기하면 될 것이라고 착각한다.둘. 개발자의 인력이 몇 명이 투입되는지에 대해서 평가나 정의가 불가능하므로, 풀스택 개발자를 구하려 한다.셋. 개발자가 두 명, 세명이 있다면 팀 리더도 있어야 하고, 관리자도 있어야 하므로 그 비용을 줄이기 위해서 풀스택 개발자가 필요하다. 한마디로, 돈이 없다.넷. 현대의 웹서비스들을 가동하기 위해서는 최소한의 비용과 인건비가 투여된다. 이 비용을 투자할 정도로 비즈니스 모델에 가치가 없기 때문에 여러 명의 개발자를 고용할 수 없기 때문에 풀스택 개발자를 구하려 한다.다섯. 풀스택 개발자라면 막연하게 다 해줄 것 같은 환상을 가진 경영진이 있는 경우이다. 슬프지만, 전설의 개발자인 '제프 딘'을 고용한다고 하더라도, 삽질을 할 것이다.물론, 스타트업에 초기에 합류하면서 CTO의 역할을 부여받았다면 조금은 입장이 달라진다. 정당한 지분을 받고, 미래의 가치에 대해서 나눌 수 있다면, 해당 롤을 가진 사람은 알아서 '풀스택 개발자'가 될 가능성이 크다. 그러므로, 매우 당연하지만 CTO는 풀스택 개발자에 근접되면 좋기는 할 것 같다. 하지만, 현실적으로는 그렇게 세팅하지 못하는 경우가 대부분이다.그리고, 냉정하게 초기 개발이나 Lab수준, 시리즈 A를 투자받기 전의 '소프트웨어'나 '서비스'는 대부분 비즈니스 모델을 증명하는 수준에서 끝내는 것이 바람직하다. 굳이, 환상의 개발자나 풀스택 개발자가 아니라도 비즈니스 모델을 검토하고 증명하는 모델을 구현하는 것은 충분하게 가능한 경우가 대부분이다.사용자가 수백만 명도 아니고, 구현된 기능들도 수백 가지가 아니며, 아직은 스파게티 식으로 구성하더라도 무방하기 때문이다. 해당 기술적 부채는 서비스의 증명 후에 해당 코드는 버려지고, 다시 개발팀을 제대로 세팅하여 구현하면 되기 때문이다. 더군다나, 대부분의 스타트업은 고속 개발을 해야 하기 때문에 '풀스택 개발'이 가능한 '웹'만으로는 모든 것을 커버하기 어려울 것이다.좌우지간, 간단하게 이야기해서 '풀스택 개발자'타령하는 구인광고를 보게 된다면, 그 회사나 팀은 무언가 잘못 생각하고 있거나, '돈'이 없는 조직이라고 생각하면 된다. 거기에, '기술'이나 '개발'에 대해서는 아무것도 모르는 사람이 사장이 존재하는 곳이라고 생각하면 된다.헬게이트에 입성하고픈 개발자라면 '풀스택 개발자'를 구인하는 곳으로 가면 된다. 엄청난 '일'의 쓰나미를 경험하고, 인성이 피폐해지는 것을 경험할 것이다.필자는 국내 최고의 개발자들을 여럿 알고 있다. 하지만, 그분들은 자신들을 '풀스택 개발자'라고 이야기하지 않는다. 그 용어가 의미하는 것 자체가 '날림'이라는 것을 너무도 잘 알고 있기 때문이다. 물론, 10년 20년을 소프트웨어 개발을 하다 보면 얻어지는 경험과 지식들이 있다.궁극적으로는 풀스택 개발자가 이야기하는 비슷한 테크트리를 대부분 알고는 있게 된다. 하지만, 경력 20년 되고 하나의 도메인에 익숙하며, 특정 분야의 대가인 분들을 스타트업에서 고용한다는 것은 거의 불가능에 가깝다. 간혹, 그런 분들이 직접 스타트업을 하는 것이라면 모를까 말이다.이제 이야기를 마무리하겠다.'웹 개발'을 하려면 '풀스택 개발'을 지향하는 것은 맞다. 하지만, 그것 자체가 완벽한 풀스택 개발을 의미하는 것이 아니라는 것을 생각하기 바란다. 그리고, 경영진이나 비개발자들에게도 다시 한번 이야기한다. '풀스택 개발자'를 구인하겠다는 환상을 버리기 바란다.그런 사람 없고, 있다고 하더라도... '풀스택 개발자'를 구인하겠다는 발상으로는 절대 초빙하거나 모실 수 없다는 것을... 깨몽 하기 바란다.물론, '풀스택 개발자'처럼 이것 저것 다하는 정성스럽고, 일에 애정 넘치는 개발자들을 제대로 대우해주시기를... 기술로써의 풀스택 개발자가 아니라, 그 기업이 원하는 일을 풀스택 개발자처럼 일할 뿐이다. 그들에 대한 애정 넘치는 말한마디... 경영진들에게 부탁드린다.갑자기, '풀스택 개발자'에 대한 환상에 대해서 정리하고 싶어서 한 번에 글을 써 내려갔다. ~.~

기업문화 엿볼 때, 더팀스

로그인

/