스토리 홈

인터뷰

피드

뉴스

조회수 7108

클라우드 서비스 이해하기 IaaS, PaaS, SaaS

클라우드 컴퓨팅은 인터넷으로 가상화 된 IT 리소스를 서비스로 제공하는 것을 의미합니다. 그리고 클라우드 컴퓨팅에서 가상화 하여 서비스로 제공하는 대상은 인프라스트럭쳐, 플랫폼, 소프트웨어입니다. AWS와 Azure가 대중화되면서 클라우드를 인프라스트럭쳐의 가상화 개념으로만 이해하기도 하지만 클라우드는 인프라스트럭쳐 뿐만이 아니라 플랫폼과 소프트까지 포함하는 온라인의 모든 영역을 다루는 꽤 광범위한 개념입니다. 그렇기 때문에 클라우드는 분야별 특성별로 나누어서 이해하는 것이 좋습니다. 클라우드 서비스의 종류는 아래와 같이 크게 3가지로 나눌 수 있습니다. Infrastructure as a Service (IaaS, 아이아스, 이에스)서비스로 제공되는 인프라스트럭처입니다. 개발사에 제공되는 물리적 자원을 가상화합니다. Platform as a Service (PaaS, 파스)서비스로 제공되는 플랫폼입니다. 개발사에 제공되는 플랫폼을 가상화합니다.Software as a Service (SaaS, 사스)서비스로 제공되는 소프트웨어입니다. 고객에게 제공되는 소프트웨어를 가상화합니다.클라우드 구분하여 알아보자IaaS: 서비스로 제공하는 인프라스트럭쳐클라우드 인프라스트럭처 서비스는 확장성이 높고 자동화된 컴퓨팅 리소스를 가상화하여 제공하는 것입니다. IaaS는 컴퓨팅, 네트워킹, 스토리지 및 기타 인프라스트럭쳐를 사용하기 위한 서비스이며 사용자는 필요할 때 마다 서비스를 통해 리소스를 구입할 수 있습니다.(IaaS는 한국에서 이아스 또는 아이아스로 부르며 영미권에서는 이에:스 또는 아이아스로 발음합니다.)PaaS: 서비스로 제공하는 플랫폼클라우드 플랫폼 서비스는 주로 응용 프로그램을 개발 할 때 필요한 플렛폼을 제공하는 것입니다. PaaS는 사용자 정의 응용 프로그램을 개발하고 사용할 수있는 개발자를위한 프레임워크를 제공합니다. 개발사는 미들웨어를 설치하지 않고도 미들웨어에서 제공하는 API를 사용하여 소프트웨어를 개발할 수 있습니다. SaaS : 서비스로 제공하는 소프트웨어클라우드 애플리케이션(소프트웨어) 서비스는 사용자에게 제공되는 소프트웨어를 가상화하여 제공하는 것입니다. SaaS는 타사 공급 업체가 관리하는 사용자에게 응용 프로그램을 제공하기 위해 인터넷을 사용합니다. 대부분의 SaaS 애플리케이션은 웹 브라우저를 통해 직접 실행되므로 클라이언트 측에서 다운로드 나 설치가 필요하지 않습니다.무엇을 제공하는가클라우드는 온라인의 광범위한 영역을 모두 다루는 광범위한 영역입니다. 클라우드 서비스들은 제공하는 범위에 따라 IaaS, PaaS, SaaS로 나뉘고 있으므로 각각의 클라우드 서비스가 제공하는 내역을 살펴보는 것은 클라우드를 이해하는 데 많은 도움이 됩니다.  IaaS: 물리적 자원 제공IaaS는 고객에게 서버, 네트웍, OS, 스토리지를 가상화하여 제공하고 관리합니다. IaaS는 가상화 된 물리적인 자산을 UI형태의 대시보드 또는 API로 제공합니다. IaaS의 고객들은 서버와 스토리지를 접근할 수 있지만 사실상 클라우드에 있는 가상 데이터 센터를 통해 리소스를 전달받는 형태입니다. IaaS는 기존의 데이터센터에서 제공받던 물리적인 자산을 완벽하게 가상화하여 제공하기 때문에 서버 사양의 변경 등 물리적 자산의 수정이 필요한 경우 기존의 방식에 비해 훨씬 빠른 대응이 가능합니다.IaaS의 제공업체는 서버, 하드 드라이브, 네트워킹, 가상화 및 스토리지를 관리하며 고객은 OS, 미들웨어, 애플리케이션 및 데이터와 같은 자원들을 관리해야 합니다. PaaS: 소프트웨어 개발을 돕는 플랫폼 제공PaaS는 고객에게 OS, 미들웨어, 런타임과 같은 소프트웨어 작성을위한 플랫폼을 가상화하여 제공하고 관리합니다. 이 가상화 된 플랫폼은 웹을 통해 제공되며 개발자는 운영 체제, 소프트웨어 업데이트, 저장소 또는 인프라에 대한 관리 없이 소프트웨어 개발에 집중할 수 있습니다.PaaS를 사용하면 기업에서는 특수 소프트웨어 구성 요소를 사용하여 PaaS에 내장 된 응용 프로그램을 설계하고 만들 수 있습니다. 이러한 응용 프로그램 또는 미들웨어는 특정 클라우드 특성을 채택 할 때 확장 가능하고 가용성이 높습니다.SaaS: 고객이 사용하는 소프트웨어 제공SaaS는 고객을 대신하여 소프트웨어와 데이터를 제공하고 관리합니다. 패키지 또는 On-Prems 방식이라고 하는 기존의 소프트웨어 전달 방식과 다르게 SaaS는 개별 컴퓨터에 응용 프로그램을 다운로드하고 설치할 필요가 없습니다. SaaS를 통해 서비스를 공급하는 업체는 데이터, 미들웨어, 서버 및 스토리지와 같은 모든 잠재적 인 기술적 문제를 관리하기 때문에 고객은 유지 보수 및 지원을 간소화 하면서 비지니스에 집중 할 수 있습니다.클라우드의 장점과 단점클라우드 인프라 서비스를 사용할 때의 장점과 클라우드 소프트웨어 서비스를 사용할 때의 장점은 다를 수 밖에 없습니다. 이에 3가지 클라우드 서비스의 장점과 단점을 각각 설명합니다. IaaS: 장점비용물리적 자원을 소비 형태로 사용하기 때문에 고정비가 들지 않습니다.속도물리적 자원을 즉시 소비할 수 있습니다.관리물리적  자원에 대한 관리를 논리적인 영역으로 대체할 수 있습니다.물리적 자원에 대한 자동화 된 배포가 가능합니다.물리적 자원에 대한 안정적인 운영을 벤더에 맞길 수 있습니다.물리적 자원에 대한 규모의 확장 또는 축소가 자유롭습니다.  PaaS: 장점비용필요한 플랫폼만 소비 형태로 사용하기 때문에 비용 부담을 덜 수 있습니다. 속도개발 및 배포 프로세스를 빠르게 확보할 수 있습니다.관리소프트웨어 유지 관리가 쉬워집니다.가상화 기술을 기반으로 구축되어 비즈니스가 변함에 따라 리소스를 쉽게 확장 또는 축소 할 수 있습니다.응용 프로그램의 개발, 테스트 및 배포를 지원하는 다양한 서비스를 제공합니다.수많은 사용자가 동일한 개발 응용 프로그램에 액세스 할 수 있습니다.PaaS: 단점특정 플랫폼 서비스에 종속될 수 있습니다.SaaS: 장점SaaS는 소프트웨어 설치, 관리 및 업그레이드와 같은 지루한 작업에 소요되는 시간과 비용을 크게 줄임으로써 직원과 회사에 많은 이점을 제공합니다. 따라서 기술 직원이 조직 내에서 보다 긴급하고 중요한 문제에 집중할 수 있습니다. 비용소프트웨어를 소비 형태로 사용하기 때문에 비용 부담을 덜 수 있습니다.속도즉시 사용이 가능합니다. 관리소프트웨어를 설치할 물리적 자원이 필요하지 않습니다.언제 어디서든 접근가능합니다.SaaS: 단점커스터마이징이 어렵습니다. 클라우드 언제 적용해야 하는가IaaS: 빠른 변화를 원한다면스타트업이나 중소기업에게 IaaS는 훌륭한 옵션이므로 하드웨어나 소프트웨어를 설치하는데 시간과 돈을 낭비 할 필요가 없습니다. IaaS는 응용 프로그램과 인프라를 완벽하게 제어하고자하는 대규모 조직에 유용하지만 실제로 소비되거나 필요로하는 것을 구매하려는 경우에만 유용합니다. 빠르게 성장하는 기업의 경우, IaaS는 요구 사항이 변화하고 발전함에 따라 특정 하드웨어 나 소프트웨어에 전념 할 필요가 없으므로 좋은 선택이 될 수 있습니다. 또한 필요에 따라 확장 또는 축소 할 수있는 많은 유연성이 있으므로 새로운 응용 프로그램에 어떤 요구가 필요한지 확실하지 않은 경우 도움이됩니다.PaaS: 신속한 개발을 원한다면PaaS를 이용하는 것이 유익하거나 필요한 경우가 많이 있습니다. 동일한 개발 프로젝트를 수행하는 여러 개발자가 있거나 다른 공급 업체도 포함해야하는 경우 PaaS는 전체 프로세스에 뛰어난 속도와 유연성을 제공 할 수 있습니다. PaaS는 사용자 정의 된 응용 프로그램을 만들려는 경우에도 유용합니다. 또한이 클라우드 서비스는 비용을 크게 절감 할 수 있으며 앱을 신속하게 개발하거나 배포하는 경우 발생하는 몇 가지 문제를 단순화 할 수 있습니다.SaaS: 비지니스에 집중하고 싶다면보안상 민감한 사항이 아니라면 모든 기업에게 SaaS는 훌륭한 옵션입니다. 또한 협업이 필요한 단기 프로젝트라면 SaaS 를 도입하는 것이 훨씬 유리합니다. 일반적으로 On-Prems 솔루션은 모바일 액세스를 지원하지 않기 때문에 모바일 액세스가 필요한 경우에도 SaaS를 사용하면 비용가 시간을 절약할 수 있습니다.클라우드 서비스 예클라우드는 적용된 분야별로 이해해야 합니다. 아래는 분야별 서비스 예입니다. IaaSAmazon Web Services (AWS), Microsoft Azure, DigitalOcean, Google Compute Engine (GCE)PaaSAWS Elastic Beanstalk, Windows Azure, Heroku, Google App EngineSaaSGoogle Apps, Dropbox, Salesforce, WhaTap마무리지금도 많은 기업의 임원분들이 클라우드의 적용 여부에 대해 고민을 하고 있으며 많은 스타트업들이 클라우드 기반의 서비스를 만들어 가고 있습니다. 회사에 클라우드를 도입해야 한다면 IaaS를 도입할 지, PaaS를 도입할 지 아니면 SaaS를 도입해야 하는지 알고 있어야 합니다. 그리고 자사의 서비스가 클라우드 기반의 서비스라면 고객에게 왜 도입해야 하는지 쉽게 설명할 수 있어야 합니다. 제가 다니는 와탭랩스(whatap.io)는 국내에서 드물게 SaaS 모니터링 서비스를 제공하고 있습니다. 2015년 1월에 시작한 서비스는 이제 만 4년을 달려가고 있습니다. 앞으로 한국에서 더 많은 클라우드 서비스들이 나왔으면 합니다. #와탭랩스 #개발자 #개발팀 #클라우드서비스 #서비스소개
조회수 2599

DevOps, 그 문화에 대해서...

개발 방법론이나 소프트웨어 개발과 관련된 은빛 탄환과도 같은 뉘앙스를 풍기는 접근법은 수없이 많았다. 이제는 최고의 화두로 떠오른 DevOps에 대해서 삐딱한 아키텍트의 생각으로 끄적거려 보자.주변에 DevOps를 지향하는 개발회사들이 많다. 그리고, DevOps를 무슨 완전체인 것처럼 소개하는 칼럼이나 글들도 많다. 그렇다면, DevOps의 정체는 무엇이며, 우리 회사, 우리 개발팀이나 운영팀은 그런 준비가 되어 있는 것인지에 대해서 생각해봐야 한다.사람들은 정말 DevOps가 어떤 의미이기에 사람들이 궁금해하고 있는 것일까?, 그리고. 과연 정말 내가 속한 조직과 팀이 DevOps를 지향할 수 있을까? DevOps에 대해서 삐딱한 아키텍트가 생각해보는 것이 이번 칼럼의 목적이다.DevOps는 모든 팀, 모든 회사, 모든 곳에 사용되는 만병통치약이 아니다.DevOps는 새로운 개념인가?Culture와 movement에 대해서 먼저 이야기를 시작하는 것이 맞을 듯하다. Culture는 어떤 한 국가나 집단의 문화와 같은 것을 의미한다. 그리고, movement는 어떤 움직임을 의미하는 것으로 여기서 사용되는 의미로는 사람들이 조직적으로 어떤 것을 벌리는 운동을 의미한다.일반적으로 문화란 어떤 옷, 음악, 형태를 가진 조형물 등을 포괄하는 것으로 무형, 유형의 것을 모두 포함하는 것이 문화라고 할 수 있다.그리고, 이러한 문화는 해당 문명과 조직, 사회의 모든 것을 표현하고 있는 것이며, 그것에 대비하여 문화라는 형태를 통해서 표현한다. 그래서, 소프트웨어 개발의 조직이나 기업에서도 자체적인 개발자 문화라는 것이 존재하고 있다. 이는, 일반적으로 각 회사별로 그 형태나 상황, 사람들의 모습, 역사적인 배경과 발전과정을 통하고, 어떤 사람들이 그 조직을 거쳐갔느냐에 따라서 많은 부분에 있어서, 개발자들의 문화는 매우 다르다고 할 수 있다.이처럼, 개발자 문화의 영향으로 소프트웨어 개발 방법론과 같은 무형의 것부터, 실제 산출물, 개발 소스와 같은 실제 눈에 보이는 것까지 개발자 문화란 눈에 보이는 것과 눈에 보이지 않는 것을 모두 포함한다고 할 수 있다.이런 개발자 문화를 언급하기 전에, 개발자들의 운동과 운동을 위한 선언과 같은 것에 대해서 알아보자. 그중에서도 movement를 먼저 살펴보자. 개발자들 커뮤니티와 개발자들의 요즘 철학적인 움직임은 ‘요구사항’ 변동에 대해서 이제 관대한 생각을 가지기 시작했다고 볼 수 있다.어차피, 요동치는 요구사항에 대해서 ‘완결된 요구사항’이 나올 것이라고 기대하지 않고, 요구사항은 사랑하는 애인의 변덕스러운 마음이라는 생각을 가지기 시작한 것이 DevOps의 원칙적인 기본 생각의 변화라고 먼저 이야기를 하고 싶다.이제, 개발자들은 요동치는 사람들의 마음이나 사회적인 변덕을 소프트웨어로 반영하는 것을 매우 당연스럽고 자연스러운 과정이라고 인지하기 시작한 것이라고 볼 수 있다. 이처럼 기본적으로 요구사항이 변덕스러운 기획자나 고객의 마음이 당연한 것이라고 생각한다면, 오히려, 더 행복한 개발이 가능하도록 기준이나 계획을 잡을 수 있는 것 아닐까?이것이 DevOps의 개념 전환의 기본적인 개념이라고 볼 수 있다. 오히려. 처음부터 요구사항이 잘 정해졌고, 더 이상 변하지 않을 것이라고 거짓말을 하고 있는 기획자와 고객들의 마음속에 변덕스러운 변화에 대해서 이제는 관대한 개발자가 되려는 마음을 가진 것이라고 생각할 수 있다고 소프트웨어 개발자들은 이해하기 시작한 것이다.DevOps는 이러한 마음가짐의 변화와 movement가 먼저 필요하다. 기존의 개발 방법론이나 개발 문화에서 정의하려고 하였던, 뜬구름 잡는 ‘요구사항 명세’는 어차피 불가능한 것이니까, 그 부분을 매우 관대하게 받아들이고자 변화의 마음을 가지게 된 것이라고 생각한다. 그래서, 실제 고객을 만족시키는 요리사의 마음에다가 고객의 마음을 좀 더 가까이에서 이야기를 나눌 수 있는 웨이터의 마음을 가지고 시작해야 한다고 설명하는 것이 더 현명할 수 있다.이러한 변화의 요소에는 다음과 같은 개발자들이 두려워하는 몇 가지 요소들에 대해서 이제는 정말 명확하게 이야기할 수 있기 때문에 DevOps는 가능하다고 생각한다.DevOps의 내면에 깔려 있는 소프트웨어 개발자들의 두려움을 먼저 알아야 DevOps의 기본적인 원칙에 좀 더 접근할 수 있다. 그것은 다음에 나열된 내용들은 일반적으로 소프트웨어 개발자들이 어려워하는 것들이다.1.  소프트웨어를 솔루션 형태의 디자인으로 만드는 것은 정말 어렵다개발자들은 솔루션을 만들고 그것을 디자인하고 설계, 구현한다는 것은 정말 어려운 것이라고 인지하기 시작하였다. 솔루션을 만들고, 어떤 문제를 해결한다는 것은 정말 험난하고 고된 일이라고 이미 인지하였다.2.  테스트 케이스를 작성한다는 것은 정말 어렵다수많은 사용자의 환경을 인지하고, 그것에 대응하는 완벽한 테스트는 불가능하다는 것 또한 개발자들은 인지하였다. 그리고, 그 테스트를 만들기 위해서 쥐어뜯었던 머리카락과 수많은 시간들에 대해서 완전이란 불가능하다는 것을 인지한 것이다.3.  개발 관련 문서작성 또한 매우 어려운 것이다개발자들 간에 상호 소통하기 위한 문서의 작성과 다이어그램과 모델을 만든다는 것 또한 정말 어려운 일이다. 또한, 그것을 표준이나 변화해가는 기술적인 요청과 반영 내용을 모두 담는다는 것은 정말 어려운 일이라고 인지하였다.4.  개발자 자신이 동의하지 않는 기능 구현을 허구 헌 날 해야 한다는 것간혹이 아니라, 상당 부분 발생하는 동의하지 않는, 쓸모없다고 생각하는 기능 구현에 매달리고 있는 현실에 대해서 이제는 약간은 무덤덤하게 대응할 수 있는 개발자들의 마음가짐은 정말 관해하게 변화하였다.5.  다른 사람이 작성한 코드를 다루는 것인 매우 당연하다는 것생각 이상으로 다른 사람의 코드와 프레임워크에 가두어진 상태로 프로그래밍을 해야 한다는 것에 대해서 학교에서는 가르치지 않았다는 것을 매우 두려워하고, 원망한다. 타인이 만들어 놓은 코드에 대해서 읽는 방법에 대해서 가르쳐 주지 않은 교수님이 원망스러울 뿐이다.6.  고객과 같이 비전문가와 커뮤니케이션해야 한다는 것비전문가와 소통하는 방법에 대해서 아무도 가르쳐주지 않았다. 사실은 그들과 소통하고 그들을 설득하는 것이 최선의 방법인데, 왜? 그들과 소통하는 방법은 학교에서 가르치고 있지 않는가? 혹시. 교수님들도 그것을 포기한 것 아닌가 하는 의심이 든다? 그러한 마음이 생기기 시작하였고, 과거의 방법론이나 공학에 대해서 의심을 하기 시작하였다.7.  업무 완료에 필요한 시간 예측은 필수가 되었다는 것기능 단위의 시간 예측과 일정에 대해서 ‘감’이 필요하다는 것은 실제 현업에 나와서야 만 가능하다는 것을 이야기해준 선배와 교수가 없었다는 점도 실제 현업의 초기에 어려움을 느끼는 부분들이다.8.  업무의 우선순위와 작업 할당이 애매하다는 것도대체 누가 결정하는가? 그 순서에 대해서 아무도 모른다.9.  이름을 만들고, 이름과 의미를 부여한다는 것은 매우 어렵다는 것그냥, X, Y, I, j, k를 부여하면 안 된다고 하는데, 생각 이상으로 붙여야 할 이름과 규칙들이 너무도 많다.이처럼, 소프트웨어 개발이 어려워지고 두려워지는 개발자들보다 더 어려운 것도 있다는 사실을 소프트웨어 개발자들은 경험으로 터득한다. 그것은 다음과 같은 상황이다. 그리고, 해결책도 없다는 점이다.위의 두려운 상황은 ‘단단한 마음’으로 이겨낼 수 있지만, 정마로, 다음의 상황들은 가능하면 소프트웨어 개발자들이 피하고 싶어 진다. 하지만, 우리가 지금 당장, 어제, 그리고 내일도 만날 수 있는 상황이다.1.  무능력한 경영진의 삽질2.  멍청한 동료 개발자의 어설픈 코드3.  특정 기술이 무슨 이유에서 쓰이는지도 모르고 강제로 배우거나 사용해야 하는 것4.  재미있어 시작한 개발일이 정말 반복적인 작업에 의해서 재미없어졌을 때5.  이제 쏟아지는 버그를 만나게 되었을 때하지만 가장 두려운 상황의 최고봉은 역시, ‘개발자는 고객과 대화를 나누는 것이 가장 두렵다’라는 것이 정답일 것이다. 그리고, 두려운 것은 동료와의 커뮤니케이션과 소통이다. 아마도, 이러한 고객과 동료들 사이에 있다면, 개발자는 당연한 것이지만. ‘개발하는 것이 행복하지 않다’라고 느끼는 것은 매우 당연할 것이다.여기서. DevOps는 출발한다.이렇게 ‘개발하지 않는 것이 불행한 개발일’을 하지 않게 하기 위한 일종의 movement라고 생각하면 된다.아이러니 하지만, 이러한 불행을 해결할 가장 좋은 방법은 행복의 최소 조건이나 개발자가 원하는 개발환경의 최소 조건을 만족하면 된다. 그것은 바로 자원(resource)이 충분한 환경을 만들면 가능하다. ‘돈’이 넉넉하면 부수적으로 대부분 따라오는 것들이다.하지만, 실제 개발일을 이런 환경에서 할 수 있는 방법은, ‘취미’로 개발일을 하는 경우에만 100% 만족할 수 있을 것이다. 취미는 최종 개발완룐일을 언제든지 뒤로 미룰 수 있기 때문에 ‘무한정의 리소스’를 투입할 수 있는 유일한 방법일 것이다.DevOps는 개발자가 행복하게 소프트웨어를 개발할 수 있는 환경을 만드는 것이 목표이다. 과거의 개발 방법론이나 문화, 운동들이 대부분 ‘소프트웨어 품질’을 위해서 개개인의 시간과 개개인의 능력 차이를 무시하고 진행되었다면, DevOps는 그 우선순위의 가장 높은 개념으로 ‘개발자의 행복’을 우선순위 위에 둔다.결론적으로 ‘개발자가 행복’하다면,자연스럽게 소프트웨어의 ‘품질’은 올라간다는 개념이다.물론, ‘행복’이 아니라, ‘시간 낭비’라는 단어와 ‘물자와 자원 낭비’라는 결코, 개발자는 행복하지 않을 것이다. 대부분의 개발자들은 ‘시간과 자원의 낭비’를 가장 싫어한다. DevOps는 기본적으로 개발자들을 신뢰해야 형성된다.DevOps는 소프트웨어 개발과 운영, 서비스의 효율적인 환경을 만들기 위해서 노력하는 개발 문화로써 간단하게 줄여서 설명하자면. ‘소비자, 사용자들의 서비스의 요구사항을 가장 빠르고 단순화하여 대응할 수 있는 신속한 서비스 지원 형태. 그리고, 그것을 지원하고 유지시켜주는 소프트웨어 개발 문화’라고 이야기할 수 있다. 그래서 Development / Operations를 합친 말이라고 본다.물론, 이렇게 만들어진 환경은 당연하지만 개발자를 ‘행복’하게 할 것이다.DevOps는 빠르고, 단순화, 신속함이라는 서비스 형태를 지향한다. 그리고, 그것을 지원하고 유지시켜주는 소프트웨어 개발 문화를 지향하고 있다. 실제, DevOps를 구현했다고 평가를 받고 있는 Netflix와 Flickr 등의 개발 성과물들은 정말 놀라울 정도로 효과적이다.1만 개 이상의 AWS 인스턴스를 불과 10여 명의 DevOps팀이 운영하고, 초당 4만 장 이상의 업로드 부하를 버티고. 자동화된 상태에서 하루 10회 이상의 배포본이 반영되는 매우 효과적인 개발과 운영이 접목된 환경을 만들어 낸다는 사실에 개발자 문화의 최신화 경향을 만들어 냈다.이렇든 엄청난 효율과 고속의 처리를 만들어 낸 것은 어떤 이유 때문에 가능한 것이었을까? 그리고, 이러한 DevOps의 성과물들은 일반적인 IT기업에서도 얻을 수 있는 환경일까? 가장 먼저 DevOps의 장점을 몇 가지 정리하고 넘어가자.DevOps의 장점을 서술한다면 다음의 3가지로 선언할 수 있다.1.  최소 인원으로의 개발과 운영이 가능한 환경을 지향한다2.  서비스의 배포와 운영이 자유롭고, 서비스가 매우 신속하고 빠르게 운영된다.3.  개발의 배포가 자동화되며, 그에 따라 고품질 서비스를 지향한다.자, 그렇다면. 가장 중요한 것은 이러한 DevOps는 내가 속한 조직에서 만들 수 있는 문화와 개발형 태인가? 대부분의 개발 조직에서는 이러한 것에 대해서 가장 궁금할 것이다. 결론부터 이야기하자면 DevOps가 가동되고, 개발 조직의 문화가 되려면 다음의 두 가지가 필수이다.1.  소프트웨어를 잘 만들어내는 개발자2.  잘 동작하도록 운영하는 운영자그리고, 이러한 두 가지의 조건을 만족시키기 위한 기본적인 환경적인 구성이 필요하다. 그것은 가장 먼저 소프트웨어 품질을 관리하는 제대로 된 품질관리 조직이 있어야 하며, 개발 조직이 빠르게 소프트웨어를 개발, 빌드, 테스트, 배포, 운영하게 할 수 있는 사이클을 신속하게 진행할 수 있는 개발환경을 갖추고 있어야 하고 업무 프로세스를 정의하고, 각 조직 간의 역할을 조율하는 프로세스들이 매우 자연스럽게 자동화되어지고 효율적으로 운영되고 있어야 한다. 그래야, ‘소프트웨어를 잘 만들어내는 개발자’와 ‘잘 동작하도록 운영하는 운용자’가 만들어지게 되고, 그 역할과 방법론이 효율적으로 가동되는 DevOps는 가동된다.DevOps의 원칙그렇다면, 이러한 DevOps을 세팅하고 구입하기 위해서 조직이 필요로 하는 비용적인 측면은 어떤 것들이 있을 것인지 가볍게 살펴보자. DevOps는 매우 큰 비용을 요구하는 것은 아니다. 다만, 그 비용이라는 것이 전반적으로 투자된 비용을 의미하는 것이지, 단기간에 투입되어 얻어지는 효과는 아니라는 점에 주목해야 한다.가장 먼저, 개발자들은 기능 개발과 결함의 수정 등의 변화를 얼마나 자주 일으키고 있는지 체크하고 이를 관리하거나, 관리할 수 있는 포인트를 개발자들에게 제공하고 있는가? 하는 측면이 가장 먼저라고 할 수 있다.두 번째는 운영자가 실제 서비스의 안전성과 성능의 향상을 위하여 취해지는 시스템 아키텍처 적인 변화에 대해서 얼마나 두려워하고 있으며, 이를 얼마나 수치화하여 관리하고있는지, 그리고. 그 선택을 할 수 있는지가 DevOps에 가장 중요한 측면이기도 하다.세 번째는 이러한 개발집단과 운영 집단에서 선택과 운영, 개발의 우선순위 등을 고르고 선택할 수 있는 ‘권한과 책임’이 주어지고 있느냐 하는 점이다.네 번째는 큰 조직, 큰 기업, 큰 프로세스의 운영 시에는 이러한 DevOps와 같은 콘셉트는 운영하기 매우 어렵다. 그러므로, 개발과 운영환경의 구분과 절차. 권한과 릴리즈 절차와 규칙 등에 대해서 얼마나 세분화하고 있는지, 그리고. 일에 대해서 얼마나 작은 규모로 산정하고 산출하고 있는지에 대해서도 정의되어야 한다.아쉽게도 DevOps를 구현하고 싶지만, 착각하고 있는 개발자 조직의 경우의 사례를 살펴보면 다음과 같은 실제 일들이 벌어진다고 볼 수 있다.1.  사용하지도 않는 기능을 도출하고, 이를 위하여 시간과 비용을 낭비하고 있는 경우2.  개발 후 버그를 찾기 위해서 테스트를 하고 있다고 프로세스를 정형화하는 일이다. 실제 DevOps를 지향하는 개발 조직의 경우에는 내부적으로 개발 단계에서 충분하게 품질을 고려하여 디자인되고 개발을 진행하려 노력한다.3.  예측을 위한 투자를 많이 하고 있는가?라는 질문에 소극적인 경우이다. 대부분은 그나마. 사건 발생 시에 빠르게 대처할 수 있는 환경이라고 가능한 구축하라고 권하는 경우가 태반이다.4.  소프트웨어 공학을 잘 못 받아들여 정말 중요한 지표에 집중해야 하는데, 너무 많은 지표를 도출하기 위하여 삽질을 하는 경우가 대표적인 착각되어진 개발 조직의 경우라고 볼 수 있다.DevOps을 좁게 보는 진정한 장점DevOps는 ‘잦은 배포’를 수행하면서, 잦은 릴리즈를 수행하고, 잦은 릴리즈를 통해서 위험을 하향 균등화 시키는 것이 주목적이라고 작게 정의할 수 있기도 하다. 그래서, 애자일과도 아주 잘 맞는다. TimeBox를 2주로 맞추거나 1.5주로 맞추고 배포를 진행하는 경우도 빈번하게 필자는 상황을 참조한다.하지만, 이러한 DevOps를 구현하는 데 있어서는 다음과 같은 최소한의 필요충분 요건이 필요하다.1.  잦은 개발과 버그 픽스가 가능한 개발자 환경을 구현하라2.  공유 소스 코드 버전 관리시스템도 없다면, 이러한 환경을 구성한 다는 것은 거의 불가능하지 않겠는가?3.  빌드, 테스트, 배포 단계를 자동화하기 위하여 얼마나 노력하고 있는가?4.  수작업의 실수와 반복을 어떻게 최소화하기 위해서 노력하는가?5.  개발 조직과 운영조직의 협업을 위하여 빈번한 커뮤니케이션 소통 비용을 지불하고 있는가?이러한 최소한의 필요충분조건을 만족한다면, 개발 조직은 다음과 같은 최소한의 목표를 이루기 위해서 준비를 한다고 볼 수 있다.1.  개발과 품질관리, 운영을 교집합적으로 운영하기 위한 방법을 터득하였고, 그것을 개발 조직에 내재화하기 위하여 노력 중이다.2.  신뢰성, 보안성, 개발과 배포 사이클을 보다 더 빠르게 개선하기 위해서 배포, 테스트, 세부 기능 개발, 릴리즈 관리를 목표로 조직이 운영 중이다.3.  툴이 아니라, 문화와 일하는 방법에 대한 경험을 더 우선적으로 하고 있다.DevOps의 가장 중요한 원칙위에서 이야기한 필요조건과 환경에 대한 것이 준비가 된다면, 다음과 같은 DevOps의 원칙을 실현할 준비가 된 것이다. 그 원칙을 살펴보자1.  주요 기능에 집중하고 있는가?2.  품질을 내재화하기 위하여 노력하고 있는가?3.  개발에 필요한 지식을 창출하기 위해서 과학적으로 접근하고 있는가?4.  완벽한 명세서를 만들기 위한 비용보다, 명쾌한 협업을 중시하여 커뮤니케이션 비용을 지출하고 있는가?5.  가능한 한 빨리 개발하기 위해서 시도하고 있는가?6.  사람을 존중하는 개발자 문화를 만들고 있는가?7.  최적화를 위한 방안을 고안하는데 회의나 토론을 아까워하지 않고 있으며, 그것에 대해서 투자를 아낌없이 하고 있는가?이러한 과정은 DevOps에 대해서 실현하기 위해서 노력하는 행위와 절차라고 볼 수 있다. 가능하다면 DevOps의 성숙도 모델에 대한 설명과 실제 우리가 그러한 모델을 통해서 개발 조직에 DevOps의 사상을 표현할 수 있는지에 대해서 설명할 기회가 곧 다가올 것으로 기대해본다.물론, 기술적 부채에 대해서도 한 번 거론한 다음에 그 이야기를 이야기하도록 하겠다.DevOps는 애자일과 마찬가지로 선언이고 문화에 해당한다. 즐거운 개발을 지향하고 있다면 소프트웨어 품질은 매우 당연하게 좋아진다. 행복한 개발자가 훌륭한 소프트웨어를 만든다는 것을 잊지 말자. 그것이 DevOps의 시작이며, 출발이다.
조회수 770

HBase Meetup - 비트윈에서 HBase를 사용하는 방법 - VCNC Engineering Blog

비트윈에서는 서비스 초기부터 HBase를 주요 데이터베이스로 사용하였으며 사용자 로그를 분석하는 데에도 HBase를 사용하고 있습니다. 지난 주 금요일(11월 15일)에 HBase를 만든 Michael Stack 씨가 한국을 방문하게 되어 ZDNet 송경석 팀장님의 주최 하에 HBase Meetup Seoul 모임을 가졌습니다. 그 자리에서 VCNC에서 비트윈을 운영하면서 HBase를 사용했던 경험들이나 HBase 트랜잭션 라이브러리인 Haeinsa에 대해 간단히 소개해 드리는 발표 기회를 가질 수 있었습니다. 이 글에서 발표한 내용에 대해 간단히 소개하고자 합니다.비트윈 서비스에 HBase를 사용하는 이유비트윈에서 가장 많이 사용되는 기능 중 하나가 채팅이며, 채팅은 상대적으로 복잡한 데이터 구조나 연산이 필요하지 않기 때문에 HBase 의 단순한 schema 구조가 큰 문제가 되지 않습니다. 특히 쓰기 연산이 다른 기능보다 많이 일어나기 때문에 높은 쓰기 연산 성능이 필요합니다. 그래서 메세징이 중심이 되는 서비스는 높은 확장성(Scalability)과 쓰기 성능을 가진 HBase가 유리하며 비슷한 이유로 라인이나 페이스북 메신저에서도 HBase를 사용하는 것이라고 짐작할 수 있습니다.로그 분석에도 HBase를 사용합니다비트윈은 사용자 로그 분석을 통해서 좀 더 나은 비트윈이 되기 위해서 노력하고 있습니다. 비트윈 사용자가 남기는 로그의 양이 하루에 3억건이 넘기 때문에 RDBMS에 저장하여 쿼리로 분석하기는 힘듭니다. 그래서 로그 분석을 위해 분산 데이터 처리 프레임워크인 Hadoop MapReduce를 이용하며 로그들은 MapReduce와 호환성이 좋은 HBase에 저장하고 있습니다. 또한 이렇게 MapReduce 작업들을 통해 정제된 분석 결과를 MySQL에 저장한 후에 다양한 쿼리와 시각화 도구들로 custom dashboard를 만들어 운영하고 있습니다. 이를 바탕으로 저희 Biz development팀(사업개발팀)이나 Data-driven팀(데이터 분석팀)이 손쉽게 insight를 얻어낼 수 있도록 돕고 있습니다.HBase를 사용하면서 삽질 했던 경험HBase를 사용하면서 처음에는 잘못 사용하고 있었던 점이 많았고 차근차근 고쳐나갔습니다. Region Split과 Major Compaction을 수동으로 직접 하는 등 다양한 최적화를 통해 처음보다 훨씬 잘 쓰고 있습니다. HBase 설정 최적화에 대한 이야기는 이전에 올렸던 블로그 글에서도 간단히 소개한 적이 있으니 확인해보시기 바랍니다.HBase 트랜잭션 라이브러리 해인사Haeinsa는 HBase에서 Multi-Row 트랜잭션을 제공하기 위한 라이브러리입니다. 오픈소스로 공개되어 있으며 Deview에서도 발표를 했었습니다. HBase에 아무런 변형도 가하지 않았기 때문에 기존에 사용하던 HBase 클러스터에 쉽게 적용할 수 있습니다. 비트윈에 실제로 적용되어 하루 3억 건 이상의 트랜잭션을 처리하고 있으며 다른 많은 NoSQL 기반 트랜잭션 라이브러리보다 높은 확장성과 좋은 성능을 가지고 있습니다.발표에서 사용했던 슬라이드를 첨부하였으니 도움이 되었으면 합니다.<iframe class="speakerdeck-iframe" frameborder="0" src="//speakerdeck.com/player/2b8092b02ff90131ef414aa7d272d735?" allowfullscreen="true" mozallowfullscreen="true" webkitallowfullscreen="true" style="border: 0px; background: padding-box rgba(0, 0, 0, 0.1); margin: 0px; padding: 0px; border-radius: 6px; box-shadow: rgba(0, 0, 0, 0.2) 0px 5px 40px; width: 750px; height: 563px;">
조회수 908

할아버지/할머니도 코딩을 해야 하는 이유

대부분의 교육은 초, 중, 고등학생이나 대학생 등 주로 젊은 층을 위주로 진행되고 있습니다. 프로그래밍 교육도 마찬가지로, 현재 10대에서 30대인 주로 젊은 층의 학생과 직장인들을 대상으로 교육이 서서히 일어나고 있습니다. 하지만 높아진 평균 수명으로 노인층이 급격히 늘어나고, 빠르게 변화하는 산업 아래 노인층의 재교육을 통한 지속적인 사회 활동이 요구 되는 시대가 되었습니다.2016년 한국의 인구분포도. 42–57세의 중장년층이 15–24의 청년층보다, 청년층이 0–9세의 유아층보다 월등히 많습니다. Wikipedia위 그래프에서 보이는 것처럼 이렇게 사회의 전체적인 평균 연령의 급격한 상승이 예고되어있음에도 불구하고, 고등학교나 대학까지의 일회성 교육이 아닌 전 연령층을 대상으로 한 지속적인 교육 제공은 아직 보편화 되어 있지 않습니다. 노인층 대상으로 진행되는 교육은 미미하며, 특히나 젊은층도 배우기 어려운 코딩 교육은 노인층에게는 교육이 불가능하거나 전혀 필요하지 않다고 여겨지고 있습니다.UC San Diego 대학의 Phillip Guo 교수Phillip Guo 교수는 HCI (사람-컴퓨터 인터랙션) 및 온라인/컴퓨터 교육 분야에서 명성이 높은 연구자입니다. Guo 교수는 처음으로 노인층에 대한 코딩 교육 연구를 진행하여 온라인에서 프로그래밍을 배운 52개국 60~80대 504명으로부터 다양한 설문조사와 심층조사를 진행한 결과를 CHI 국제 학술회에 출간했습니다. 본 연구 설명과 함께 엘리스에서 생각하는 로드맵을 소개합니다.연구본 연구는 http://www.pythontutor.com 웹사이트에서 실시된 온라인 코딩 교육 설문조사에 응한 504명의 60~85세 학생에 대한 심층 분석과 인터뷰로 이루어져있습니다. 이들이 코딩을 배우는 목적은 세가지 주요 요점으로 종합됩니다.첫째는 코딩을 배움으로서 노화되는 뇌를 자극하기 위함이고, 둘째로 젊은 시절 놓쳤던 새로운 기회를 잡기 위함, 그리고 마지막으로 어린 가족 구성원들과 소통하기 위함이었습니다.혼자 공부하는 방식의 교육은 온라인에서 특히 더 높은 이탈율을 보입니다.이들이 프로그래밍을 배우는 원동력은 교육을 통한 취업과 같은 정확히 정해진 목표보다는, 스스로의 동기부여 및 젊은층과의 소통을 위한 이유가 더 컸습니다. 코딩을 배우는 과정 중에 가장 힘든 세가지는 감퇴하는 인지력, 질문에 대답해 줄 수 있는 강사나 조교 혹은 학생이 없었고, 매번 변화하는 SW를 따라가기 어려움이 있었습니다. 첫번째를 제외한 나머지 어려움은 다른 연령층에서도 겪은 어려움이었습니다.마치며Philip Guo 교수의 논문에서 알 수 있는 것은 노인층이 노화하면서 겪을 수밖에 없는 배움의 어려움과 더불어, 현재 교육 시스템이 노인층을 전혀 고려하지 않고 있다는 것입니다. 이것은 노인층 대상의 교육을 더욱 어렵게 합니다.논문에서는 노인층에게 적합한 교육 시스템이 만들어지거나 제공된다면, 이들이 산업에 바로 투여될 수 있는 능력을 갖추기는 어려울 수도 있으나 프로그래밍 교육을 할 수 있는 선생님으로 활동할 수 있다고 서술하고 있습니다. 이를 활용하면 현재 현저히 부족한 SW 교육자 수로 어려움을 겪고 있는 공교육에 도움이 될 수 있습니다.엘리스에서는 라이브 교육 방송 진행, 헬프 센터 조교 도우미 등 학생들에게 좋은 교육을 제공하기 위해 부단히 노력하는 다양한 연령층의 온라인 조교님들이 계십니다. 언젠가는 60~80대 조교님이 활동하실 수 있다고 믿고 있습니다. 이러한 믿음을 주신 중2 아들을 둔 한 어머니의 피드백을 참조합니다. (엘리스 기초 자바 과정에서 최상위 점수를 받으셨습니다.)저는 전공도 인문학쪽이고 수학 싫어서 문과갔던 문과생인지라, 코딩처럼 논리력 요구하는 수업 따라가기나 할까 큰 기대없이 시작했었습니다.수업 초반에는 마냥 어리둥절했고, 시키는대로 따라하면 다 되었기 때문에 ‘어라 쉽잖아?’ 라고 느꼈습니다. 하지만 중반부 넘어가면서…클래스, 메소드라는 개념이 낯설기도 했고, 각종 연산자의 적용이나 변수들을 식에 적용시키는 다양한 패턴들이 적응이 잘 안되었어요. 반복문의 순서나 마침표,세미콜론, 콜론을 기억하지 못해서 다시 되돌아와서 확인한 것만도 수 십번이었습니다.다른 분들은 마치 초급 과정을 어디서 마스터 하고 온 것처럼 잘 따라가시는데, 저는 매 시간마다 헤매고 오류나고…하지만 똑똑한 것 보다 꾸준한 것이 더 낫다고… ‘머리가 안따라가면 더 오래 공부하면 되겠지’ 하고 다시 보고, 다시 풀고, 계속 질문하고그러나보니 어느 순간 이해가 가는 개념들, 저절로 외워지는 패턴들이 조금씩 늘어났어요.특히 실시간 강의라서 피드백을 받을 수 있고, 조교님이나 강사님들께 질문을 편하게 할 수 있는 시스템이 정말 좋았습니다. 비주얼 좋은 두 분이 수업을 진행해 주신 것도 좋았구요. 반응 좋은 우리 반 수강생들도 참 좋았습니다.저녁 설거지 해 두고 (때로는 저녁상을 치우기 바쁘게) 컴퓨터 앞에 앉아서 8주간 공부한 시간들이 저한테는 정말 소중한 시간이었습니다. 이렇게 집안 일 하고, 애들 챙기면서도 공부할 수 있고, 배울 수 있다는 것이 너무 좋습니다. 좋은 강의 열어주셔서 고맙습니다. ^^*p.s.수업 중에 어떤 분이 자바 알고리즘 강의 열어달라고 하시던데, 알고리즘이 뭔지 물어보고 싶었는데 못 물어봤네요 ㅋ#엘리스 #코딩교육 #교육기업 #기업문화 #조직문화 #서비스소개
조회수 1460

스푼 라디오 안드로이드 개발자 Yong을 소개합니다!

 정말 좋아하는 일을 하면, 주말 또는 정해 놓고 쉬는 날이 없습니다. 어디선가 호탕한 웃음소리가 나면 백발백중 'Yong'의 웃음소리라는 것을 안다. 듣는 다른 이 또한 웃게 만드는 매력적인 웃음의 소유자 안드로이드 개발자이자 클라이언트팀의 리더 용을 지금 소개합니다.호탕한 웃음의 원천이요?"저는 기본적으로 일을 즐겁게 하자 라는 생각으로 일을 합니다. 함께 웃으면서 일하면 서로 함께 기분이 좋아지잖아요! 그게 저의 호탕한 웃음의 원천인 것 같습니다. 다른 분들께 매력적으로 보인다는 것은 처음 알았네요 :) 그리고 저는 원래 웃음이 많은 사람입니다"듣고 싶은 당신의 스푼 라이프클라이언트팀이 궁금합니다."클라이언트 팀은 세 파트로 나뉘어있습니다. IOS, AOS 그리고 Web입니다. 저희 팀은 다른 많은 부서들과 긴밀한 협업을 통해 제품에 대한 틀을 정의하고 프로그래밍이라는 구현 작업을 통해 제품을 만들어 사용자들에게 가치를 전달하고 있습니다. 저희는 사용자들에게 제품을 이용하는 편의성을 제공하며 사용자 상호 간의 소통의 창구적인 역할을 하게 됩니다. 또한, 사용자들의 다양한 행위를 통해 스푼은 사용자들에게 재미, 감동, 그 이상의 의미를 전달합니다. 결과적으로 사용자들이 인식하고 보고 느끼는 모든 것이자 스푼의 가치를 전달하는 최종적인 결과물이라고 할 수 있겠습니다. 그리고 저는 현재 팀에서 클라이언트 팀 리더이자 안드로이드 개발을 담당하고 있습니다."개발자 그리고 팀 리더가 되기까지"저는 원래 전공이 하드웨어 분야였습니다. 사실 원대한 꿈은 없었지만 제 스스로가 이공계에 마땅한 사람이라는 것은 알 고 있었어요. 하드웨어와 소프트웨어 가리지 않고 무언가를 개발하는 것을 좋아한다는 걸 알았거든요. 제가 진로를 선택했을 땐 안드로이드 개발이 구현되기 전이었어요. 그래서 서버랑 클라이언트(윈도우)이 둘 중에 진로를 선택해야 했었고 첫 회사에서 UI 쪽으로 업무를 시작하게 되었어요. 사실 애초 UX/UI에 관심이 많았고 적성에 맞다는 걸 느꼈어요. 제가 만든 제품을 누군가가 사용하는 것을 육안으로 보고 싶었거든요. 개발은 정말 보람된 일이자 저에게 자부심이기도 합니다.개발자로서 코딩만 하다가 팀 리더가 되어보니, 리더가 정말 힘든 일이라는 것을 알았어요. 어쩌면 코딩보다 더 어려운 일인 것 같아요. 상대방을 이해하고, 또 이해시키고 공감해야 하니까요. 제가 일을 하면서 가장 행복할 때는, 함께 한다는 느낌을 받을 때인 것 같습니다. 예를 들어서 아이디어 회의를 할 때 모두가 같은 마음으로 함께 이루어간다고 생각이 들 때가 가장 뿌듯하더라고요."함께 일하고 싶은 사람 저는 솔직한 사람을 좋아합니다. 본인의 생각을 진솔하게 이야기하고, 공감대를 잘 형성할 수 있는 사람이요. 결국 일은 사람과 사람이 함께 하니까요.  알고 싶은 Yong의 이야기나를 표현하는 한마디 - '바람'저는 자유로운 사람이 되고 싶어요. 바람처럼 유유자적하면서, 무언가 하고 싶은 것이 있을 때 자유롭게 즐길 수 있으며, 구속받지 않는 삶을 살고 싶습니다.나만의 스트레스 해소법"제가 게임을 정말 좋아해요. 거의 모든 온라인 게임은 다 했던 것 같아요. 와우, 블리자드, 배그, 오버워치 등등 정말 많이 했는데 사실 지금은 잘 안 하는 것 같아요. 예전에 마케팅팀 테드랑 주말마다 함께 온라인에서 만나서 게임을 했었는데 테드가 결혼하고 저도 아이와 함께 시간을 보내다 보니 점점 게임을 안 하게 되더라고요. 게임을 왜 좋아하냐고요? 일단 재미있잖아요! 그리고 스트레스 푸는데 아주 좋아요. 게임에 몰두하고 나면 잡생각이 없어지거든요. 게임도 개발과 비슷해요. 온전히 집중해서 하지 않으면 모든 게 틀어지거든요. 게임은 집중력 향상에도 굉장히 좋습니다!"개발은 '예술'과 같아요 "주말에 집에서 일하는 이유요? 일이 많아서나 해야 해서 하는 것은 아니에요. 단지 자유롭게 하고 싶을 때 하는 편입니다. 좋아하고 즐거운 일이니까요! 개발은 하나의 예술이라고 생각합니다. 화가가 요일을 정해놓고 그림을 그리지 않는 것처럼 개발자도 똑같아요. 좋아하는 일을 한다면 그건 일이 아니라고 생각이 들거든요. 저에게 개발은 그렇습니다. 제게 개발은 재미있는 하나의 예술과 같아요"Yong은1. 사진, 그림, 음악 등 예술에 관심이 아주 많습니다!(피아노 독주회, 전시회에 종종 가신다고 합니다. 특히나 클래식과 재즈를 좋아합니다)2. 가리는 음식은 없지만, 한식류를 좋아합니다!팀원들이 Yong을 한마디로 표현한다면?Edward Jung 曰: 웃지만 무서운 관리자 - “언제나 웃음으로 대하시지만 내가 웃는 게 웃는 게 아니야라고 느껴짐…”Julia Na 曰: 행복한 리더 - "호탕한 웃음소리가 트레이드 마크. '행복하세요'라고 말하며 팀원들에게 긍정기운을 전파합니다."Michael Chung 曰: 따뜻한 마음을 가진 개발자 - “팀원들 하나하나 직접 챙기기 때문”Roy Choi 曰: 온화한 아버지 - "개발 실력은 기본, 팀원들을 챙기며 일정 조율 및 커뮤니케이션 능력까지 겸비한 그는 클라이언트팀의 아버지"Raymond Hong 曰: 허허실실 웃음 가득 리더 - "꼼꼼히 팀원과 프로젝트를 챙기기 때문"
조회수 7461

협업을 위한 심볼 구조화, 플러그인으로똑똑하게 스케치 사용하기

Sketch App 도입은 Zeplin을 활용하여 효율적으로 개발자와 소통하기 위해 시작되었습니다. 도입하는 과정에서 안드로이드 UI를 담당하게 되었고, 심볼의 구조화와 적절한 플러그인의 사용을 통한 작업의 효율, 가지고 있던 문제점들을 해결하는 것에 중점을 뒀습니다.기존 작업방식과 문제점디자인 작업 패턴디자인 작업 패턴을 분석했을 때, 기존의 PSD 파일들에서 컴포넌트를 가져와 재조합하는 경우가 가장 많았습니다. 디자이너간 협업 시 최근 릴리즈된 디자인이 맞는지, 요소간 간격 같은 디테일한 부분에 대해 묻는 경우가 많았으며, 개발자와의 협업 시 지칭하는 용어가 달라서 생기는 커뮤니케이션 미스가 종종 발생했습니다. 구조화에 앞서, 분석하고 내린 작업의 키포인트는 다음과 같습니다.1. 최근 릴리즈된 디자인이 영향을 받는 모든 화면에 동기화되어야 합니다.2. 개발자와의 협업 시, 심볼의 네이밍을 기준으로 커뮤니케이션합니다.3. 디자이너가 사용 시, 시안 작업을 빠르고 편하게 할 수 있어야 합니다.4. 컴포넌트, 디자인 요소들이 서로 유기적으로 연결되어있어야 합니다.5. 시안 작업 시, 유저 데이터를 사용하기 편리해야 합니다.심볼 생성 기준심볼로 만들어야 하는 경우는 다음과 같이 정의했습니다.1. 다양한 상태값을 가진 요소2. 같은 크기의 영역 안에서 다양한 형태를 가진 요소3. GNB처럼 자주 쓰이는 컴포넌트4. 카드 형태의 디자인5. 아이콘Overrides 예시심볼 폴더 구조심볼 폴더 구조디자이너들이 사용하기 때문에 첫 번째 분류는 보이는 형태, 디자이너끼리 자주 사용하는 용어로 합니다. 두 번째 분류는 원활한 커뮤니케이션을 위해 목적 혹은 개발자분들이 사용하는 용어로 지정하며, 세 번째 분류까지 해야하는 경우 2 Column, 3 Column(스타일쉐어 내부에선 Grid라는 용어를 주로 사용합니다.)과 같은 다양한 변화에 대한 것이므로, 똑같이 커뮤니케이션에 용이하게 판단하여 결정합니다.Elements 폴더는 심볼을 구성하는 심볼들이 있는 폴더입니다. 직접 심볼 폴더트리를 타고 들어가 생성하는 경우는 없으므로, 분류에 더 목적을 두고 폴더 구조가 복잡해지는 것을 감수했습니다.그리고 Overrides를 대비하여 이해하기 쉬운 용어로 작성합니다.심볼의 활용자주 쓰는 컬러들을 심볼화하고 마스크 기능을 활용하면, 아이콘들의 색상을 더 편하게 변경할 수 있습니다. 추후에 브랜드 컬러, 그레이스케일이 변경되는 경우에도 컬러 심볼만 수정하면 큰 문제없이 바로 적용할 수 있습니다.플러그인의 활용작업에 주로 사용하는 플러그인은 Auto Layout, Button, Clipboard Fill입니다.Auto Layout의 Stacked Group 기능으로 심볼이나 요소들을 유기적으로 연결시킵니다. Button은 Tag, List item 등에 사용하며 짜잘한 수정작업을 줄여 시안작업에 더 집중할 수 있도록 합니다. Clipboard Fill은 스타일쉐어 특성때문에 활용 가치가 높은 플러그인입니다. 유저 이미지, 게시글의 사진을 스타일쉐어 웹에서 복사하여 시안을 작업할 때 활용합니다. 실 데이터를 사용하기 때문에 설득력이 높아지고, 조금 더 객관적으로 작업할 수 있다는 장점이 있습니다.플러그인 사용 Gif페이지 구성모든 화면이 모여있는 Master_Android.sketch 파일에서는 페이지로 분류합니다. 이 분류와 구글 드라이브 폴더 구조를 일치시켜 빠르게 파일을 찾을 수 있도록 하였으며, 탐색이 용이하기때문에 새로운 디자이너가 오더라도 쉽게 파악가능합니다.디자인 작업 프로세스시안 작업 시, 실제 데이터를 사용하여 설득력을 높이는 것을 가장 큰 목표로 합니다.1. 디자인 작업 전, 사용할 심볼들을 모두 Detatch합니다.2. 문제해결에 맞게 컴포넌트를 디자인합니다.3. 플러그인을 활용하여 웹에서 실제 데이터들을 가져와 채웁니다.4. 시안 작업이 끝난 후, 정리하여 Zeplin으로 내보냅니다.5. 심볼을 만들어야 한다면, Master파일 Symbols에 업데이트합니다.6. Master파일에 심볼을 사용하여 화면을 정리합니다.이 과정에서 생기는 큰 문제점은 모든 작업자가 심볼 구조화에 같은 기준을 가지고 있어야 한다는 점입니다. 생성 여부, 심볼 이름을 정하는 규칙 등에 대해 문서화하여 공유해도 익숙하지 않기때문에 실수가 생기기 마련입니다. 그래서 안정화되기까지 첫 구조를 잡았던 담당자가 정기적으로 확인하여, 다듬어나가는 것으로 결정했습니다. 비효율적인 방법일 수도 있지만, 동시에 구조화를 더 탄탄하게 하는 기회였습니다.잘가 포토샵.Sketch App의 업데이트에 따라 해결할 수 있는 방법이 달라지는 경우가 많았습니다. 그에 대비하여 의존성을 줄여나가는 고민을 계속하고 있으며 UI 뿐만 아니라, 작업툴 사용에 제약이 없다는 조건 하에 Overrides 기능과, Clipboard Fill, Auto Layout을 활용하여 다양한 템플릿 작업에도 사용할 수 있다고 생각합니다.#스타일쉐어 #개발팀 #개발자 #개발환경 #인사이트
조회수 2554

적절한 이벤트 데이터(Event Data) 추출하기

이번 칼럼에서는 프로세스 마이닝의 Input 요소인 이벤트 데이터에 대해 살펴보겠습니다. 이벤트 로그를 어떻게 얻고 프로세스 마이닝 분석이 가능하도록 어떻게 전처리를 할까요? 이벤트 로그는 SAP와 같은 ERP 시스템, 미들웨어, 금융 정보시스템, 사물인터넷 데이터 등 다양한 정보 소스에서 얻을 수 있습니다. 정보 소스는 어디에나 있으며 대부분 수많은 DB 시스템으로 구성되어 있기 때문에 문제는 어떤 데이터를 추출하고 어떻게 프로세스 마이닝에서 사용할 수 있는 이벤트 로그로 변환하느냐는 방법입니다. 아래 그림은 프로세스 마이닝에 필요한 데이터를 설명하는 개념 모델입니다. 각각의 케이스는 이벤트로 이루어져 있고, 이벤트는 여러 속성을 가질 수 있습니다. 원본 소스로부터 이와 같은 형태의 데이터를 추출하고 변환하는 방법이 필요합니다.[그림 1] 이벤트 로그 개념예를 들어 SAP에서 데이터를 추출하는 경우를 보겠습니다. SAP에는 수천 개의 테이블이 있고 여기에는 많은 이벤트 관련 정보가 있습니다. 정확한 데이터를 추출하려면 분석하고자 하는 프로세스가 무엇인지 정의하고 어디가 시작 위치인지 어디가 종료 위치인지 찾아야 합니다. 이러한 데이터 식별, 위치 지정이 제대로 되어야 적절한 이벤트 데이터 수집과 범위 선정이 가능합니다. 병원 데이터도 환자와 관련된 정보가 담긴 1,000개 이상의 테이블을 볼 수 있습니다. 병원 데이터를 분석하려면 마찬가지로 분석 프로세스를 정의하고 분석 범위와 이벤트 데이터 속성에 대해 정의해야 합니다. 이는 중요하지만 어려운 일입니다. 프로세스 마이닝을 위해 필요한 데이터는 여러 정보 시스템에 산재되어 있으며 수집할 수 있는 데이터의 종류와 양도 어마어마합니다.  근본적인 데이터 모델 구조를 이해하고 적합한 이벤트 데이터의 종류와 범위를 산정해야 하며 수집한 데이터를 하나의 테이블로 정리할 수 있어야 프로세스 마이닝을 위한 적절한 이벤트 로그 수집과 준비가 되는 것입니다.티켓 예약 데이터를 통해 데이터 추출과 이벤트 매핑을 살펴보겠습니다. 다음 그림에는 티켓, 예약, 공연, 지불, 고객과 같이 다양한 엔티티(Entity)가 있으며 이러한 엔티티는 관련된 이벤트 또는 액티비티를 가지고 있습니다.[그림 2] 티켓 예약 데이터베이스 구조데이터 분석을 위해 우리가 가장 먼저 결정해야 할 것은 프로세스 인스턴스, 즉 케이스가 무엇인가입니다. 우리가 티켓의 수명주기를 설명하는 모델을 알고 싶다면 티켓을 케이스로 설정하고 이에 해당하는 액티비티를 찾아야 합니다. 예약, 공연, 지불 등의 액티비티가 필요하며 여러 티켓이 동일한 예약 기록이나 지불 이벤트를 가지고 있을 수 있습니다. 따라서 여러 개의 다른 프로세스 인스턴스가 하나의 예약에 연결되어 있을 수 있습니다. 또한, 프로세스 모델이 예약에 대해 설명한다고 하면 다른 액티비티를 찾아야 합니다. 이러한 과정이 명확하거나 쉽지 않기 때문에 어려움이 있습니다. 하나의 예약에 5장의 티켓, 2번의 지불과 같이 여러 이벤트가 연결될 수 있습니다. 예약 취소와 같은 이벤트는 티켓, 공연, 예약 등 여러 엔티티에 영향을 미치게 됩니다. 따라서 엔티티 간의 단순 일대일 대응은 없으며 원하는 이벤트 로그를 얻기 위해서는 데이터 전처리가 필요합니다.케이스 선정과 매핑 문제 외에도 정확한 데이터 추출을 위해서는 고려해야 할 다양한 문제가 있습니다. 케이스나 이벤트가 기록되지 않는 데이터 누락이 발생할 수 있습니다. 실제 수행자가 아닌 다른 수행자가 기록되는 것과 같이 데이터가 정확하지 않을 수 있습니다. 원하는 데이터 레벨이 아닐 수도 있습니다. 예를 들어 개별 작업자에 대해 확인하고 싶은데 부서 레벨이 기록되어 있을 수 있습니다. 또 다른 문제는 관련성이 없는 데이터가 많아 분석 항목을 찾기 어려울 수 있습니다.지금까지 프로세스 마이닝의 이벤트 데이터 관련 문제를 검토하였습니다. 이러한 문제점을 염두에 두고 데이터를 추출해야 프로세스 마이닝 분석을 제대로 수행할 수 있습니다. 프로세스 마이닝 분석을 위한 로그 생성 가이드라인 (https://blog.naver.com/prodiscovery/221160671117) 칼럼을 참조하시면 데이터 추출 문제 해결에 대해 도움을 얻을 수 있습니다.#퍼즐데이터 #개발팀 #개발자 #개발후기 #인사이트
조회수 2490

사운들리 코드 품질 관리 이야기

안녕하세요 "사운들리"입니다 :)오늘은 사운들리의 코드 품질 관리에 대해 이야기 해보려 합니다.몇몇 개발자에게는 지루하고 악몽같은 이야기일 수 있겠네요.제 경우에는 예전에는 이런 품질이라는 단어를 멀리했지만 결국 제가 작성한 코드에 발목을 많이 잡히다 보니, 자연스레 관심을 갖게 되었습니다.일단, 어떤 소프트웨어가 좋은 품질의 소프트웨어일까요?좋은 품질이란? 책에 나올법한 내용을 보면, 아래와 같은 항목을 토대로 소프트웨어 품질을 판단한다고 합니다.ISO/IEC 9126 : Software engineering - Product qualityFunctionality: 명시된 요구사항을 잘 충족했는지Reliability: 명시된 조건과 시간 아래에서 일정 성능을 유지 하는지Usability: 사용하기 위해 어느정도의 노력과 자원이 필요한지Efficiency: 소모 자원과 성능간의 효율Maintainability: 수정하기 위해 어느정도의 노력이 필요한지Portability: 다른 환경에서도 사용 할수 있는지출처: https://en.wikipedia.org/wiki/ISO/IEC_9126 뭔가 복잡해 보이지만, 결국 개발자라면 위의 항목은 누구나 추구하게 되는 가치라고 생각 합니다.그런데 말입니다. 이런 좋은 내용을 마음 속으로만 간직한 채 코드를 작성하면 정말 좋은 소프트웨어를 만들 수 있을까요? 저는 객관적인 방법으로 코드를 평가한다면 좋은 피드백이 될 것이라고 생각합니다. (물론 이 성적표를 남에게 보여주는 것과는 다른 문제에요 ㅎㅎ)어떻게 품질을 체크하는가 소프트웨어의 품질을 체크하는 데에 다양한 방법과 툴이 제시되고 있는데요, 저는 크게 두 가지로 분류 해보겠습니다.유저 입장의 품질: 유저의 요구사항에 맞는 소프트웨어인지 체크개발자 입장의 품질: 내가 지금 이 코드를 의도한 대로 잘 작성하고 있는지 체크 유저 입장의 품질은 언급하지 않아도 중요함을 누구나 알고 있습니다. 이 부분이 만족이 되지 않으면 제품이 아니죠! 그래서 저는 개발자 입장에서 스스로 챙길수 있는 품질을 사운들리는 어떻게 챙겨보고 있는 지 이야기 해보도록 하겠습니다. 실은 제가 개발자 입니다 ㅎㅎ사운들리 개발자의 코드는 아래와 같이 흘러갑니다.<그림1> 사운들리 코드 개발상의 품질 관리 순서도간단히 각 항목을 훑어 보겠습니다.Local Machine 각자 갖고 있는 맥북으로, 다양한 IDE를 사용해 코딩합니다. 그리고 git 을 이용해 commit 하고, github 에 push 하죠.Github push 된 수정사항은 pull request 를 통해 동료에게 알려집니다. 이후 코드리뷰를 통해 merge 하게 됩니다. 코드리뷰는 많은 사람들에 의해 그 중요성이 부각되고 있습니다. 사운들리는 같은 모듈을 만드는 개발자끼리, 그리고 다른 모듈에 영향을 주는 코드일 경우에는 해당 모듈의 개발자도 리뷰를 합니다. 코드리뷰를 통해 다른 사람이 어떤 기능을 작성했는지 보고, 오류도 찾고, 더 좋은 방법이 있으면 공유도 하고, 칭찬도 하고, 훈수도 두고 합니다. 참고로 사운들리는 git-flow 정책에 따라 git branch를 운영하고 있습니다.Jenkins  Github 에 commit 이 등록되면 Jenkins 는 자동으로 빌드를 시작 합니다. Jenkins 는 단순 빌드 성공 실패를 떠나서, 코드 품질에 대한 몇가지 report 를 발생 시킵니다. 아래에서 좀더 자세히 다뤄보겠습니다.SonarQube Jenkins 에서 빌드하면서 SonarQube 에 포함된 분석 기능을 사용하게 됩니다.그렇다면, 코드 품질의 지표는 무엇일까요?Jenkins가 발생시키는 레포트를 통해서 알 수 있는 내용은 아래와 같습니다.코딩 스타일 체크 결과: 작성된 코드가 미리 정의된 코딩 스타일에 맞게 작성되어 있는지?Unit Test 결과: 유닛 테스트 결과 (당연히 전부 pass 해야겠죠)Test code coverage 결과: 테스트 코드가 전체 코드의 몇 % 를 커버 하고 있는지 (우리의 최종목표는.. 60%.. 덜덜덜)정적 분석 결과: 코드를 실행하지는 않지만, 코드 그 자체에서 발생할 수 있는 결함을 찾아줍니다. 이 네 가지 레포트는 객관적 수치를 나타내주기 때문에 일종의 코드 품질 지표로 삼을 수 있습니다. 물론 이 지표만 잘 관리 했다고 해서 좋은 코드를 작성했다고 말할 수는 없습니다. 다만 좋은 코드를 작성하기 위한 기초 중의 기초라고 볼 수 있겠죠 :)품질 체크를 위한 툴(tool)은 개발 언어에 따라 다를 수 있습니다. 사운들리에서는 다양한 언어로 소프트웨어가 작성되어 있습니다. 따라서 언어마다 위의 결과를 얻기 위해서 서로 다른 툴을 사용하고 있습니다. AndroidJavaJavascriptC/C++코딩 스타일checkstylecheckstyle jshintcppcheckUnit testjunitjunitmochagoogletestCode coveragejacococoberturamocha-covgcov정적 분석sonarqubesonarqube sonarqubecppcheck 각 개발자는 위의 네 가지 결과를 얻기 위해서 빌드 시스템에 툴을 포함하여 개발하고 있습니다. 제가 주로 개발하고 있는 java 언어에 해당하는 툴들을 좀 더 자세히 살펴보겠습니다.checkstyle코딩 스타일을 체크 해줍니다. xml 파일로 미리 정의 되어있고요. 매번 빌드할때마다 스타일이 틀린것을 지적해 줍니다.코딩 스타일은 중요합니다. 같이 개발하는 개발자와 코딩 스타일이 같다면 마치 내가 작성한 코드처럼 쉽게 읽을 수 있죠.junitjunit 은 자바 유닛 테스트 프레임워크 입니다. 유닛 테스트 코드를 편하게 작성하게 해주고, 쉽게 테스트 결과를 볼 수 있습니다.유닛 테스트 코드를 작성하면 내가 작성한 모듈을 작은 단위로 테스트 해서, 작은 로직에서 발생하는 시시콜콜한 문제를 방지 할 수 있습니다. 테스트 코드를 작성해서 검증한 부분은 스스로도 신뢰가 갑니다.기능 수정간에 유닛 테스트에서 fail 이 나는 경우가 발생하는데, 모르는 사이에 다른 모듈에 영향을 준 것을 알게 됩니다. 다른 모듈에 모르고 영향을 주게 되면 뒷처리가 어려워지잖아요~coberturacode coverage 를 계산해 주는 툴입니다.유닛 테스트 코드가 실행되면, 작성된 코드의 각 부분을 실행하게 됩니다. cobertura 는 이때 각 코드의 어느부분이 실행되었는지 확인해서 통계를 내줍니다.주로 line coverage / branch coverage 두 지표를 보는데요, line coverage 는 해당 라인이 한번이라도 실행 되면 check 되고, branch coverage 는 각 라인에 있는 조건문을 다 따로 check 합니다. 당연히 branch coverage 를 달성하는게 어렵겠죠?sonarqube소나큐브는 다양한 plug-in 을 통해서 정적 분석을 하고, 시각화를 해주는 툴입니다.사운들리는 주로 정적 분석 용도로만 소나큐브를 사용하고 있습니다. (지원하는 plug-in 을 보면 젠킨스와 기능이 겹치는 부분이 있습니다.)정적분석으로 실제 문제가 되는 부분을 찾는 경우도 있고, minor 한 부분에 대한 지적을 하는 경우도 있습니다. 그러나 이런 minor 한 부분도 꼼꼼하게 잘 챙겨야 좋은 개발자가 된다고 믿고 있습니다.마치며 여기까지 사운들리의 코드 품질 관리에 대해 이야기 해보았습니다. 품질 관리를 해보신 분은 아시겠지만, 이런 툴을 쓰다보면 항상 행복하게 코드 품질을 관리할 수는 없습니다. 매달 세워놓은 목표를 달성하기 위해서 뼈를 깎는 노력으로 테스트 코드를 작성해야 되고, 당장 기능 수정해서 배포해야 되는데, 작성해 둔 테스트 케이스가 Fail 되어 말썽을 부릴 수도 있습니다. 그렇지만 객관적 기준으로 코드 품질을 관리하다보면 어느샌가 큰 노력없이 좋은 코드를 작성하는 개발자가 되지 않을까 생각해 봅니다. 코드 졸면서 막 짜도 style warning 0건/ 정적분석 오류없음 / 테스트 코드 기본 탑재 뭐 이런 개발자 말입니다 ㅎㅎ 다른 개발자분들은 어떻게 자신이 작성한 코드의 품질을 관리하고 있는지 궁금하네요.알고 계신 좋은 방법이 있다면 언제든지 공유 부탁드리겠습니다~!#사운들리 #개발자 #개발 #인사이트 #조언 #개발후기 #후기
조회수 1656

[Tech Blog] Compare Software Architectures: Monoliths, SOA and Microservices

요즘 Software architecture 라는 단어를 들으면 아마도 Client engineer 분들은 MVC, MVP, MVVM 이 먼저 떠오를 것이고, Server engineer 분들은 Microservice architecture 를 먼저 떠오를 것 같네요. Clean architecture 나 Event-driven architecture 등을 떠올리는 분들도 계실 것 같구요. Software architecture 를 어떻게 정의할 수 있을지에 대해서는 Software architecture: The important stuff 에 적어 봤으니 여기에선 넘어가도록 하죠. https://mherman.org/blog/developing-microservices-node-react-docker/ Microservice architecture 는 대세라고 말할 수 있습니다. Netflix, Amazon 등 굴지의 기업들이 성공적으로 적용해서 운영하고 있고, 국내 기술적으로 뛰어난 많은 기업들 역시 이미 적용했거나 시도하고 있습니다. “남들 다 하는데 이러다 도태 되는거 아냐?” 라는 생각이 들 정도로 말이죠. 그러나 이전 글에서 얘기했듯이 정답은 없으며, Microservice architecture 역시 예외는 아닙니다. 모든 선택에는 Tradeoff 가 있고, Microservices 는 다른 architecture 에 비해 어떤 장점이 있는지 살펴봐야 합니다. 이와 관련하여 정말 많은 좋은 글들이 이미 있으니, 이 글에서는 몇 가지 Software architecture 들을 가볍게 정리 및 비교해 보도록 하겠습니다. Monolithic Architecture Monolithic architecture 는 Microservice architecture 의 장점을 얘기할 때 반드시 언급될 정도로 대척점에 있는 architecture 입니다. Monolithic architecture 는 하나의 큰 덩어리로 구성되어 있고, 모든 기능이 하나의 프로젝트에 집중되어 있습니다. 쉽게 구성이 가능하고 초기에 기능을 빠르게 추가하기에 용이하나, 복잡도가 늘어날수록 기능 추가 속도가 느려지고 문제가 발생할 가능성이 높습니다. PoC(Proof of Concept)를 위한 가벼운 프로젝트나 아주 초기 프로젝트에 적용 가능합니다. Semi-Monolithic Architecture Monolithic architecture 보다는 작지만, 여전히 기능들이 몇 개의 프로젝트에 집중되어 있는 architecture 입니다. 예를 들어 frontend 와 backend 프로젝트를 나누었지만 각 프로젝트가 monoliths 인 경우 semi-monolithic architecture 라고 볼 수 있습니다. 다만 Semi-monoliths 의 경우 몇 군데에서 언급한 것을 볼 수 있지만, 일반적으로 사용되는 architecture 용어는 아닌 듯하고, Semi-monoliths 로 구분될 수 있는 경우 Monolithic architecture 라고 분류할 수 있을 듯합니다. 단순 frontend / backend 보다 좀 더 많은 수의 service 로 분할된 architecture 를 구성하더라도 각 service 가 monoliths 로 구분될 수 있다면 여전히 monolithic architecture 를 구성하고 있다고 할 수 있습니다. Service-Oriented Architecture 여러 조직이 다수의 application 사이에서 로직과 데이터를 공유하기 위해 제안된 architecture 입니다. Monolithic architecture 와 달리 기능을 나눠서 여러 개의 서비스로 구성하고, 서비스 사이는 API 를 통해서 통신합니다. Microservice architecture 와 Service-oriented architecture (SOA) 를 비교하기 위해 Enterprise Service Bus (ESB)가 많이 언급됩니다. ESB는 Enterprise Application Interface (EAI) 와 대조적으로 가볍고 흔한 통신을 위해 제안되었으나, 통제와 관리를 위해 점점 무거운 방향으로 진행되면서 최초의 의도와 달라졌습니다. SOA 가 무거워짐에 따라 최초의 의도였던 빠른 적용, 민첩한 개발 및 적은 통합 비용과 멀어지게 되면서 자연스럽게 도태되었습니다. 서비스 사이에 데이터베이스를 공유할 수 있느냐 아니냐로 Microservice 와 구분을 짓는 의견도 있습니다만, SOA의 정의가 넓어서 이 부분에 대해서는 이견들이 있습니다.   https://dzone.com/articles/microservices-vs-soa-2 SOA가 넓은 범위에서 정의됐기 때문에 ESB 나 DB 공유 여부로 SOA 를 규정 짓기는 어렵습니다. 정의 상으로 보면 Microservice architecture 역시 SOA 의 일종이라고도 볼 수 있습니다. Microservice 의 예시로 자주 등장하는 Netflix 와 Amazon 역시 Microservice 라는 단어가 사용되기 전에는 스스로의 시스템을 SOA 라고 지칭했습니다. Microservice Architecture: The O’Reilly Book 의 공동 저자 Matt McLarty 는 Learn from SOA: 5 lessons for the microservices era 라는 글에서 SOA 와 Microservice architecture 가 같은가 다른가는 그다지 중요한 것이 아니며, 우리가 SOA 로부터 어떤 것들을 배웠는가가 중요하다고 강조합니다. Microservice Architecture Microservice architecture는 규모가 빠르게 커져도 제품 생산 속도를 빠르게 유지하고 안정성을 가질 수 있는 architecture 입니다. 충분히 작은 서비스들이 서로 통신하면서 기능을 수행합니다. Microservice architecture 를 SOA의 잘 구현된 형태라고 보는 시각도 있지만, micro 라는 단어가 SOA 에서 정의하는 서비스보다 작은 크기의 서비스임을 명시적으로 표현하기 때문에 매우 다르다는 의견 역시 있습니다. Microservice architecture 는 각 서비스의 크기를 작고 가볍게 유지함으로써 더 깔끔하고 명확하게 서비스를 유지할 수 있습니다. 잘 구성될 경우 특정 서비스에 장애가 생겨도 다른 서비스에 영향을 적게 미치거나 유연하게 대응할 수 있기 때문에 전체 시스템 오류(e.g Single Point of Failure)를 방지할 수 있습니다. 각 서비스는 독립적으로 배포 및 확장 가능하기 때문에 기능 배포가 빠르고 많은 트래픽에 유연하게 대처할 수 있습니다. 한편 Microsoft architecture 는 구조적인 면에서 복잡도가 증가하며, 많아진 서비스 및 서비스 간 통신에 대한 유지 보수 비용이 추가됩니다. 이를 대응하기 위해서 충분히 자동화되고 잘 구성된 시스템이 필수적으로 필요합니다. Conclusion 판단과 결정은 근거를 필요로 합니다. 가끔 감을 믿고 밀어붙여야 할 때(e.g 오늘 점심은 해장국을 먹어야 한다던가)도 있다는 점은 인정합니다. 하지만 그 역시 설득력을 가지지 못하면 하나의 목표를 향해 모두가 미친듯이 달려가기는 어렵겠죠. Software architecture 를 결정하기 위해서는 추구하는 비전과 비지니스를 이해하고 그에 맞는 근거 하에 모든 팀원을 판단하고 설득해야 합니다. 버즈빌 에서는 더 빠르고 큰 성장을 위해 Architecture Task Force 팀을 구성하였습니다. ATF 팀은 버즈빌에 최적인 Software architecture 를 판단하고, 구성하고, 실행하기 위해 바쁘게 움직이고 있습니다. Buzzvil Services Characteristic:  제품이 다양하고 제품별로 제공해야 할 기능이 많다. 각 제품이 공통적으로 필요로 하는 기능이 많다. 서비스 혹은 기능별로 대응해야 하는 트래픽이 다르다. 전체 서비스 장애 발생 시 많은 후속 문제가 발생한다. 트래픽 변동이 특정 이벤트에 의해 크게 일어날 수 있다.  Buzzvil 의 제품과 비지니스는 위와 같은 성격을 가지고 있습니다. 이를 바탕으로 우리는 Microservice architecture 가 가장 적절하다고 판단하였고, 현재 microservices 의 장점을 살리면서 안정적이고 빠르게 우리가 원하는 목표에 도달할 수 있도록 다양한 방면에서 변화를 가져가고 있습니다. References  Learn from SOA: 5 lessons for the microservices era Microservices vs. SOA On monoliths, service-oriented architectures and microservices Microservices.io Microservices Resource Guide Design Microservice Architectures the Right Way Developing Microservices – Node, React, and Docker    *버즈빌에서 개발자를 채용 중입니다. (전문연구요원 포함)작가소개 Whale, Chief Architect “Keep calm and dream on.”
조회수 1146

애플리케이션 개발부터 배포까지, AWS CodeStar

OverviewAWS CodeStar를 이용하면 애플리케이션의 개발-빌드-배포까지 빠르게 진행할 수 있습니다. CodeStar는 몇 가지 장점을 가지고 있는데요. 오늘은 간단한 Python App Service Tutorial을 통해 CodeStar를 사용하는 방법을 알아보겠습니다. CodeStar의 장점통합된 UI로 한 번에 여러 활동 관리 가능Continuous Delivery 도구 체인을 구성해 신속한 코드 배포 가능소유자, 기여자 및 최종 사용자 추가로 안전한 협업 가능Dashboard를 사용해 전체 개발 프로세스의 진행 상황 추적 가능CodeStar 사용하기1-1. 처음 CodeStar를 실행하면 나오는 화면입니다. ‘Start a Project’를 누르면 프로젝트 템플릿을 선택할 수 있습니다. 1-2. 이것은 아직 지원되지 않는 지역(Region)에서 노출되는 화면입니다. 2-1. ‘Start a Project’를 클릭하면 프로젝트 템플릿을 선택할 수 있습니다. 2-2. Python과 AWS Lambda를 이용해 Web service를 구현해보겠습니다. 3. Project Name을 지정하고 repository를 선택합니다. 여기서는 AWS CodeCommit으로 선택하여 진행해보겠습니다. CodeCommit의 경우 Repository name을 따로 지정할 수도 있습니다. Repository name까지 지정했다면 Next를 클릭합니다. 4. 아래의 화면은 프로젝트의 흐름입니다. CodeCommit에 소스가 저장되고 AWS CodeBuild를 통해서 Build와 Test가 진행됩니다. 그리고 AWS CloudFormation을 통해서 Deploy가 진행되며 Monitoring은 Amazon Cloud Watch를 통해 진행합니다. CodeStar의 경우 IAM 사용자에 AWSCodeStarFullAccess 관리형 정책을 적용합니다.1) 5. Create Project를 클릭하면 프로젝트가 생성되고, CodeStar 유저 설정을 할 수 있습니다. 6-1. 이제 editor를 선택해봅시다. Command line tools, Eclipse, Visual Studio 등을 고를 수 있습니다. 툴은 언제든지 바꿀 수 있으니 여기서는 Eclipse를 이용하여 프로젝트를 진행하겠습니다. 6-2. See Instructions를 클릭하면 Eclipse를 다운로드 받아 설정하는 방법을 볼 수 있습니다. 6-3. 이제 Eclipse를 설치하고 AWS Toolkit for Eclipse를 설치해보겠습니다. Eclipse의 종류는 Eclipse IDE for java EE Developers 에디션을 설치하겠습니다. 다른 버전은 AWS Toolkit 설치할 때 의존성 문제가 발생할 수 있습니다. 7. Eclipse를 설치하고 Eclipse Marketplace에서 AWS Toolkit for Eclipse 2.0를 설치합니다. 8-1. import를 클릭하고 8-2. AWS -> AWS CodeStar Project를 선택합니다. 8-3. 지역(Region)을 선택하면 해당 지역의 CodeStar 프로젝트를 import 할 수 있습니다. 이 때 CodeCommit의 HTTPS Git credentials를 입력해야 합니다. 9. IAM -> Users -> 사용 계정을 선택해 HTTPS Git credentials for AWS CodeCommit에 가면 User Name과 Password를 Generate 할 수 있습니다. (아래 이미지에 민감한 정보는 삭제했습니다.) 10. CodeStar에서 Project를 Eclipse에 import한 모습입니다. buildspec.yml, index.py, README.md, template.yml이 clone 된 것을 확인할 수 있습니다. 11. 브라우저의 Eclipse 설치 설명 화면에서 back을 클릭해 에디터 선택 화면으로 돌아갑니다. 12. 도쿄 지역에 아직 출시되지 않은 Cloud9은 선택을 마치면 자동으로 셋업이 완료됩니다. 그러나 Eclipse는 Skip을 클릭해야 CodeStar Dashboard로 이동할 수 있습니다. 13. CodeStar Dashboard에 진입하였습니다. IDE는 이미 설정이 끝났으므로 I have already done this를 선택합니다. 화면 하단에 파란색 직육면체가 계속 그려지면 deploy가 완료된 상태가 아니므로 조금 기다렸다가 refresh를 해줍니다. 14-1. deploy가 완료되면 위와 같이 Team wiki tile, Application endpoints, Commit history, Continuous deployment, Application activity등이 나타납니다. 14-2. JIRA를 연동해서 사용할 수도 있는데, 그 내용은 다음에 다루겠습니다. ???? 15. 우선 첫 deploy가 완료된 것을 자축하며 Application endpoints를 클릭합니다. 개발자들에게 굉장히 익숙한 “Hello World”가 나옵니다! 간편하게 소스를 deploy 하여 AWS Api-Gateway와 연결했습니다. 이제 각 파일의 용도에 대한 설명과 새로운 method를 추가하는 작업을 진행해보겠습니다. 16. 이미지처럼 sample.py 파일을 추가하고 아래 코드를 추가합니다. import json import datetime def handler(event, context):     data = {         'output': 'Sample! pathParameters test = ' + event["pathParameters"]["test"]     }     return {'statusCode': 200,             'body': json.dumps(data),             'headers': {'Content-Type': 'application/json'}} 17. 그리고 template.yml에는 아래 내용을 추가합니다. — template.yml —  Sample:     Type: AWS::Serverless::Function     Properties:       Handler: sample.handler       Runtime: python3.6       Role:         Fn::ImportValue:           !Join ['-', [!Ref 'ProjectId', !Ref 'AWS::Region', 'LambdaTrustRole']]       Events:         GetEvent:           Type: Api           Properties:             Path: /sample/{test}             Method: get — 18-1. 이제 수정한 내용을 CodeStar에 반영해보겠습니다. 프로젝트에서 오른쪽 클릭을 해 Team -> Commit을 선택하고 Commit합니다. 18-2. 수정한 파일을 Commit하고 Push합니다. 18-3. Dashboard를 보면 Commit history에 Commit 내용이 반영되었습니다. 19-1. Dashboard에 Continuous deployment를 보면 Source -> Build -> Deploy를 통해서 수정한 내용이 반영되는 것을 실시간으로 확인할 수 있습니다. 이 작업은 생각보다 시간이 많이 소요됩니다. Deploy까지 Succeeded로 완료가 되면 새로 만들어진 URL을 클릭합니다. 19-2. 아래와 같이 pathParameters가 정상적으로 출력되는 것을 확인할 수 있습니다. 20. 이어서 새로 만든 API에 단위테스트를 추가해보겠습니다. sample_test.py라는 파일을 만들고 아래 코드를 추가합니다. — sample_test.py — from sample import handler   def test_sample_handler():         event = {         'pathParameters': {             'test': 'testMessage'         }     }         context = {}         expected = {         'body' : '{"output": "Sample! pathParameters test = testMessage"}'         ,'headers': {             'Content-Type': 'application/json'         },         'statusCode': 200     }         assert handler(event, context) == expected  — 21. 그리고 buildspec.yml 파일을 아래와 같이 수정합니다. — buildspec.yml —  version: 0.2 phases:    install:     commands:       - pip install pytest    pre_build:     commands:       - pytest    build:     commands:       - pip install --upgrade awscli       - aws cloudformation package --template template.yml --s3-bucket $S3_BUCKET --output-template template-export.yml artifacts:   type: zip   files:     - template-export.yml  — 22-1. Commit을 진행합니다. 그리고 다시 Source -> Build -> Deploy 를 거쳐서 Succeeded가 되면 Build 부분의 CodeBuild로 들어가서 Build 결과를 확인합니다. 22-2. 맨 마지막에 Build 결과를 클릭하면 Build 상세 내역을 확인하실 수 있습니다. 22-3. Build logs부분을 보면 sample_test.py를 이용한 단위테스트가 정상적으로 진행된 것을 확인할 수 있습니다. Conclusion지금까지 CodeStar를 이용한 간단한 튜토리얼을 진행했습니다. 다음 화에서는 다양한 방법으로 CodeStar를 활용할 수 있는 방법을 소개하겠습니다. CodeStar에 대한 자세한 내용은 여기를 참조하세요. 참고 1) AWS CodeStar 설정글윤석호 이사 | 브랜디 [email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유 #CTO
조회수 1048

컴공생의 AI 스쿨 필기 노트 ⑥인공신경망

인공지능, 머신러닝, 딥러닝이번 6주차 AI 스쿨에서는 딥러닝의 가장 기초적인 부분을 배웠어요. 인공지능과 머신러닝, 그리고 딥러닝을 많이 들어보긴 했는데 이 셋의 차이는 무엇일까요?인공지능이라는 개념은 1956년 미국 다트머스 대학에 있던 존 매카시 교수가 개최한 다트머스 회의에서 처음 등장했고 최근 몇 년 사이 폭발적으로 성장하고 있는 중이에요. 1956년 당시 인공지능의 선구자들이 꿈꾼 것은 최종적으로 '인간의 지능과 유사한 특성을 가진 복잡한 컴퓨터'를 제작하는 것이었죠. 이렇듯 인간의 감각, 사고력을 지닌 채 인간처럼 생각하는 것을 인공지능이라고 해요.인공지능은 위 세 개념 중 가장 큰 개념이에요. 머신러닝은 일반적으로 사람들이 이야기하는 인공지능, 즉 머신러닝에 기반한 인공지능을 말하는데요. 인공지능을 구현하는 구체적인 접근 방식이라고 할 수 있어요.머신러닝에는 linear regression, logistic regression 등의 여러 알고리즘이 있는데요.  그중 학습에 사용되는 모델을 딥러닝이라고 해요. 즉 딥러닝은 완전한 머신러닝을 실현하는 기능이라고 볼 수 있어요. 이러한 딥러닝의 등장으로 인해 머신러닝의 실용성은 강화됐고 인공지능의 영역은 확장됐다고 해요.인공 신경망(Neural Network)오늘 수업의 핵심인 인공 신경망(Neural Network)은 어떻게 만들어졌을까요?뉴런의 구조이것은 우리 몸에 존재하는 신경세포인 뉴런이에요. 뉴런은 전기적인 신호를 전달하는 특이한 세포인데 뇌는 뉴런의 집합체라고 할 수 있어요. 뉴런은 수상 돌기(dendrites, input)에서 신호를 받아들이고 축색 돌기(axon terminals, output)에서 신호를 전송해요. 신호가 전달되기 위해서는 일정 기준(임곗값 : threshold) 이상의 전기 신호가 존재해야 해요. 이 신호들의 전달을 통해서 정보를 전송하고 저장해요.이런 신경세포로 이뤄진 신경망 시스템을 위의 그림처럼 표현할 수 있어요. 이처럼 인공신경망은 사람 몸속의 신경들을 모방해서 만든 시스템이에요.위의 식처럼 뉴런을 수학적으로 표현할 수 있는데요. 입력 값들(X)에 가중치를 두어(W) 값 (f(x))을 구하고 그 값과 임계치와의 관계를 활성함수(active function)*로 판단하여 결괏값을 출력하게 돼요.( * 활성함수는 인공신경망의 개별 뉴런에 들어오는 입력신호의 총합을 출력 신호로 변환하는 함수로 비선형 함수(non-linear function)를 씁니다.**)이때 활성함수는 뉴런에서 임곗값을 넘었을 때만 출력하는 부분을 표현한 것으로 sigmoid 함수, Relu 함수 등 여러 방식이 있어요.인공 신경망의 구조인공 신경망 구조는 위의 그림처럼 나타낼 수 있어요. 인공 신경망 구조는 입력층(input layer), 은닉층(hidden layer), 출력층(output layer)으로 이루어져 있어요. 위의 그림은 그 구조에 의해 3-layer Neural Network 또는 2-hidden-layer Neural Network라 부를 수 있는데요. 3-layer Neural Network는 3개의 층을 가지는 인공신경망이라는 뜻이고, 위 그림에서는 은닉층1, 은닉층2, 출력층이 해당되겠죠. 인공 신경망에 입력층과 출력층은 항상 존재하기 때문에 은닉층의 개수만을 고려하여 부르기도 해요. 위 그림에서는 은닉층이 2개 있기 때문에 2-hidden-layer Neural Network라고 부를 수 있어요. 전파(Propagation)이번에는 실제로 학습하는 과정인 인공신경망의 알고리즘에 대해 알아볼게요. 순전파(Forward Propagation)와 역전파(Backward Propagation)가 있어요.순전파는 입력값에서 출력값으로 가중치를 업데이트를 하고 활성화 함수를 통해서 결괏값을 가져오는 것을 말해요. 인공신경망이 설계된 정방향(input → hidden → output)으로 데이터가 흘러가기 때문에 순전파라고 해요. 말 그대로 입력값을 앞쪽으로 보낸다고 생각하면 돼요.역전파는 출력값을 통해서 역으로 입력값 방향으로 오차를 다시 보내며 가중치를 재 업데이트하는 것이에요. 출력값에서 계산된 오차에 가중치를 사용해 바로 이전 층의 뉴런들이 얼마나 오차에 영향을 미쳤는지 계산해요. 결과에 영향을 많이 미친 뉴런일수록 더 많은 오차를 돌려줘요.개념을 코드에 적용하기NumPy로 구현된 Neural Network(이하 NN)의 작동 방법을 살펴볼게요. NN은 총 2개의 레이어로 이루어져 있어요. 이번 과제에서는 입력 x가 들어왔을 때, 레이블에 따라 예측치가 1로 수렴하는지 알 수 있는 인공신경망을 구현하는 것이 목적이에요.Neural Network다음 코드는 simpleNueralNet() 클래스를 나타내는 코드예요. simpleNueralNet()은 두 개의 레이어로 구성된 NN이에요.N, D_in, H, D_out = 64, 1000, 100, 10- N은 batch size, 즉 한 번에 처리할 수 있는 데이터 사이즈를 말해요. - D_in은 입력값 차원에 쓰이는 값으로 1000을 할당해요.- H는 은닉층 차원에 쓰이는 값으로 100을 할당해요.- D_out은 출력값 차원에 쓰이는 값으로 10을 할당해요.아래 코드를 통해서 랜덤 입력과 출력 데이터를 만들어요.x = np.zeros((N, D_in))     #1  x.fill(0.025)                         #2y = np.ones((N, D_out))   #31. np.zeros() 함수를 사용하여 (64, 1000)의 차원을 갖는 0인 행렬을 만들어요.2. fill() 함수를 통해 x 안의 모든 0을 0.025로 바꿔요.3. np.zeros() 함수를 사용해 (64, 10)의 차원을 갖는 0인 행렬을 만들어요.아래는 랜덤 값을 갖는 가중치(weight)들을 초기화하는 코드예요. w1은 1000, 100 차원의 랜덤 값을 갖는 행렬로, w2는 100, 10차원의 랜덤 값을 갖는 행렬로 만들어요.w1 = np.random.randn(D_in, H)   w2 = np.random.randn(H, D_out)learning_rate는 학습 속도를 의미해요. 아래는 단계별로 움직이는 학습 속도를 1e-6으로 정의하는 코드예요.learning_rate = 1e-6이제 5000번의 순전파를 할 거예요.h = x.dot(w1)     h_relu = relu(h)  y_pred = h_relu.dot(w2)h는 은닉층에 전달할 값이에요. x와 w1을 행렬곱한 값을 가져요.활성 함수 relu에 h를 넣어서 계산해요.y_pred는 예상되는 출력값이에요. relu로 계산된 h_relu와 가중치 w2를 행렬곱한 값이에요.아래는 순전파로 얻은 y_pred에서 진짜 y를 뺀 값을 제곱한 것의 합을 구해 손실 값(loss)을 구하는 코드예요. print(loss) 코드로 손실을 확인할 수 있어요.loss = np.square(y_pred - y).sum()순전파 후 역전파를 이용해 손실에 대한 가중치 w1과 w2의 gradients를 계산하여 update 할 거예요.grad_y_pred = 2.0 * (y_pred - y)              #1grad_w2 = h_relu.T.dot(grad_y_pred)    #2grad_h_relu = grad_y_pred.dot(w2.T)    #3grad_h = grad_h_relu.copy()                    #4grad_h[h < 0>grad_w1 = x.T.dot(grad_h)                         #61. 순전파로 얻은 y_pred에서 진짜 y값을 뺀 값에 2.0을 곱하여 grad_y_pred를 구해요.2. grad_w2는 순전파에서 y_pred = h_relu.dot(w2) 식을 사용했으므로  h_relu.T.dot(grad_y_pred) 로 구해요. h_relu가 반대로 곱해지기 때문에 T를 이용하여 shape을 바꿔줘야 해요.3. grad_h_relu는 방금 위에서 사용한 y_pred = h_relu.dot(w2)을 이용하여 grad_y_pred.dot(w2.T) 로 구해요. 이번에는 w2 shape의 반대를 grad_y_pred에 곱해줘야 해요.4. 순전파에서 h_relu = relu(h)였는데요. 역전파에선 grad_h와 grad_h_relu가 같기 때문에 copy() 함수로 그대로 복사해요!5. 0보다 작은 h는 0으로 만들어요.6. 가중치 w1의 값인 grad_w1은 순전파의 h = x.dot(w1)와 반대로 x.T.doT(grad_h) 곱해요. 역전파는 순전파의 식에서 이항한다고 생각하면 조금 더 쉽게 이해할 수 있을 것 같아요. 이항한 값은 .T를 붙여서 표현한다고 생각하면 될 것 같아요.아래는 가중치를 재업데이트하는 코드예요.w1 -= learning_rate * grad_w1 w2 -= learning_rate * grad_w2 과제1을 통하여 NN을 알아보았는데요. 복잡하지만 순전파와 역전파를 알고 있다면 많이 어렵지는 않은 것 같아요. 과제 2는 정확도를 95% 이상으로 만들어보는 과제인데 여러 가지 방법을 동원해서 풀어보는데 생각보다 쉽지가 않아요. ^^;이번 수업시간에 배운 딥러닝의 기초인 신경망은 굉장히 중요한 개념이라고 해요. 신경망을 기반으로 한 딥러닝을 강화하여 안면인식을 가능하게 하거나 저장된 데이터를 정확하게 인식하고 분류할 수 있는 기기들도 만들어지고 있어요. 이처럼 AI는 점진적으로 활용 범위가 넓어지고 있기 때문에 이 수업을 통해 쌓은 AI 지식을 마음껏 뽐낼 수 있는 날이 왔으면 좋겠어요!** 왜 활성함수로 비선형 함수를 쓸까요?선형함수인 h(x)=cx를 활성함수로 사용한 3-layer 네트워크를 생각해봐요. 이를 식으로 나타내면 y(x) = h(h(h(x)))가 되는데요.  이는 y(x) = c3x와 같습니다.  이렇게 활성함수로 선형함수를 사용하면 은닉층을 사용하는 이점이 없어요.* 이 글은 AI스쿨 - 인공지능 R&D 실무자 양성과정 6주차 수업에 대해 수강생 최유진님이 작성하신 수업 후기입니다.
조회수 1158

AndroidAnnotations 과 테스트

이 포스팅은 총 4부로 이어지며 현재는 4부입니다.1부 : Android, MVC, MVVM, MVP2부 : Android 와 Annotation3부 : AndroidAnnotations 과 MVC4부 : AndroidAnnotations 과 테스트앞선 3개의 포스팅을 통해 AndroidAnnotations 과 MVC 가 view 에 관여하는 동작들이 모두 View 로 분리된 것을 확인할 수 있습니다.이러한 구조덕분에 Model 에 대한 테스트와 View 에 대한 테스트가 명확히 구분지어지게 되었습니다.Test 코드를 작성함에 있어서 View 에 대한 테스트가 다소 어려움이 있다는 것을 감안한다면 Model 에 대한 테스트만 집중할 수 있는 구조가 테스트에 대한 접근을 더욱 쉽게 해줍니다.다음은 앞선 포스팅에서 정의된 코드 중에서 Model 에 대한 테스트입니다.※ 테스트코드는 Robolectric 을 이용하여 작성하도록 하겠습니다.Model Test@RunWith(RobolectricGradleTestRunner.class) public class MainModelTest { private MainModel mainModel; @Setup public void init() { mainModel = new MainModel(Robolectric.application); } @Test public void testGetReleaseState() { // given String version = "3.19" // not yet released // when boolean isReleased = mainModel.getReleaseState(version); // then assertThat(isReleased, is(equalTo(false)); // given version = "3.18" // released // when isReleased = mainModel.getReleaseState(version); // then assertThat(isReleased, is(equalTo(true)); } }위와 같이 Model 만 별도로 테스트가 용이해졌습니다.Presenter TestPresenter 에 대한 테스트는 Model 에 대한 테스트와 다릅니다.Activity 에 커플링이 높기 때문에 해당 Activity 를 직접 바인딩해야 합니다.@RunWith(RobolectricGradleTestRunner.class) public class MainViewTest { private MainActivity mainActivity; private MainView MainView; @Setup public void init() { mainActivity = Robolectric.buildActivity(MainActivity.class).create().start().resume().get(); MainView = mainActivity.mainView; } @Test public void testGetVersionText() { // given String version = "3.19" // when MainView.versionEditText.setText(version); // then assertThat(MainView.getVersionText(), is(equalTo(version)); } }Jandi Team은 View 를 테스트하기 위해서 Presenter 와 Activity 의 패키지 Level 을 같은 Level 로 유지하고 있습니다.AndroidAnnotations 에서 DI 를 설정하기 위해서는 해당 변수나 메소드는 최소 Package Scope 로 정의해야하기에 위와 같은 형태의 Field 접근을 볼 수 있습니다.정리AndroidAnnotations 를 활용한 MVC 패턴의 전환의 또다른 이점은 이와 같이 테스트를 명확히 분리할 수 있다는 장점을 주었습니다. 물론 이 방법은 MVVM, MVP 로 구현하였을때보다 나은 형태라 할 수는 없으나 View 에 대한 테스트가 좀 더 용이해진 것이라 생각합니다.※ Activity 는 왜 테스트하지 않나요?MVP 패턴에서 Activity는 Controller 의 모습을 지니고 있습니다. 이는 Unit Test 가 아닌 Behavior 테스트에 가까운 모습이며 다른 방식으로의 테스트코드 구현이 필요하다고 생각합니다.#토스랩 #잔디 #JANDI #개발 #개발자 #개발팀 #기술스택 #일지 #후기 #꿀팁 #인사이트

기업문화 엿볼 때, 더팀스

로그인

/